
.. . . ̂ .,.. , . .. 

A STUDY OF SWITCHING STATE SEGMENTATION IN SEGMENTAL SWITCHING 
LINEAR GAUSSIAN HIDDEN MARKOV MODELS FOR ROBUST SPEECH RECOGNITION 

Donglui ZHlJ Qiang HUO undJian WU 

Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong 
(Email: dlzhu@cs.hku.hk, qhuo@cs.hku.hk, jianwu@microsoft.com) 

ABSTRACT 

In our previous works, a Switching Linear Gaussian Hidden Markov 
Model (SLGHMM) and its segmental derivative, SSLGHMM, were 
proposed to cast the problem of modeling a noisy speech utter- 
ance in robust automatic speech recognition by a well-designed 
dynamic Bayesian network. An important issue of SSLGHMM 
is how to specify a switching state value for each frame of fea- 
ture vector in a given speech utterance. In this paper, we propose 
several approaches for addressing this issue and compare their per- 
formance on Aurora3 connected digit recognition tasks. 

1. MTRODUCTION 

A Switching Linear Gaussian Hidden Markov Model (SLGHMM), 
as shown in Fig. I(a), was proposed in [9] to compensate for 
the nonstationary distortion that may exist in a speech utterance 
to be recognized. In [12], a variational approach has been pro- 
posed to solve the approximate maximum likelihood (ML) pa- 
rameter learning and probabilistic inference problems for SLGH- 
MMs. Unfortunately, it is not computationally feasible for auto- 
matic speech recognition (ASR) applications that require prompt 
response. Therefore, a Segmental SLGHMM (SSLGHMM here- 
inafter), as illusmted in Fig. I(b), was proposed in [9]. 

In an SSLGHMM, several assumptions are made to simplify 
the model. Each switching state qt is assumed to be indepen- 
dent of all switching states at other time instances. Switching 
states are treated as observations rather than hidden variables as 
in SLGHMM. The values of switching states are assigned by an 
appropriate pre-segmentation procedure. Therefore, an important 
issue of SSLGHMM is how to specify a switching state value for 
each frame of feature vector in a given speech utterance. For the 
convenience of reference, we refer hereinafter the above problem 
as switching state segmentation. We have investigated several ap- 
proaches to address the above issue and conducted a series of ex- 
periments on Aurora3 connected digit recognition tasks [1,2,3,4]. 
In the following. we first present our approaches in section 2. Sec- 
tion 3 will then detail the experiments and present and discuss their 
results. Finally, some conclusions are drawn in section 4. 

2. SWITCHING STATE SEGMENTATlON APPROACHES 

The overall architecture of our approaches for switching state seg- 
mentation in SSLGHMM is shown in Fig. 2 and works as fol- 
lows. Given the feature vector sequence of an input speech utter- 
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Fig. 1. Directed acyclic graph specifying conditional indepen- 
dence relations for (a) SLGHMM and (b) SSLFHMM 

ance Y = { y ~  , yz, . . . , YT), the value of switching state. qt, is 
determined in two stages: condition labeling andjrame labeling. 
The condition labeling process uses the result of voice activity de- 
tection (VAD) that segments the input utterance into speech and 
non-speech segments [7]. In general, the input utterance Y can be 
classified as belonging to one of E conditions as follows: 

where VAD(t) is the result (taking "S" for speech or " N  for 
non-speech) ofVAD at time t ,  AS = {A:} and A N  = {A,"} are 
two sets of Gaussian mixture models (GMMs) designed for speech 
and non-speech segments respectively. After the condition label- 
ing for the whole utterance, the f i m e  lubeling process will deter- 
mine the value of switching state for each speech frame with the 
corresponding condition dependent speech GMM A:. as follows: 

(2) 
S 

41 = =gmaxp(plyr,A,.). 
9 

In Eq. (l), the total likelihood is a product of the likelihood of 
speech segments and that of non-speech segments. Apparently, 
there are other options in designing the condition labeling rule 
by adjusting conmbntions from speech and non-speech segments. 
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Fig. 2. Process of switching state segmentation in SSLGHh4Ms 

E Classes 
Consequently, training pmcedures for As and A N  will also be dif- 
ferent. In the following subsections, we detail five approaches we 
have investigated and refer to them hereinafter as AI,  A2, A3, A4 
and A5 respectively. 

2.1. AI: Condition Labeling usingboth Speech and Non-Speech 
Segments 

In this approach, the condition labeling is based on Eq. (1) us- 
ing both speech and non-speech segments. The training procedure 
for two sets of GMMs, As and AN is illustrated in Fig. 3 and 
explained in the following: 

Step 1. Train a GMM with E Gaussian components by using non- 
speech segments of all training utterances. Each training 
utterance is then classified to one of the E classes that has 
the maximum likelihood of non-speech segments for the as- 
sociated Gaussian component. 

Step 2. Given the initial labeling of training utterances, for each 
condition class e, two GMMs, AS and A r  are trained from 
speech segments and non-speech segments associated with 
class e respectively. 

Classify training utterances via both speech 
segments and non-speech segments 

I I 7 
E Classes 1) E GMMs for non-speech segments 

2) E GMMs for speech segments 

Fig. 3. Training of two sets of GMMs for speech and non-speech 
segments in Approach 1. 

Step 4. Repeat steps 2 and 3 until no change of utterance labeling 
results or a maximum number of iterations is reached. 

Each test utterance is also classified to the corresponding condition 

Step 3. Given {A:] and {A:}, eachtrainingutterance is re-classified using Eq. (3). 
to the corresponding condition based on Eq. (1) using both 

2.3. A3: Condition Labeling using Speech Segments (2) speech and non-speech segments 

Step 4. Repeat steps 2 and 3 until no change ofutterance labeling 
results or a maximum number ofiterations is reached. 

Each test utterance is also classified to the corresponding condition 
using Eq. (I). 

2.2. A2: Condition Labeling using Speech Segments (1) 

In this approach, the condition laheling is based on speech seg- 
ments only and the labeling rule becomes 

This approach is similar to Approach 2. The condition labeling 
rule for a test utterance is the same as in Eq. (3), but the training 
procedure for the set of GMMs, As, is different. The difference 
lies in the first step for the initial labeling of training utterances. 
Step 1 of Approach 3 read as 
Step 1. Train aGMM with E Gaussian components by usingspeech 

segments of all training utterances. Each training ntter- 
ance is then classified to one of the E classes that has the 
maximum likelihood of speech segments for the associated 
Gaussian component. 

The other three steps are the same as in Approach 2. 

2.4. A 4  Condition Labeling using Non-Speech Segments 

In this approach, the condition labeling is based on non-speech 
segments only and the labeling rule is as follows: 

e* = a " g m y  fi p(Y,ir:), (4) 
t=1 

V A D ( t ) = N  

where represents the Gaussian component of condition e as 
trained in Step 1 of Approach I .  Each test utterance is also classi- 
fied to the corresponding condition using Eq. (4). 

". 
e* =argm,a" fi p(ytp:). (3) 

t=1 
VAD(t )=S 

The training procedure for the set of GMMs, As, is as follows: 

Step 1. This step is the same as Step 1 in Approach 1. 
Step 2. Given the initial labeling of training utterances, for each 

condition class e, a GMM AS is trained with all speech 
segments associated with class e. 

Step 3. Given {AB}, each training unerance is re-classified to the 
corresponding condition based on Eq. (3) using speech seg- 
ments only 



2.5. AS: Condition Labeling using Speech Segnientr in Testing 
and Nun-Speech Segments in ‘Traininx 

In this approach. each test uttcnincr IS c l a w l i d  fo the correspond- 
ing condition according to Eq. (3, by ujing speech segmcnb only. 
Ilouc\er, fhe ret of speech GMMs (A:) arc trained by using the 
lirrf W O  steps of th r  training procedure in Approach 2. This 3p- 
proa:h was proposed in [jJ and adopted in [ 101. 

3. EXPERIMENTS AND RESULTS 

3.1. Experimental Setup 

We use Aurora3 database [ I ,  2,3,4] to verify our algorithm. Au- 
rora3 contains utterances of connected digits in four European lan- 
guages, namely Finnish, Spanish, German and Danish. All utter- 
ances were recorded by using both close-talking (CT) and hands- 
free (HF) microphones in cars under several driving conditions to 
reflect some realistic scenarios for typical in-vehicle ASR applica- 
tions. For each language, the database is divided into three sub- 
sets according to matching degree between training data and test 
data: Well-Matched condition (WM), Middle Mismatched condi- 
tion (MM) and High Mismatched condition (HM). 

In our experiments, two front-ends are used for feature extrac- 
tion from a speech utterance. The first front-end is the ETSl Ad- 
vanced Front-End (AFE) as described in [7]. A feature vector se- 
quence is extracted from the input speech utterance via a sequence 
of processing modules that include noise reduction, waveform pm- 
cessing, cepshum calculation, blind equalization, and “server fea- 
ture processing”. Each frame of feature vector has 39 features that 
consists of 12 MFCCs (CI to CU), a combined log energy and 
CO term, and their first and second order derivatives. The second 
front-end used in our experiments is called basic front-end (BFE). 
A feature vectm sequence is extracted from the input speech ut- 
terance via two processing modules only, namely cepstrum cal- 
culation and “server feature processing” as described in [7]. In 
comparison with the ETSl Front-End described in [6] ,  the main 
differences are, in our basic fmnt-end, 1) no offset compensation, 
2) the value ofpre-emphasis coefficient is 0.9 instead of0.97,3) a 
power spectrum instead of a magnitude spechum is used in filter- 
bank integration. For both AFE and BFE, all the feature vectors 
are computed from a given speech utterance, but the feature vec- 
ton that are sent to the speech recognizer and the training module 
of SSLGHMMs are those corresponding to speech frames, as de- 
tected by a VAD module described in Annex A of [7]. This also 
explains why only speech frame labeling is concerned in Eq. (2). 

Each digit is modeled as a whole word left-to-right SSLGHMM 
with 16 emitting states, 3 Gaussian mixture components with di- 
agonal covariance matrices per state. Besides, two pause models, 
si1 and “sp”, are created to model the silence beforelafter the 

digit string and the short pause between any two digits. The “sil” 
model is a 3-emitting state SSLGHMM with a flexible transition 
structure as that of HMM described in [8]. Each state is  modelled 
by a mixture o f 6  Gaussian components with diagonal covariance 
matrices. The “sp” model consists of 2 dummy states and a single 
emitting state which is tied with the middle state of “sil”. 

During recognition, an unerance can be modelled hy any se- 
quence of digits with the possibility of a “sil” model at the be- 
ginning and at the end and a “sp” model between any two digits. 
All of the recognition experiments are performed with the search 
engine of HTK3.0 toolkit [13]. 

.. . 3, 

Table I Nunrber of mining uttrnmces classiizllicd tu differcnt con- 
ditions ttsinc diffrrrnt condition labelme snnru3chc\ I A W .  Whl 
condition 

- - .. 
, Finnish language) 

Table 2. Number of training utterances classified to different con- 
ditions using different condition labeling approaches (BFE, WM 
condition, Finnish language) 

Condition 1 AI 1 AZ I A3 I A4/AS 
1 

In condition labeling, the nnmher of conditions is set to 8, i.e., 
each input utterance is labeled to one of 8 conditions. In frame 
labeling, the number of classes in each condition is set to 32, i.e., 
each speech frame in an utterance is classified to one of 32 classes 
in the corresponding condition. Therefore there are 8 x 32 = 
256 linear Gaussian dynamic streams in the SSLGHMM. In the 
approaches where training utterances are required to be iteratively 
re-classified (i.e., approaches I ,  2,3), ten iterations are performed. 

In ML training of SSLGHMMs. an important implementation 
issue is the specification of initial values for model parameters. 
The initial values for continuous density HMM (CDHMM) pa- 
rameters are obtained by running the training scripts published in 
Aurora3 CDs, i.e., the standard ML training implemented in HTK. 
The initial values for “bias means” are obtained in the following 
two steps: Firstly, the values are set to zeros. Secondly, the initial 
values are estimated by performing one EM iteration in the second 
step of an ML training procedure for a stochastic vector mapping 
(SVM) based approach as described in [ 10, 121. The initial values 
for “bias variances” are set to a small value 0.001. Starting from 
the above initial values, five EM iterations are performed. After 
each iteration, the parameters for CDHMMs and switching linear 
Gaussians are both updated. In our current experiments, because 
a small initial value is set for bias variances, bias means and van- 
ances converge very slowly in the ML training process. After five 
EM iterations, values o f  most bias means and variances remain 
unchanged or have changed only slightly. This makes the perfor- 
mance of ML-trained SSLGHMM system essentially the same as 
that of SVM-based system trained as follows: The same initial bias 
values and CDHMMs as in SSLGHMMs are used and 5 EM itera- 
tions are performed to update CDHMM parameters only by using 
SVM-normalized training data. 

Starting from the above ML-trained SSLGHMMs, a series of 
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Table 3. Word error rate (in %) of ML-trained SSLGHMMs with 
different condition laheling approaches under WM condition of 
Finnish language 

Font-Ends I AI I A2 1 A3 [ A4 1 A5 
1 3.44 I 3.36 1 3.47 [ 3.56 I 3.47 
I 6.35 I 6.09 1 6.37 1 6.26 [ 6.25 

AFE 
BFE 

experiments are also performed for MCE training of SSLGHMM 
11 I]. Five epoches are performed in the MCE training. Some con- 
trol parameters arc set as  follows: a = 0.05, fl  = 0.0, 7 = 0.05, 
N = 8 in “top-N list”. Readers are referred to [ I  I ]  for the mean- 
ing of the above control parameters as well as the details of the 
MCE training algorithm for SSLGHMMs. 

3.2. Results of Different Condition Labeling Approaches 

Tables 1 and 2 summarize for AFE and BFE front-ends respec- 
tively, the distribution of training utterances of Finnish language 
under WM condition by using different condition labeling approaches. 
Approaches 4 and 5 have the same utterance distribution because 
the training utterances are labeled using the same procedure with 
non-speech segments in both cases. We observed that different 
clustering results are obtained by using different condition laheling 
approaches and front-ends. Approach 2 leads to a more uniform 
distribution of training utterances among different conditions. Ta- 
hie 3 compares recognition results (word error rate in %) of ML- 
trained SSLGHMMs with five condition laheling approaches for 
both AFE and BFE. It is observed that Approach 2 achieves the 
best performance for both front-ends. This is the approach we used 
in [ 1 I ]  as well as in a benchmark evaluation on Aurora3 reported 
in the next subsection. 

3.3. Evaluation Results of SSLGHMMs on Aurora3 

We evaluated SSLGHMMs with the condition labeling Approach 
2 on all four languages in Aurora3. For each language, experi- 
ments arc performed only for well-matched condition. Both ML 
and MCE training are evaluated for both SSLGHMMs and tra- 
ditional CDHMMs. Tables 4 and 5 summarize word error rates 
of different experiments for AFE and BFE respectively. In the 
above tables, “ML-CDHMM” and “MCE-CDHMM” refer to two 
baseline systems using traditional CDHMMs that have the same 
model structure as their CDHMM counterparts in SSLGHMMs, 
and trained under ML and MCE criteria respectively. It is ob- 
served that SSLGHMM systems achieve better performance than 
the CDHMM baseline systems when both are trained with the 
same criterion. For both SSLGHMM and CDHMM baseline sys- 
tems, models trained with MCE criterion achieve better perfor- 
mance than those trained with M I  criterion. 

4. SUMMARY 

In this paper, several approaches are proposed and compared em- 
pirically for switching state segmentation in SSLGHMM. Among 
them, the second approach achieves the best performance in dif- 
ferent experiments. Using this approach, a benchmark evalua- 
tion is performed on Aurora3 tasks and we demonstrate again that 
the SSLFHMM approach achieves a state-of-the-an performance 
among results reported in literature on this task. 

Table 5. Aurora3 Word Error Rate (in X) on WM Condition: BFE 
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