
All-Nearest-Neighbors Queries in Spatial Databases

Jun Zhang
School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore

jzhang@ntu.edu.sg

Nikos Mamoulis
Department of Computer Science and Information Systems

University of Hong Kong
Pokfulam Road, Hong Kong

nikos@csis.hku.hk

Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Hong Kong

dimitris@cs.ust.hk

Yufei Tao
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cityu.edu.hk

Abstract

Given two sets A and B of multidimensional objects, the
all-nearest-neighbors (ANN) query retrieves for each
object in A its nearest neighbor in B. Although this
operation is common in several applications, it has not
received much attention in the database literature. In
this paper we study alternative methods for processing
ANN queries depending on whether A and B are
indexed. Our algorithms are evaluated through
extensive experimentation using synthetic and real
datasets. The performance studies show that they are
an order of magnitude faster than a previous approach
based on closest-pairs query processing.

1 Introduction
Let A and B be two spatial datasets and dist(p,q) be a
distance metric. Then, the all-nearest-neighbors query
is defined as: ANN(A,B) = {<ai,bj>: ∀ ai ∈ A, ∃ bj ∈ B,
¬∃ bk ∈ B {dist(ai,bk) < dist(ai,bj)}}. In other words, the
query finds for each object in A its nearest neighbor(s)
in B. Notice that ANN(A,B) is not commutative, i.e., in
general ANN(A,B) ≠ ANN(B,A). The ANN problem
has been studied in the context of computational
geometry [PS85], where several main memory
techniques have been proposed (e.g., [Cla83]) for the
case where A=B, i.e., the nearest neighbors are found in
the same dataset. However, limited work has been done
in the context of secondary memory algorithms,
although this query type is frequent in several database
applications:
• Geographical Information Systems: Example

queries include “find the nearest parking lot for
each subway station” or “find the nearest
warehouse for each supermarket”, common in
urban planning and resource allocation problems.

• Data analysis: ANN queries have been considered
as a core module of clustering [JMF99] and outlier
detection [AY01]. For example, the algorithm of
[NTM01] owes its efficiency to the use of ANN
queries, as opposed to previous quadratic-cost
approaches.

• Computer Architecture/VLSI design: The
operability and speed of very large circuits depends
on the relative distance between the various
components in them. ANN is applied to detect
abnormalities and guide relocation of components
[NO97].

Previous methods [HS98, CMTV01] for ANN
evaluation in secondary memory are inefficient and
applicable only when both A and B are indexed, which
is not necessarily true in practice (e.g., one or both
query inputs could be intermediate results of complex
queries). In this paper, we propose novel techniques for
general ANN query processing. Following the common
trend in the literature, we assume that the underlying
indexes (whenever available) are R-trees [Gut84,
BKSS90]. Although, for simplicity, we deal with points
and use Euclidean distance, extensions to other data
partition access methods, extended objects and other
distance metrics are straightforward. The rest of the
paper is organized as follows. Section 2 discusses
previous work directly related to the ANN problem.
Sections 3 and 4 present algorithms for different cases,
based on whether A, B, or both are indexed. Section 5
experimentally evaluates the algorithms, and section 6
concludes the paper with a discussion.

2 Related work
ANN queries constitute a hybrid of nearest neighbor
search and spatial joins; therefore, in sections 2.1 and
2.2 we review related work for these query types
focusing more on the processing techniques that are
also employed by our algorithms. Section 2.3 describes
methods for closest-pair queries, and section 2.4
discusses existing techniques for ANN query
processing.

2.1 Nearest neighbor queries
The goal of nearest neighbor (NN) search is to find the
objects in a dataset A that are closest to a query point q.
Existing algorithms presume that the dataset is indexed
by an R-tree and use various metrics to prune the search
space: mindist(q,M) is the minimum distance between q

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

and any point in a minimum bounding rectangle (MBR)
M. The algorithm of [RKV95] traverses the tree in a
depth-first (DF) manner. Assume that we search for the
nearest neighbor NN(q,R) of q in R-tree R. Starting
from the root, all entries are sorted according to their
mindist from q, and the entry with the smallest mindist
is visited first. The process is repeated recursively until
the leaf level where a potential nearest neighbor is
found. During backtracking to the upper levels, the
algorithm only visits entries whose mindist is smaller
than the distance of the nearest neighbor found so far.
As an example consider the R-tree of Figure 1, where
the number in each entry refers to the mindist (for
intermediate entries) or the actual distance (for leaf
entries, i.e., objects) from q (these numbers are not
stored but computed dynamically during query
processing). DF would first visit the node of root entry
E1 (since it has the minimum mindist), and then the
node pointed by E4, where the first candidate (a) is
retrieved. When backtracking to the previous level,
entry E6 is excluded since its mindist is greater than the
distance of a, but E5 has to be visited before
backtracking again to the root level.

E

20 4 6 8 10

2

4

6

8

10

y axis

b

E f

query point
omitted

1 E2e

d

c

a

h

g

E3

E5

E6

E4

E7

8

search
region

contents
E9

i

x axis

a
5

b
13

c

18

d

13

e

13

f

10

h

2

g

13

E1
1

E2
2

E3
4

E4
5

E5
5

E6
9

E7
13

E8
2

note: some nodes have been

E9
17

i

10

E1
E2

E4 E5
E8

omitted for simplicity

Figure 1: Example R-tree and mindist values

The performance of DF was shown to be suboptimal in
[PM97], which reveals that an optimal algorithm only
needs to visit those nodes whose MBRs intersect the so-
called “search region”, i.e., a circle centered at the
query point with radius equal to the distance between
the query and its nearest neighbor (shaded circle in
Figure 1). A best-first (BF) algorithm for NN search is
proposed in [HS99]. BF keeps a heap with the entries
of the nodes visited so far. Initially the heap contains
the entries of the root sorted according to their mindist.
When E1 is visited, it is removed from the heap and the
entries of its node (E4, E5, E6) are added together with
their mindist. The next entry visited is E2 (it has the
minimum mindist in the heap), followed by E8, where
the actual result (h) is found and the algorithm

terminates. BF is I/O optimal because it only visits the
nodes necessary for obtaining the nearest neighbor.
These methods can be easily extended for finding the k
nearest neighbors of q. Nevertheless in high
dimensional spaces the performance of spatial access
methods degenerates and specialized techniques are
used to solve the problem.

2.2 Spatial joins
The spatial join between two datasets A and B finds the
object pairs in the Cartesian product A×B which satisfy
a spatial predicate, most commonly intersect (assuming
the datasets contain objects with spatial extent).
Depending on the existence of indexes, different spatial
join algorithms can be applied. The R-tree join
algorithm (RJ), proposed in [BKS93], computes the
spatial join of two inputs indexed by R-trees. RJ
synchronously traverses both trees, starting from the
roots and following entry pairs which intersect. Let EA

be a node entry from R-tree RA, and EB a node entry
from R-tree RB. RJ is based on the following property:
if the MBRs of EA and EB do not intersect, there can be
no pair <ai,bj> of intersecting objects, where ai and bj

are pointed by EA and EB, respectively. If only one
dataset (let A) is indexed, a common method [LR94] is
to build an R-tree for B and then apply RJ. In [MP99], a
hash-based algorithm is proposed that uses the existing
tree (of A) to determine the hash partitions. If both
datasets are non-indexed, alternative methods include
sorting and external memory plane-sweep [APR+98],
or spatial hash join algorithms, like partition based
spatial merge join (PBSM) [PD96].

PBSM divides the space regularly using an
orthogonal grid and hashes objects from both datasets
into the partitions (buckets); each object is assigned to
the buckets that contain it. Figure 2a illustrates a
regular 3×3 partitioning and some hashed data. During
the matching phase of the hash join, pairs of buckets
from the two datasets that correspond to the same area
are loaded and joined in memory (e.g., using plane-
sweep). If the data in a bucket do not fit in memory, the
algorithm recursively repartitions the cell into smaller
parts and re-hashes the objects. In order to alleviate
repartitioning of skewed data, which increases the cost
of the algorithm, PBSM defines the hash buckets by
grouping multiple grid tiles together. A tile numbering
with a hash function is defined and tiles with the same
hash value are assigned to the same bucket.

Figure 2b shows a 4×4 tiling with some objects
hashed in it. Three buckets are used to hash the objects
and the tiles are assigned to them according to a round-
robin hash function. Skewed data are now distributed
more evenly to buckets than if we used three
continuous partitions. Objects that span the grid
borderlines are assigned to multiple buckets during
PBSM (replication), thus the output of the algorithm
has to be sorted in order to remove pairs reported more

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

than once. Duplicate elimination, however, can be
combined with the refinement step incurring minimal
overhead.

partition

repartition
2 0 1 2

1 2 0 1

1 20 0

1 20 0

(a) Regular partitioning (b) Hashing using tiles
Figure 2: Regular partitioning by PBSM

2.3 Closest pairs queries
Given two datasets A and B, the closest pairs (CP)
query asks for the k closest pairs in A×B. If both A and
B are indexed by R-trees, the concept of synchronous
tree traversal (employed by RJ) and DF or BF
(discussed in section 2.1) can be combined for query
processing. As an example consider that k=1 and DF
(depth-first) is applied. A CP-DF algorithm would visit
the roots of the two R-trees and recursively follow the
pair of entries <EA, EB>, EA ∈ RA and EB ∈ RB, whose
mindist is the minimum among all pairs. The difference
from RJ is that sometimes nodes that do not overlap
have to be visited, if they can contain points whose
distance is smaller than the minimum distance found.
The application of BF is also similar to the case of NN
queries. A number of optimization techniques,
including the application of other metrics (maxdist,
minmaxdist) for pruning, have been proposed in [HS98,
CMTV00]. Additional techniques [SML00] include
sorting and application of plane-sweep during the
expansion of node pairs, using estimates of the k-closest
pair distance to suspend unnecessary computations of
MBR distances. Since we deal with ANN queries we
focus on the relevant techniques.

2.4 Existing techniques for ANN queries
A naïve approach to process an ANN query is to
perform one NN query on dataset B for each object in
dataset A. In [BEKS00], several optimization
techniques are proposed to improve the CPU and I/O
performance of multiple similarity queries on a dataset
(in our case, we perform multiple nearest neighbor
queries on B). The optimizations assume that the
queries fit in main memory; thus, they cannot be
directly applied to ANN problem when the size of A is
larger than the size of the available memory.

[HS98] and [CMTV01] use CP algorithms to
process ANN queries. Both papers propose the same
processing method. A bitmap S0 of size |A| indicates the
points in A for which the NN has been found. An
incremental CP query is executed and this memory-
resident bitmap is updated while the closest pairs are
computed. Since the closest pairs are output in

increasing distance order, we know that if a pair <ai, bj>
is the first for ai, then bj is the NN for ai; S0[ai] is set to
1 to prevent updating the NN of ai in the future (i.e.,
when another pair containing ai is found). The
algorithm terminates when S0[ai] = 1 for all ai ∈ A.

As shown in the experimental section, this method
is even worse than the straightforward application of
one NN query for each point in A. Its inherent
drawback is that it was developed based on the
requirements of CP processing (i.e., multiple pairs for
each point in A, incremental output of the results),
whereas ANN queries have different characteristics.
For example, assume that there is a point ai in A whose
distance NNdist(ai,B) from its NN in B is large. Since
the termination condition for the CP-based algorithm is
the identification of the nearest neighbor for all points
in A, many node pairs with smaller distance than
NNdist(ai,B) will have to be visited, incurring
significant overhead.

An external memory algorithm for ANN is
proposed in [GTVV93], suitable for the case where
A=B, i.e., the NN are retrieved from the same dataset.
This method applies on a non-indexed dataset, and
initially hashes all points in vertical stripes. It then
performs sorting in each stripe and uses a plane sweep
algorithm that concurrently scans all stripes (potentially
in parallel) finding the NN of each point in its current
or neighbor stripes. The authors do not provide
algorithmic details and they study only the worst case
I/O performance. [BK02] study the nearest neighbor
join, which finds for each object in one dataset, its k
nearest neighbors in another dataset (when k = 1, this
corresponds to an ANN query). Their solution is based
on a specialized index structure called multipage index
and is inapplicable for general-purpose index structures
(e.g., R-trees).

In this paper, we propose alternative techniques for
processing ANN queries. Depending on whether A or B
are indexed by R-trees, we suggest different evaluation
strategies. For simplicity, our methods compute for
each point a single nearest neighbor, even if there exist
multiple (with equal distance). Extensions to the
generalized case are straightforward. Table 1
summarizes the most frequently used symbols
throughout the paper.

Symbol Description
|A|,|B| Cardinality of A, B
RA, RB R-tree for A, B
NA, NB (Leaf) node of RA, RB

EA, EB Node entry of RA, RB

GA Group of objects from A
HA, HB Hash bucket from A, B
PS(t) Pending set of a hash tile t
NN(ai, X) NN of ai∈A in X=B, NB, HB, t
NNdist(ai, X) Distance between ai and NN(ai, X)

Table 1: Table of Symbols

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

3 Index-based ANN methods
When B is indexed, we can take advantage of RB to
accelerate search. Starting from the rather
straightforward approach that applies one NN query on
RB for each point in A, we propose more sophisticated
methods that aim at reducing the processing cost. All
methods are based on depth-first traversal due to its
lower I/O cost in the presence of buffers [CMTV00].
The extension to the best-first search paradigm is
straightforward.

3.1 Multiple nearest neighbor search
The multiple nearest neighbor (MNN) algorithm can be
considered as the counterpart of index-nested-loops in
relational databases. In particular, MNN applies |A| NN
queries (one for each point in A) on R-tree RB. The
order of the NN queries is very important since if two
consecutive query points (of A) are close to each other,
a large percentage of pages from RB needed during the
second query will be in the LRU memory buffer due to
the first one. In order to achieve this, we employ the
following methods:

If A is not indexed, we sort its points using a space
filling curve (e.g., Hilbert order [Bia69]) and visit them
in this order, to maximize locality.

If A is indexed, its points are already well-clustered
in the leaf nodes of RA. We exploit this clustering and
further increase spatial locality, by traversing the tree,
following the entries of each node by Hilbert value
(with respect to the center of node’s MBR), and using
this order to apply NN queries on leaf node entries.

Due to the proximity of successive query points,
MNN is expected to be efficient in terms of I/O.
However, its CPU cost is high because of the numerous
distance calculations for each NN search. Let fB be the
average fanout of RB, and NANN(ai,RB) the average
number of node accesses in RB for finding the nearest
neighbor of ai ∈ A. Then, the number of distance
computations for MNN(A,B) is |A|⋅fB⋅NANN(ai,RB). In
other words, for each NN query the distance between ai

and all entries in the visited nodes from RB has to be
computed. In addition, these distances have to be sorted
(or inserted in a heap) individually for each query
(since the entries of a node are visited in increasing
distance order).

3.2 Batched nearest neighbor search
In order to reduce the high computational cost of MNN,
we propose a batched NN (BNN) method, which
retrieves the nearest neighbors for multiple points at a
time. BNN splits the points from A into a number of n
groups GA1, GA2, …, GAn, such that ∪GAi = A and ∀i,j,
1≤i<j≤n: GAi∩GAj = ∅. Then for each group, RB is
traversed only once, reducing considerably the number
of distance computations.

BNN first initializes information about the NN of
each point ai in GA (and its distance) and a

globaldist(GA, B) parameter, which stores the maximum
NNdist(ai, B) for all points ai ∈ GA. Then RB is traversed
as in MNN, by recursively visiting the nodes in
increasing mindist order from GA. In case of a tie, i.e.,
two or more entries have the same mindist from GA, we
pick the one with the maximum overlap with GA.
Obviously, entries EB in intermediate nodes of RB for
which mindist(GA, EB) > globaldist(GA, B) can be
pruned from search, since they cannot point to the NN
of any point in GA.

When a leaf node NB of RB is visited, each ai ∈GA

updates its NN in the points of NB. A brute-force
approach would compute the distance dist(ai, bj) ∀ ai

∈GA , bj ∈NB. In order to reduce this quadratic cost, we
remove from consideration (i) all ai, for which
NNdist(ai, B) < mindist(ai, NB) and (ii) all bj for which
mindist(GA, bj) > globaldist(GA, B). For example
consider the GA and NB instances of Figure 3, where the
radii of the circles centered at each ai ∈ GA correspond
to the current NNdist(ai, B). Point a1 will be pruned at
this preprocessing step because NNdist(a1,
B)<mindist(a1, NB). The same is true for b6 and b7

because their mindist from GA is larger than the current
globaldist(GA, B) = NNdist(a4,B), i.e., the largest radius
of the points in GA.

b
NB

GA

a1 a4

b6
b7

b1
b2 b3

b4

5

a2

mbr

a3

Figure 3: Optimizing updateNN

After pruning some points, we can avoid checking the
Cartesian product of the remaining ones by employing a
method similar to that of [SML00] for CP queries. Let
mbr be the MBR of the remaining points in NB (the
MBR of b1,…,b5 in the example). The axis with the
largest mbr projection (let x) is chosen and all
remaining bj’s are sorted in increasing order of their x-
coordinate (i.e., b1, b2, b3, b4, b5). Observe that if a point
ai ∈ GA is on the left of some bj and NNdist(ai,
B)<dist(ai.x, bj.x) then no point bm, m>j can be the NN
of ai. Similarly, if ai is on the right of bj, all bm, m<j can
be pruned. We use this observation to accelerate search
as follows. For each ai, binary search is applied to find
the point bj with the smallest x-distance from ai. The
actual dist(ai, bj) is then computed and NN(ai, B) is
updated if necessary. We continue checking (in both x-
directions) the other points in the list in increasing x-
distance order from ai, until a point bj for which
NNdist(ai, B)<dist(ai.x, bj.x) is found. Consider for
instance Figure 3, and assume that we want to update
NN(a2, B). The closest point in the x-axis is b1, which is
checked first. Then b2 is visited and we find that

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

NNdist(a2, B)<dist(a2.x, b2.x). Thus, we need not
compute a2’s distance from b2 and subsequent points.
Similarly, for a3 we (bi-directionally) check b2, b3 and
b1 and avoid checking b4 and b5. These optimization
methods reduce the computational cost of BNN
considerably (50%-100% for our experimental data), so
we include them in the implementation of BNN.

Although a bound similar to globaldist(EA, B) could
reduce the cost of CP, in practice it cannot be applied
because it requires knowledge of NNdist(ai, B) for each
ai ∈ A, which cannot be kept in memory. On the other
hand, NNdist(ai, B) for each ai ∈ GA can be easily
maintained by BNN. This further increases the value of
BNN in processing ANN queries; better pruning
bounds lead to better performance.

3.3 Choosing groups in BNN
Optimization of BNN must take into account several
criteria: (i) the number of points in each group GA

should be maximized in order to decrease the number
of NN queries, (ii) the MBR of each group should be
minimized in order to reduce the cost of each NN
query; (iii) each group should be small enough to fit in
memory. Notice that criterion (i) is in conflict with (ii)
and (iii). In the extreme case where only criterion (i) is
considered, BNN transforms to an algorithm that would
attempt to read the whole A dataset in memory and
compute the NN of all points simultaneously. In the
opposite case (the MBR of each group is minimized),
BNN degenerates to MNN. An optimal trade-off
between these criteria is difficult to obtain.

Although the problem resembles clustering, it is
essentially different. First, clustering does not have a
MBR size constraint for each cluster. Second,
clustering usually involves a parameter, which is the
number of desired clusters. In our case the number of
groups can be arbitrary. Third, there is a maximum
allowed population for each group (but not for each
cluster). Finally, clustering methods are too expensive
to be considered for this problem; grouping should be
performed with minimal overhead on the overall
performance of BNN.

Assume first that dataset A is not indexed. To group
the points in this case, we first sort them by to their
Hilbert value to maximize proximity. Then consecutive
points in this order are grouped1 until (i) the area of the
group’s MBR exceeds a maximum threshold
(max_area), or (ii) the number of points in the group
exceeds a threshold (max_num). Notice that since
successive groups are formed according the Hilbert
order, they are likely to access similar pages and utilize
the buffer.

1 We have also tested another grouping condition that
considers a maximum allowed density |GA|/MBR(GA) for each
group, but found that it is not appropriate for this problem.

The values of max_area and max_num are such that
the expected nodes of RB accessed by BNN(GA, RB) fit
in memory, together with the points of the current
group GA. In this way, we maximize the probability that
a page of RB required by the next group will be in the
buffer. In addition, the MBR of GA should not be too
large, in order to avoid accessing unnecessary nodes of
RB in areas where A is much sparser than B. Using
global statistics about RB to tune the thresholds is not
effective for real-life skewed data, since the local
characteristics of RB may vary. Therefore, we employ
the following heuristic to optimize grouping: when a
new group GA is initialized, a NN query is performed
for the next point ai and the average area avg_area of
the accessed leaf nodes from RB is computed and used
as an estimate of the leaf nodes of RB close to GA. If
MBR(GA) becomes larger than avg_area, GA accesses
more nodes than the available memory. Moreover, GA

may be much sparser than B, so nodes will be
unnecessarily accessed. In our implementation we use
max_area = avg_area, which provides a good trade-off
between CPU and I/O efficiency. Threshold max_num
is violated earlier than max_area in regions where A is
very dense, and the points are not expected to fit in
memory together with the nodes accessed by BNN. The
value of max_num is estimated by cost models [PM97,
BBKK97] for NN search.

If dataset A is indexed we utilize the R-tree as
follows. Starting from the root, BNN follows entries
recursively according to their Hilbert value with respect
to the center of their container node. If a leaf node is
reached, its points are inserted into the current group,
until a grouping threshold is violated. Therefore, a leaf
node may be split in several groups and in some cases
(e.g., dense regions), a group may contain points from
more than one leaf node. Figure 4 shows four leaf
nodes of RA, sorted by Hilbert value of their center with
respect to the MBR of their container node (not shown).
Assuming that the max_area is as shown in the figure,
the first three points a1, a2, a3 of node A1 are grouped
into G1. Adding the fourth point a4 would cause a
max_area violation; thus, a4 is a group by itself (G2),
whereas the fifth point a5 together with the points of A2,
A3, and A4 form the third group G3. Observe how
irregular a good distribution of points to groups can be.

A1

A 2

A3

A4

G1

G2

G3
max_area

a5

a1
a3

a2

a4

Figure 4: Adaptive grouping in the presence of RA

4 ANN on non-indexed datasets
If RB is not present, we cannot directly use index-based
ANN algorithms. A plausible solution is to build the

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

tree on-the-fly and apply the algorithms of section 3.1.
Although bulk loading can accelerate the construction
of RB, the cost of external sorting can be high.
Therefore we also investigate the application of an
alternative technique based on hashing.

4.1 A hash-based ANN algorithm
We propose a two-phase hash-based ANN algorithm
which (i) hashes the points from A and B in spatial
partitions, (ii) loads pairs <HA, HB>, HA ∈ A, HB ∈ B of
buckets covering the same region and searches for each
ai ∈ HA its NN in HB. In order to distribute the points
evenly to the hash buckets, we consider the spatial
hashing method used by PBSM [PD96] (described in
section 2.2). A fine regular grid that contains more cells
than the number of hash buckets is used to partition the
points. Each bucket contains multiple tiles (i.e., grid
cells) at different areas of the space. Since HA and HB

cover the same area, the NN of each point ai ∈ HA is
likely to be in HB. However, there are cases where
NN(ai, B) may not be in HB. This holds for points that
lie close to the border of a tile. In Figure 5a, for
instance, the nearest neighbor b3 of point a2 ∈ t1 lies in
the neighbor tile t2. Moreover, there may be a tile
containing points from A, but no point from B.

t1 t2

t3

a 1

a2

a3
b1

b2
b3

t4
a4 b4

oid NN NNdist
 3
 4

pending list

a2

a3

b2

b1

1
PS(t2)

2

2
PS(t3)

2
PS(t4)

(a) hash-based ANN (b) pending list and sets
Figure 5: Finding NN in different tiles

In order to handle these cases, we maintain in memory
a list that contains information about the border points,
the NN of which is not guaranteed to be in the same tile
that contains them. An entry in this pending list
contains the point, its current NN and its distance
NNdist from it. We also assign to each tile t an initially
empty list of points, called pending set PS(t), which
keeps references to points from other hash buckets that
may have their NN in that tile. When a pair of buckets
<HA, HB> is processed and a border point ai ∈ HA is
found (i) it is inserted into the pending list and (ii) a
reference to it is inserted into the pending set PS(t) of
each tile t for which mindist(ai,t)<NNdist(ai,HB). When
a future hash bucket from B that contains t is loaded, all
points in PS(t) will seek a potentially closer neighbor
there. If at some stage no pending set is pointing to a
point, then its actual NN has been found and it is
removed from the pending list.

Consider again the example of Figure 5a and
assume that the current bucket pair to be processed
includes t1, but not t2, t3 and t4. The nearest neighbors of
all points are computed in t1: NN(a1, t1) = b1, NN(a2, t1)

= b2, and NN(a3, t1) = b1. Since NN(a2,t1) = b2 and
mindist(a2, t2) < dist(a2, b2), a2 is inserted in the pending
list and in PS(t2). For the same reason, a3 is also
inserted into the list and in PS(t2), PS(t3) and PS(t4),
because a neighbor closer than b1 could be in any of
these three tiles. Later, when t2 is processed, the actual
NN of a2 (i.e., b3) will be discovered. Figure 5b shows
the pending list and sets after processing t1.

A point may enter the pending set of a tile after the
tile’s bucket has been processed. Assume that bucket
HB containing t1 is already processed, and t3 is the
current tile. The NN of a4 in t3 (point b4) is found to be
further than t1. If HB is still in memory, we immediately
search for the NN of a4 there. However, if HB has been
evicted, a4 is inserted into PS(t1). Therefore, after
processing all bucket pairs, there may still be non-
empty pending sets. The corresponding buckets are then
loaded in a second pass; in the worst case, B will be
read twice during the matching phase of the algorithm,
assuming that the pending list and sets fit in memory.

4.2 Optimization of HANN
The computational cost of HANN can be minimized by
some optimization techniques. When loading buckets
<HA, HB>, their contents are hashed in memory
according to the tiles contained in them. Thus,
ANN(HA, HB) is broken to multiple problems, one for
each tile of the bucket. These problems have much
smaller size and processing cost. We also use the CPU
optimization techniques of BNN described in section
3.2 to decrease the quadratic number of distance
computations.

In order to reduce the I/O cost of HANN we need to
minimize the number of page accesses required by the
2nd pass of the algorithm. In other words, we have to
minimize the number of buckets from B that need to be
loaded twice. A straightforward policy is to keep in
memory pages from B as long as possible. If the
memory is large enough to fit many partitions, border
points whose potential NNs are in previous buckets
may be processed immediately. Therefore, it is
important to process buckets in an order such that the
tiles in memory are close to each other with high
probability. Consider Figure 5a and assume that each
tile is a hash bucket. If we process t1 first and keep its
contents from B in memory while processing tiles t2, t3,
and t4, we can be sure that this tile will never be needed
again in the future, since no points from tiles other than
t2, t3, and t4 can affect its pending set.

If the buckets contain multiple tiles, such a schedule
is difficult to achieve, unless the neighbors of all tiles in
a specific bucket belong to a small number of neighbor
buckets. Then HANN can process the pairs <HA, HB> in
an order such that part of the neighbors of the current
bucket HB are processed immediately before HB (and
thus they are in memory), and the rest immediately after
HB. In this way: (i) border points of HB close to tiles

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

processed before will find their NNs in memory, (ii)
border points of HB close to tiles not processed yet will
find their NNs into the buckets processed immediately
after HB and memory will be freed.

The (round-robin) tiling scheme, described in
section 2.2 for PBSM, has a nice tile neighborhood
property. Assume that the number of tiles is n×n and let
m be the number of buckets. If a tile belongs to bucket
b, the tile on its left belongs to bucket b-1 mod m, the
one on its right to bucket b+1 mod m, the tile above to
bucket b-n mod m, and the one below to bucket b+n
mod m. Thus, the neighbor buckets of b are fixed for
each tile in b. Figure 6a illustrates this tiling scheme
with n=7 and m=10. The numbers correspond to bucket
ids. Observe that all tiles belonging to a partition have
the same neighbors at the same directions. Thus, if the
neighbor buckets of the currently processed pair are
loaded either just before or just after it, the data from B
that need to be read during the 2nd pass will be
minimized.

However, defining a good bucket ordering on the
round-robin tiling is hard. Therefore we propose an
alternative tiling scheme. The space is divided using
large regular windows, called supertiles, of m tiles
each. Thus, there are n×n/m supertiles. The m tiles in
each of them are ordered according to their Hilbert
value with respect to the center of the supertile and
assigned to partitions in this order. Figure 6b shows an
example where n=8 and m=16. The hash buckets during
the matching phase of the algorithm are also loaded in
this (Hilbert) order. This Hilbert tiling has several
benefits. First, the buckets have the same neighbors in
all tiles; the nice property of round-robin tiling is
preserved. Second, the order in which buckets are
visited preserves spatial locality. Finally, the tiles of a
corresponding bucket are scattered at different areas of
the space and points are evenly distributed; skewed data
are hashed effectively.

10 2 3 4 5 6

7 8 9 0 1 32

4 5 6 7 8 9 0

1 32 4 5 6 7

8 9 0 1 2 3 4

5 6 7 8 9 0 1

2 3 4 5 6 7 8

10

9

5

15 12 11

14 13 8

0

1 2

3 4

7 6

10

9

5

15 12 11

14 13 8

0

1 2

3 4

7 6

10

9

5

15 12 11

14 13 8

0

1 2

3 4

7 6

10

9

5

15 12 11

14 13 8

0

1 2

3 4

7 6

(a) round-robin tiling (b) Hilbert tiling
Figure 6: Tiling schemes for HANN

If the regular grid is very fine or the data distribution is
very skewed, the pending list and sets can grow larger
than the available memory. In this case, we first
perform a cache clean-up by removing points from
pending sets, for which the NN has already been found
and their references are still in some lists. In Figure 5,
assume that t3 is processed after t1 and the NN of a3 is

found in t3. The normal lazy policy of HANN leaves a3

in PS(t2) and PS(t4). Later, when these tiles are
processed, updating a3 will be found unnecessary.
However, if HANN runs out of memory a cache clean-
up function immediately visits the pending list and sets
and removes redundant entries. Notice that an eager
policy which performs cache clean-up every time a NN
is updated is expensive (the pending sets need to be
scanned very often). If after the clean-up there is still
not enough memory, the pending sets of tiles that
already have been processed are flushed to disk (since
they will be needed only during the second pass) and
memory is freed. The same is done for points in the
pending list that seek their NN only in such tiles. In
general, these techniques have high cost, so it is
important to use a good tiling scheme and bucket
ordering in order to avoid them.

A challenging problem is to choose an appropriate
number of tiles. If a very fine grid is used, then the
probability that the points are evenly distributed to
buckets increases. On the other hand, the number of
border points also increases, and so do the chances that
a bucket needs to be reloaded at a second pass.
Therefore there is a trade-off in the choice of the grid.
In our experimental instances, the best results of HANN
are achieved when a small number of tiles (in the order
of 10) correspond to each partition. The number of
partitions is such that the expected buckets from B that
fit in memory are between 5-10. Of course this number
is also constrained by the available memory (at most M-
1 buckets can be defined if M is the number of memory
pages).

Finally, we need to comment on how we handle
cases where tiles are empty (in A or B). Obviously
empty tiles in A can be handled trivially. On the other
hand, empty tiles in B need special consideration.
During hashing, we construct a memory-resident
bitmap indicating the empty tiles in B. Consider a tile t
containing points from A, which is empty in B. Instead
of putting all these points into multiple pending sets, we
keep them in memory and wait for one from the closest
non-empty tiles from B to be loaded in order to handle
them then. The closest non-empty tiles can be easily
determined from the bitmap and the encoding of the
tile. We also use the bitmap to avoid assigning points to
pending sets of empty tiles. In the example of Figure 5,
if t4 is empty in B, we need not put a3 in PS(t4).

5 Experimental Evaluation
In this section we study the performance of the methods
proposed in sections 3 and 4, under various conditions.
We also evaluate an implementation of the best (to our
knowledge) CP-based ANN algorithm from previous
work [HS98], described in section 2.4. All methods
were implemented in C++ and the experiments were
executed using a PC with a Pentium III 733MHz
processor, running Windows NT. The page and R*-tree

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

node size is set to 4K. Each leaf node entry contains the
coordinates of a point (in two double precision
numbers) and an object id, summing to 20 bytes. Thus,
the capacity of a leaf node is 204. Unless otherwise
stated in all problem instances we set the size of the
LRU buffer to 512K.

For the experiments we employed four datasets
[Map] representing different layers of North America’s
map, described in Table 2. Datasets containing line
segments were transformed to point datasets, by taking
the middle point of each segment. We also used
uniform datasets whenever we needed to test
algorithmic performance based on parameters for which
real datasets were not available.

Dataset Cardinality Description
D1 9,203 Cultural landmarks
D2 24,493 Populated places
D3 191,637 Railroad segments
D4 569,120 Road segments

Table 2: Description of real datasets

5.1 Experiments with indexed datasets
In the first set of experiments we compare the
performance of index-based ANN algorithms. In order
to include the CP-based method, we assume that both
datasets are indexed. Figure 7 shows the response time
of all methods (split into I/O and CPU cost) for four
ANN queries, representing different problem size cases;
in the first query A is small and B is large, in the second
query A is large and B is small, and in the last two cases
both A and B have sizes in the same order, i.e., they are
both small or large.

I/O time CPU time

0

100

200

300

400

500

BNN MNN CP
0

100

200

300

400

BNN MNN CP

(a) A=D1, B=D4 (b) A=D4, B=D1

0

5

10

15

20

BNN MNN CP

0

300

600

900

1200

BNN MNN CP

(c) A=D1, B=D2 (d) A=D3, B=D4

Figure 7: Response time (sec) for indexed data

In all cases BNN is the best method, since it retains the
low I/O cost of MNN and at the same time reduces the
distance computations. CP is clearly inappropriate for
ANN queries; it is outperformed by both MNN and
BNN in all cases, except for case (b), where the number
of NN queries performed by MNN is huge, with high
computational cost. A comparison between case (c) and

case (d) reveals that the improvement of BNN over
MNN is independent of the problem size. This
observation is confirmed by subsequent experiments.

On the other hand, the I/O cost of MNN is nearly
optimal. The algorithm incurs at most 10% more I/Os
than the total number of pages in trees RA, RB. BNN has
marginally higher I/O cost, which is by far
compensated by the large computational savings. Only
in the first case both MNN and BNN have similar cost.
We observed that in this case BNN reduces to MNN;
each GA has 3 points on the average. A is very sparse
compared to B and grouping many points results in low
I/O performance. The adaptive nature of BNN predicts
this and chooses small point groups. We validated the
importance of adaptive grouping by rerunning the
experiment for A=D1, B=D4, and comparing BNN with
another version of the algorithm that selects as
(intuitive) groups the leaf nodes NA of RA. Figure 8
shows that the non-adaptive version has indeed high I/O
cost; the leaf nodes of RA have very large MBRs
compared to the leaf nodes of RB and a large part of RB

must be loaded.

0

50

100

150

BNN (adaptive) BNN (

I/O time
CPU time

AG = NA)

time(sec)

Figure 8: Performance of BNN versions (A=D1, B=D4)

In order to test the robustness of BNN to the available
memory, we executed the most expensive query of
Figure 7d varying the memory buffer size. As shown in
Figure 9, MNN and BNN are not sensitive to the
memory size, since their efficiency is based on the
locality of two consecutive NN or BNN queries. A
small buffer of 128K suffices to maximize the
probability that the access path of a query is in memory.
On the other hand, CP accesses an excessive number of
node pairs and the size of the buffer affects the I/O cost.
Even when the datasets are relatively small and the I/O
cost is reduced, CP is outperformed by BNN, since the
latter has much lower computational cost (see Figure
7c).

0

300

600

900

1200

1500

128 256 512 1024 2048 memory (KB)

BNN
MNN

CP

time(sec)

Figure 9: ANN(A=D3, B=D4) varying buffer size

We performed another experiment to test the scalability
of BNN, using synthetic datasets of uniform points. In
the experimental instances the cardinality of both A and

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

B was the same and varied from 104 to 106 points.
Figure 10 shows the response time of BNN and MNN.
Observe that BNN is consistently around 4 times faster
than MNN.

1

10

100

1000

10000

10 50 100 500 1000

BNN
MNN

time(sec)

size of A and B (in Kpoints)
Figure 10: Scalability of BNN

Finally, we compare the algorithms for the case where
A=B. This query is frequent in clustering applications,
where all nearest neighbors and their distances need to
be identified in a single dataset. We used the largest
datasets D3 and D4 and executed BNN, MNN and CP,
after adapting them in order not to report a point as the
nearest neighbor of itself. Figure 11 shows the
response time of the algorithms. Again BNN
outperforms MNN and CP by far. Interestingly, for
ANN(D3, D3), MNN is slower than CP, due to its
excessive CPU cost. Notice that results of the small
datasets are meaningless since they fit in memory.

I/O time CPU time

0

50
100

150
200

250

BNN MNN CP

0

200

400

600

800

BNN MNN CP

(a) A=D3 (b) A=D4

Figure 11: Response time (sec) for ANN(A,A) queries

We have also performed experiments assuming that A is
not indexed, in which case CP is not applicable. For
MNN and BNN, the only difference is the Hilbert
sorting, which is the same for both methods. Beyond
this, the cost is similar to that shown in Figure 7. We
omit the plots, since they essentially do not contain any
additional information.

5.2 Experiments with non-indexed datasets
In order to test the efficiency of HANN, we
implemented another method that builds RB on-the-fly
and applies BNN, the most efficient index-based ANN
algorithm. For bulk-loading R-trees we use sort-tile-
recursive [LEL97], an effective algorithm that creates
leaf nodes with small overlap. Figure 12 shows the
response time of the algorithms for the four ANN
queries of Figure 7. The costs are broken to five parts
for easier analysis; the CPU cost, the I/O cost of
preprocessing (i.e., sorting or hashing) each dataset, and
the cost for ANN (i.e., reading the datasets during BNN
or the match phase of HANN). Observe that both
methods are I/O bound, due to the multiple passes over

the data (for bulk loading and hashing). The relative
performance of the algorithms is different in the various
cases, so we will interpret them individually.

I/O (preprocessing B)

I/O (ANN A)

CPU time

I/O (preprocessing A)

I/O (ANN B)

0

50

100

150

200

BNN HANN

0

20

40

60

80

100

120

BNN HANN

(a) A=D1, B=D4 (b) A=D4, B=D1

0

1

2

3

4

5

BNN HANN

0

50

100

150

200

250

BNN HANN

(c) A=D1, B=D2 (d) A=D3, B=D4

Figure 12: Response time (sec) for non-indexed data

First, consider cases (a) and (d), where B is much larger
than the memory buffer. Bulk loading RB requires two
passes (2 reads + 2 writes). On the other hand, HANN
hashes B in only one pass. In these cases, the cost for
ANN is similar for both algorithms; BNN accesses
90%-150% of the pages from RB and HANN reloads on
the average around 25% of the hash buckets from B
during the second pass. In case (b), A is much larger
than B, which fits in memory. The performance of the
algorithms is then almost the same. RB is constructed by
reading B once and remains in memory, and so are the
hash buckets HB during HANN. Sorting and hashing A
have similar cost, because we combine the second pass
of externally sorting A with the application of BNN. In
(c) set B fits in memory, as well, so BNN has minimal
cost. However, in this case the hash buckets of HANN
occupy more space than the original datasets, since
many of them are half-full after hashing. As a result,
few pages of B are flushed to disk and loaded again,
and HANN is slightly more expensive than BNN.
HANN is computationally cheaper than BNN in all
cases because the tiles in HANN contain more objects
than the groups in BNN and the CPU optimization
techniques are more effective.

We also compared BNN and HANN for the case
where A=B. Figure 13 shows the performance of the
algorithms on datasets D3 and D4. As expected, HANN
is faster than BNN, since the query dataset does not fit
in memory in either case. In general, we expect the
hash-based algorithm to do better than bulk-loading +
BNN, in problems where B is much larger than the
available memory. However, this does not decrease the
value of BNN, which is a simple, easy to implement
and very efficient in the presence of spatial indexes. We
also observed that BNN has robust behavior for special

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

cases with skewed data distributions, e.g., when A
covers different part of the space than B. In this case
HANN generates large pending sets, which may not fit
in memory during its execution.

I/O (ANN)I/O (preprocessing)CPU

0

10

20

30

40

50

60

BNN HANN

0

50

100

150

200

250

BNN HANN

(a) A=D3 (b) A=D4

Figure 13: Response time(sec) for ANN(A,A) queries

6 Conclusions
This paper studies ANN queries in spatial databases.
Multiple Nearest Neighbor (MNN) and Batched
Nearest Neighbor (BNN) presume the existence of an
R-tree on the inner dataset B, and take advantage of the
structure to accelerate search. These approaches are up
to an order of magnitude faster than CP-based methods.
BNN is more efficient than MNN, since (i) it retains its
low I/O cost by applying consecutive NN queries with
spatial locality (ii) it significantly reduces the
computational cost by minimizing the number of NN
queries. If B is not indexed, we compare the
straightforward approach of bulk-loading RB and
applying BNN with HANN, an alternative approach
based on spatial hashing. The hash-based algorithm is
more efficient for large problems, where building the
tree requires multiples passes over B.

It would be interesting to see how ANN evaluation
methods scale with dimensionality. R-trees are not
appropriate for high-dimensional data, but there are
structures with similar properties [SYUK00], which
scale well with dimensionality. Our index-based
methods can be easily employed with these structures.
On the other hand, HANN is not expected to perform
well for high dimensional data, since many tiles will be
empty and the expected number of border points
increases fast with dimensionality.

Acknowledgements
This work was supported by grants HKUST 6180/03E
and HKU 7149/03E from Hong Kong RGC.

References
[APR+98] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel,

J.S. Vitter, Scalable Sweeping-Based Spatial Join,
VLDB, 1998.

[AY01] C. C. Aggarwal, P. S. Yu, Outlier Detection for
High Dimensional Data, SIGMOD, 2001.

[BBKK97] S. Berchtold, C. Böhm, D. A. Keim, H.P Kriegel,
A Cost Model For Nearest Neighbor Search in
High-Dimensional Data Space, PODS, 1997.

[BEKS00] B. Braumuller, M. Ester, H. Kriegel, J. Sander,
Efficiently Supporting Multiple Similarity
Queries for Mining in Metric Databases, ICDE,
2000.

[Bia69] T. Bially, Space-Filling Curves: Their Generation

and Their Application to Bandwidth Reduction,
IEEE TIT 15(6): 658-664, 1969.

[BK02] C. Böhm, F. Krebs, High Performance Data
Mining Using the Nearest Neighbor Join, ICDM,
2002.

[BKS93] T. Brinkhoff, H.P. Kriegel, B. Seeger, Efficient
Processing of Spatial Joins Using R-trees,
SIGMOD, 1993.

[BKSS90] N. Beckmann, H.P. Kriegel, R. Schneider, B.
Seeger, The R*-tree: an Efficient and Robust
Access Method for Points and Rectangles,
SIGMOD, 1990.

[Cla83] K. Clarkson. Fast Algorithms for the All-nearest-
neighbors Problem, FOCS, 1983.

[CMTV00] A. Corral, Y. Manolopoulos, Y. Theodoridis, M.
Vassilakopoulos, Closest Pair Queries in Spatial
Databases, SIGMOD, 2000.

[CMTV01] A. Corral, Y. Manolopoulos, Y. Theodoridis, M.
Vassilakopoulos, Algorithms for Processing
Closest Pair Queries in Spatial Databases, www-
de.csd.auth.gr/publications.html), 2001.

[Gut84] A. Guttman, R-trees: A Dynamic Index Structure
for Spatial Searching, SIGMOD, 1984.

[GTVV93] M.T. Goodrich, J.J. Tsay, D.E. Vengroff, and S.
Vitter, External Memory Computational
Geometry, FOCS, 1993.

[HS98] G. Hjaltason, H. Samet, Incremental Distance
Join Algorithms for Spatial Databases, SIGMOD,
1998.

[JMF99] A. Jain, M. Murthy, P. Flynn, Data Clustering: A
Review, ACM Computing Surveys, 31(3): 264-
323, 1999.

[LEL97] S. T. Leutenegger, J. M. Edgington, M. A. Lopez,
STR: A Simple and Efficient Algorithm for R-
Tree Packing, ICDE, 1997.

[LR94] M.L. Lo, C.V. Ravishankar, Spatial Joins Using
Seeded Trees, SIGMOD, 1994.

[Map] http://www.maproom.psu.edu/dcw.
[MP99] N. Mamoulis, D. Papadias, Integration of Spatial

Join Algorithms for Processing Multiple Inputs,
SIGMOD, 1999.

[NO97] K. Nakano, S. Olariu, An Optimal Algorithm for
the Angle-Restricted All Nearest Neighbor
Problem on the Reconfigurable Mesh, with
Applications, IEEE TPDS 8(9): 983-990, 1997.

[NTM01] A. Nanopoulos, Y. Theodoridis, Y.
Manolopoulos, C2P: Clustering based on Closest
Pairs, VLDB, 2001.

[PD96] J.M. Patel, D.J. DeWitt, Partition Based Spatial-
Merge Join, SIGMOD, 1996.

[PM97] A. Papadopoulos, Y. Manolopoulos, Performance
of Nearest Neighbor Queries in R-Trees, ICDT,
1997.

[PS85] F. Preparata, M. Shamos, Computational
Geometry, Springer, 1985.

[RKV95] N. Roussopoulos, F. Kelley, F. Vincent, Nearest
Neighbour Queries, SIGMOD, 1995.

[SML00] H. Shin, B. Moon, S. Lee, Adaptive Multi-Stage
Distance Join Processing, SIGMOD, 2000.

[SYUK00] Y. Sakurai, M. Yoshikawa, S. Uemura, H.
Kojima, The A-tree: An Index Structure for High-
Dimensional Spaces Using Relative
Approximation, VLDB, 2000.

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

	footer1:

