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ABSTRACT

In our previous works, a Switching Linear Gaussian Hidden Markov
Model (SLGHMM) and its segmental derivative, SSLGHMM, were
proposed to cast the problem of modeling a noisy speech utter-
ance in robust automatic speech recognition by a well-designed
dynamic Bayesian network. An important issue of SSLGHMM
is how to specify @ switching state value for each frame of fea-
fare vector in a given speech utierance. In this paper, we propose
several approaches for addressing this issue and compare their per-
formance on Aurora3 connected digit recognition tasks.

1. INTRODUCTION

A Switching Linear Gaussian Hidden Markov Model (SLGHMM),
as shown in Fig. I{a), was proposed in {9] to cornpensate for

the nonstationary distortion that may exist in a speech ufterance -

to be recognized. In [12], a variational approach has been pro-
posed to solve the approximate maximum likelihood (ML) pa-
rameter learning and probabilistic inference problems for SLGH-
MMs. Unfortunately, it is not computationally feasible for auto-
matic speech recognition (ASR) appiications that require prompt
response. Therefore, a Segmental SLGHMM (SSLGHMM here-
inafter), as illustrated in Fig. 1(b), was proposed in {9].

In an SSLGHMM, several assumptions are made to simplify
the model. Each switching state ¢; is assumed to be indepen-
dent of all switching states at other time instances. Switching
states are treated as observations rather than hidden variables as
in SLGHMM, The values of switching states are assigned by an
appropriate pre-segmentation procedure. Therefore, an important
issue of SSLGHMM is how to specify a switching state value for
each frame of feature vector in a given speech utterance. For the
convenience of reference, we refer hereinafter the above problem
as swilching state segmentation. We have investigated several ap-
proaches to address the above issue and conducted a series of ex-
periments on Aurora3 connected digit recognition tasks [1, 2, 3, 4].
In the following, we first present our approacites in section 2. Sec-
tion 3 will then detail the experiments and present and discuss their
results. Finally, some conclusions are drawn in section 4.

2. SWITCHING STATE SEGMENTATION APPROACHES

The overall architecture of our approaches for switching state seg-
mentation in SSLGHMM is shown in Fig. 2 and works as fol-
lows. Given the feature vector sequence of an input specch utter-
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Fig. 1. Directed acyclic graph specifying conditional indepen-
dence relations for (a) SLGHMM and (b) SSLGHMM

ance Y = {y1,y2, - ,yr}, the value of switching state, g¢, is
determined in two stages: condition labeling and frame labeling.
The condition labeling process uses the result of voice activity de-
tection {VAD) that segments the input utterance into speech and
non-speech segments {7]. In general, the input usterance Y can be
classified as belonging to one of E conditions as follows:

T

e’ = argmax | [ p(yelad 7™} ,
=1

o

where VAD(#) is the result (taking “S> for speech or “N” for
non-speech) of VAD at time ¢, AS = {Af} and AN = {A¥} are
two sets of Gaussian mixture models (GMMs) designed for speech
and non-speech segments tespectively. After the condition label-
ing for the whole utterance, the frame labeling process will deter-
mine the value of switching state for cach speech frame with the
corresponding condition dependent speech GMM AZ. as follows:

ge = arg mgw(q}yt, Af}. 2)
In Eq. (1), the total likelihood is a product of the likelihood of
speech segments and that of non-speech segiments. Apparently,
there are other options in designing the condition labeling rule
by adjusting contributions from speech and non-speech segments.
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Fig. 2. Process of switching state segmentation in SSLGHMMs

Consequently, training procedures for A® and A% will also be dif-
ferent, In the foilowing subsections, we detail five approaches we
have investigated and refer to them hereinaficr as Al, A2, A3, A4
and A5 respectively.

2.1, Al: Candition Labeling using hoth Speech and Non-Speech
Segments

In this approach, the condition labeling is based on Eq. (1) us-
ing both speech and non-speech segments. The training procedure
for two sets of GMMs, AS and A” is illustrated in Fig. 3 and
explained in the following:

Step 1. Traina GMM with £ Gaussian components by using non-
speech segments of ail training utterances. Each training
ufterance is then classified to one of the E classes that has
the maximum likelihood of non-speech segments for the as-
sociated Gaussian component,

Step 2. Given the initial labeling of training urterances, for each
condition class e, two GMMs, AS and A2 are trained from
speech segments and non-speech segments associated with
class e respectively.

Step 3. Given {AZ} and {AL}, each training utterance is re-classified

to the corresponding condition based on Eq. (1) using both
speech and non-speech segments.

Step 4. Repeat steps 2 and 3 until no change of utterance labeling
results or a maximum number of iterations is reached.

Each test utterance is also classified to the comesponding condition
using Eq. (1).

2.2. A2: Condition Labeling using Speech Segments (1)

In this approach, the condition labeling is based on speech seg-
ments only and the labeling rule becomes

T
e’ = argmax H ply|ATY . (3

=1
VAD{t)=8

The training procedure for the set of GMMs, A9, is as follows:
Step 1. This step is the same as Step 1 in Approach 1.

Step 2. Given the initial labeling of training witerances, for each
condition class e, a GMM AS is trained with all speech
segments associated with class e,

Step 3. Given {AS}, each training utterance is re-classified to the
corresponding condition based on Eq. (3) using speech seg-
ments only.

Non-speech segments

l

Train a non-speech GMM with E
Gaussian components

Speech segments

A J
Classify training utterances via their
non-speech segments

E Classes
Y )

Train two GMMs in each class: 1} for speech
segments; 2} for non-speech segments

L

Classify training utterances via both speech
segments and non-speech segments

\J
E Classes 1) E GMMs for non-speech segments

2) E GMMs for speech segments

Fig. 3. Training of two sets of GMMs for speech and non-speech
segments in Approach 1.

Step 4. Repeat steps 2 and 3 until no change of utterance labeling
results or a maximum number of iterations is reached.

Each test utterance is also classified to the corresponding condition
using Eq. (3).

2.3. A3: Condition Labeling using Speech Segments (2)

This approach is similar to Appreach 2. The condition labeling
rue for a test utterance is the same as in Eg. (3), but the training
procedure for the set of GMMs, AS, is different. The difference
lies in the first step for the initial labeling of training utterances.
Step 1 of Approach 3 read as

Step 1. Train 2 GMM with E Gaussian components by using speech
segments of all training utterances. Each training utter-
ance is then classified to one of the F classes that has the
maximum likelihood of speech segments for the associated
Gaussian component.

The other three steps are the same as in Approach 2.

2.4. A4: Condition Labeling using Non-Speech Segments

in this approach, the condition labeling is based on non-speech
segments only and the labeling rule is as follows:

T
e =argmax [  plTY), @)
VAD(H=N

where T'Y represents the Gaussian component of condition e as
trained in Step 1 of Approach 1, Each test utterance is also classi-
fied to the comrespondiag condition using Eq. (4).
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2.5. A5: Condition Labeling using Speech Segments in Testing
and Non-Speech Segments in Training

In this approach, each test utterance is classificd to the correspond-
ing condition according 10 Eq. (3) by using speech segments only.
However, the set of speech GMMs {Af } are trained by using the
first two steps of the training procedure in Approach 2. This ap-
proach was proposed in (5] and adopted in [10].

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

We use Aurora3 database (1, 2, 3, 4] to verify our algorithm. Au-
rora3 contains utterances of connected digits in four European lan-
guages, namely Finnish, Spanish, German and Danish. All utter-
ances were recorded Dy using both close-talking {CT) and hands-
free (HF) microphones in cars under several driving conditions to
refiect some realistic scenarios for typical in-vehicle ASR applica-
tions. For each language, the database is divided into three sub-
sets according to matching degree between training data and test
data: Well-Matched condition (WM), Middle Mismatched condi-
tion {MM) and High Mismatched condition (HM).

In our experiments, two front-ends are used for feature extrac-
tion from a speech utterance. The first front-end is the ETSI Ad-
vanced Front-End (AFE) as described in [7). A feature vector se-
quence is extracted from the input speech utterance viz a sequence
of processing modules that include noise reduction, waveform pro-
cessing, cepstrum calcuiation, blind equalization, and “server fea-
ture processing”. Each frame of feature vector has 39 features that
consists of 12 MFCCs (C) to Ch2}, a combined log energy and
Cp term, and their first and second order derivatives. The second
front-end used in our experiments is called basic front-end (BFE).
A feature vector seguence s extracted from the input speech ut-
terance via two processing modules only, namely cepstrum cal-
culation and “server feature processing” as described in [7]. In
comparison with the ETSI Front-End described in [6], the main
differences are, in our basic front-end, 1} no offset compensation,
2) the value of pre-emphasis coefficient is (.9 instead of 0.97, 3) a
power spectrum instead of & magnitude spectrum s used in filter-
bank integration. For both AFE and BFE, all the feature vectors
are computed from a given speech utterance, but the feature vec-
tors that are sent to the speech recognizer and the training module
of SSLGHMMs are those corresponding to speech frames, as de-
tected by a VAD module described in Annex A of {7]. This alsa
explains why only speech frame labeling is concerned in Eq. (2).

" Eachdigit is modeled as a whole word left-to-right SSLGHMM
with 16 emitting states, 3 Gaussian mixture components with di-
agonal covariance matrices per state. Besides, two pause models,
“si” and “sp™, are created to model the silence before/after the
digit string and the short pause between any two digits. The “sil”
model is a 3-emitting state SSLGHMM with a flexibie transition
structure as that of HMM described in [8]. Each state is modelled
by a mixture of 6 Gaussian components with diagonal covariance
mafrices. The “sp” mode] consists of 2 dummy states and a single
emitting state which is tied with the middle state of “sil”.

Daring recognition, an utterance can be modelled by any se-
quence of digits with the possibility of a “sil” model at the be-
ginning and at the end and a *sp” mode! between any two digits.
All of the recognition experiments are performed with the search
engine of HTK3.0 toolkit [13].

Table 1. Number of training utterances classified to different con-
ditions using different condition labeling approaches (AFE, WM
condition, Finnish language)

Condition | Al | A2 | A3 | A4/AS

1 10 | 157 | 378 9

288 | 710 | 482 217
167 {329 [ 7 366
491 | 416 | 714 754
634 { 240 | 250 32
514 | 444 | 348 727
233 7 346 | 396 500
743 { 438 | 505 475

oo] ~d] On] L dal ol o

Table 2. Number of training utterances classified to different con-
ditions using different condition labeling approaches (BFE, WM
condition, Finnish language)
Condition | Al AZ | A3 | A4/AS
1 353 ] 300 | 391 468
169 { 506 | 345 180
638 | 786 | 435 813
304 | 243 | 694 238
250 | 245 5 253
235 ) 218 | 423 265
651 § 517 | 18 385
480 | 605 | 789 675

0y ~) Ch) W] Ja) W

In condition labeling, the rumber of conditions is setto 8, i.e.,
each input utterance is labeled to one of 8 conditions. In frame
Jabeling, the number of classes in each condition is set to 32, ie.,
each speech frame in an utterance is classified to one of 32 classes
in the corresponding condition. Therefore there are 8 x 32 =
256 linear Gaussian dynamic streams in the SSLGHMM. In the
approaches where training utterances are required to be iteratively
re-classified (i.e., approaches 1, 2, 3), ten iterations are performed.

In ML training of SSLGHMMSs, an important implementation
issiie is the specification of initial values for mode! parameters.
The initial values for continuous density HMM (CDHMM]) pa-
rameters are obtained by running the training scripts published in
Aunrora3 CDs, i.e., the standard ML training implemented in HTK.
The initial values for “bias means” are obtained in the following
two steps: Firstly, the values are set to zeros. Secondly, the initial
values are estimated by performing one EM iteration in the second
step of an ML training procedure for a stochastic vector mapping
{SVM) based approach as described in {10, 12]. The initial values
for “bias variances™ are set to a small value 0.001. Starting from
the above initial values, five EM iterations are performed. After
each iteration, the parameters for CDHMMSs and switching linear
Ganssians are both updated. In our current experiments, because
a small initial value is set for bias variances, bias means and vari-
ances converge very slowly in the ML training process. After five
EM iterations, values of most bias means and variances remain
wnchanged or have changed only slightly. This makes the perfor-
marce of ML-trained SSLGHMM system essentially the same as
that of S¥M-based system trained as follows: The same initial bias
values and CDHMM s as in SSLGHMMs are used and 5 EM itera-
tions are performed to vpdate CDHMM parameters only by using
SVM-normalized training data.

Starting from the above ML-trained SSLGHMMSs, a series of
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Table 3. Word error rate (in %) of ML-trained SSL.GHMMs with

different condition labeling approaches under WM condition of

Finnish language

Font-Ends | Al A2 A3 Ad AS
AFE 344 | 3.36 | 347 § 3.56 | 347
B¥E 635 | 6.09 | 637 | 626 | 6.25

experiments are also performed for MCE training of SSLGHMM
[11]). Five epoches are performed in the MCE training. Some con-
trol parameters are set as follows: & = 0.05, 8 = 0.0, n = 0.05,
N = 8 in “top-N list”. Readers are referred to [11] for the mean-
ing of the above control parameters as well as the details of the
MCE training algorithm for SSLGHMMs.

3.2. Results of Different Condition Labeling Approaches

Tables 1 and 2 summarize for AFE and BFE front-ends respec-
tively, the distribution of training utterances of Finnish language

under WM condition by using different condition labeling approaches.

Approaches 4 and 5 have the same utterance distribution because
the training utterances are labeled using the same procedure with
non-speech segments in both cases. We observed that different
clustering results are obtained by using different condition labeling
approaches and front-cnds. Approach 2 leads to a more uniform
distribution of training utterances among different conditions. Ta-
ble 3 compares recognition results (word ervor rate in %) of ML~
trained SSLGHMMSs with five condition labeling approaches for
both AFE and BFE. 1t is observed that Approach 2 achieves the
best performance for both front-ends, This is the approach we used
in (i1} as well as in a benchmark evaluation on Aurora3 reported
in the next subsection.

3.3. Evaluation Results of SSLGHMMSs on Aurora3

We evafuated SSLGHMMs with the condition Iabeling Approach
2 on all four languages in Aurora3. For each language, experi-
ments are performed only for well-matched condition. Both ML
and MCE training are evaluated for both SSLGHMMs and tra-
ditional CDHMMSs. Tables 4 and 5 summarize word error rates
of different experiments for AFE and BFE respectively. In the
above tables, “ML-CDHMM” and “MCE-CDHMM” refer to two
baseline systems using traditional CDHMMs that have the same
model structure as their COHMM counterparts in SSLGHMMs,
and trained under ML and MCE criteria respectively. It is ob-
served that SSLGHMM systems achieve better performance than
the CDHMM baseline systems when both are trained with the
same criterion. For both SSLGHMM and CDHMM baseline sys-
tems, models trained with MCE criterion achieve better perfor-
mance than those trained with ML eriterion,

4. SUMMARY

In this paper, several approaches are proposed and compared em-
pirically for switching state segmentation in SSLGHMM. Among
them, the second approach achieves the best performance in dif-
ferent experiments. Using this approach, a benchmark evalua-
tion is performed on Auroral tasks and we demonstrate again that
the SSLGHMM approach achieves a state-of-the-art performance
among results reported in literature on this task.

Table 4. Aurora3 Word Error Rate (in %) on WM Condition: AFE
Fin. | Span. | Ger. | Dan. | Ave.
ML-CDHMM 3951 339 | 487 ) 602 | 456
ML-SSLGHMM | 336 | 3.17 | 449} 573 | 4.19
MCE-CDHMM | 2.82 | 2,84 | 4.69 | 527 | 3.91
MCE-SSLGHMM | 230 | 2.73 | 419 | 5.15 | 3.59

Table 5. Aurora3 Word Etror Rate (in %) on WM Condition: BFE
Fin, | Span. | Ger, | Dan. [ Ave.
ML-CDHMM 750 458 | 7251 917 ] 7.13
ML-SSLGHMM | 6.09 | 411 | 657 | 845 | 6.31
MCE-CDHMM 478 1 3.72 | 653 | 7.85 | 5.72
MCE-SSLGHMM | 388 [ 3.89 [ 581 | 7.52 | 528
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