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Abstract 

Given two sets A and B of multidimensional objects, the 
all-nearest-neighbors (ANN) query retrieves for each 
object in A its nearest neighbor in B. Although this 
operation is common in several applications, it has not 
received much attention in the database literature. In 
this paper we study alternative methods for processing 
ANN queries depending on whether A and B are 
indexed. Our algorithms are evaluated through 
extensive experimentation using synthetic and real 
datasets. The performance studies show that they are 
an order of magnitude faster than a previous approach 
based on closest-pairs query processing. 

1 Introduction 
Let A and B be two spatial datasets and dist(p,q) be a 
distance metric. Then, the all-nearest-neighbors query 
is defined as: ANN(A,B) = {<ai,bj>: ∀ ai ∈ A, ∃ bj ∈ B,
¬∃ bk ∈ B {dist(ai,bk) < dist(ai,bj)}}. In other words, the 
query finds for each object in A its nearest neighbor(s) 
in B. Notice that ANN(A,B) is not commutative, i.e., in 
general ANN(A,B) ≠ ANN(B,A).  The ANN problem 
has been studied in the context of computational 
geometry [PS85], where several main memory 
techniques have been proposed (e.g., [Cla83]) for the 
case where A=B, i.e., the nearest neighbors are found in 
the same dataset. However, limited work has been done 
in the context of secondary memory algorithms, 
although this query type is frequent in several database 
applications: 
• Geographical Information Systems: Example 

queries include “find the nearest parking lot for 
each subway station” or “find the nearest 
warehouse for each supermarket”, common in 
urban planning and resource allocation problems.  

• Data analysis: ANN queries have been considered 
as a core module of clustering [JMF99] and outlier 
detection [AY01]. For example, the algorithm of 
[NTM01] owes its efficiency to the use of ANN 
queries, as opposed to previous quadratic-cost 
approaches. 

• Computer Architecture/VLSI design: The 
operability and speed of very large circuits depends 
on the relative distance between the various 
components in them. ANN is applied to detect 
abnormalities and guide relocation of components 
[NO97]. 

Previous methods [HS98, CMTV01] for ANN 
evaluation in secondary memory are inefficient and 
applicable only when both A and B are indexed, which 
is not necessarily true in practice (e.g., one or both 
query inputs could be intermediate results of complex 
queries). In this paper, we propose novel techniques for 
general ANN query processing. Following the common 
trend in the literature, we assume that the underlying 
indexes (whenever available) are R-trees [Gut84, 
BKSS90]. Although, for simplicity, we deal with points 
and use Euclidean distance, extensions to other data 
partition access methods, extended objects and other 
distance metrics are straightforward. The rest of the 
paper is organized as follows. Section 2 discusses 
previous work directly related to the ANN problem. 
Sections 3 and 4 present algorithms for different cases, 
based on whether A, B, or both are indexed. Section 5 
experimentally evaluates the algorithms, and section 6 
concludes the paper with a discussion.  

2 Related work 
ANN queries constitute a hybrid of nearest neighbor 
search and spatial joins; therefore, in sections 2.1 and 
2.2 we review related work for these query types 
focusing more on the processing techniques that are 
also employed by our algorithms. Section 2.3 describes 
methods for closest-pair queries, and section 2.4 
discusses existing techniques for ANN query 
processing. 

2.1 Nearest neighbor queries 
The goal of nearest neighbor (NN) search is to find the 
objects in a dataset A that are closest to a query point q.
Existing algorithms presume that the dataset is indexed 
by an R-tree and use various metrics to prune the search 
space: mindist(q,M) is the minimum distance between q
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and any point in a minimum bounding rectangle (MBR) 
M. The algorithm of [RKV95] traverses the tree in a 
depth-first (DF) manner. Assume that we search for the 
nearest neighbor NN(q,R) of q in R-tree R. Starting 
from the root, all entries are sorted according to their 
mindist from q, and the entry with the smallest mindist
is visited first. The process is repeated recursively until 
the leaf level where a potential nearest neighbor is 
found. During backtracking to the upper levels, the 
algorithm only visits entries whose mindist is smaller 
than the distance of the nearest neighbor found so far. 
As an example consider the R-tree of Figure 1, where 
the number in each entry refers to the mindist (for 
intermediate entries) or the actual distance (for leaf 
entries, i.e., objects) from q (these numbers are not 
stored but computed dynamically during query 
processing). DF would first visit the node of root entry 
E1 (since it has the minimum mindist), and then the 
node pointed by E4, where the first candidate (a) is 
retrieved. When backtracking to the previous level, 
entry E6 is excluded since its mindist is greater than the 
distance of a, but E5 has to be visited before 
backtracking again to the root level.  
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Figure 1: Example R-tree and mindist values 

The performance of DF was shown to be suboptimal in 
[PM97], which reveals that an optimal algorithm only 
needs to visit those nodes whose MBRs intersect the so-
called “search region”, i.e., a circle centered at the 
query point with radius equal to the distance between 
the query and its nearest neighbor (shaded circle in 
Figure 1). A best-first (BF) algorithm for NN search is 
proposed in [HS99]. BF keeps a heap with the entries 
of the nodes visited so far. Initially the heap contains 
the entries of the root sorted according to their mindist.
When E1 is visited, it is removed from the heap and the 
entries of its node (E4, E5, E6) are added together with 
their mindist. The next entry visited is E2 (it has the 
minimum mindist in the heap), followed by E8, where 
the actual result (h) is found and the algorithm 

terminates. BF is I/O optimal because it only visits the 
nodes necessary for obtaining the nearest neighbor. 
These methods can be easily extended for finding the k
nearest neighbors of q. Nevertheless in high 
dimensional spaces the performance of spatial access 
methods degenerates and specialized techniques are 
used to solve the problem.

2.2 Spatial joins 
The spatial join between two datasets A and B finds the 
object pairs in the Cartesian product A×B which satisfy 
a spatial predicate, most commonly intersect (assuming 
the datasets contain objects with spatial extent). 
Depending on the existence of indexes, different spatial 
join algorithms can be applied. The R-tree join 
algorithm (RJ), proposed in [BKS93], computes the 
spatial join of two inputs indexed by R-trees. RJ 
synchronously traverses both trees, starting from the 
roots and following entry pairs which intersect. Let EA

be a node entry from R-tree RA, and EB a node entry 
from R-tree RB. RJ is based on the following property: 
if the MBRs of EA and EB do not intersect, there can be 
no pair <ai,bj> of intersecting objects, where ai and bj

are pointed by EA and EB, respectively. If only one 
dataset (let A) is indexed, a common method [LR94] is 
to build an R-tree for B and then apply RJ. In [MP99], a 
hash-based algorithm is proposed that uses the existing 
tree (of A) to determine the hash partitions. If both 
datasets are non-indexed, alternative methods include 
sorting and external memory plane-sweep [APR+98], 
or spatial hash join algorithms, like partition based 
spatial merge join (PBSM) [PD96]. 

PBSM divides the space regularly using an 
orthogonal grid and hashes objects from both datasets 
into the partitions (buckets); each object is assigned to 
the buckets that contain it. Figure 2a illustrates a 
regular 3×3 partitioning and some hashed data. During 
the matching phase of the hash join, pairs of buckets 
from the two datasets that correspond to the same area 
are loaded and joined in memory (e.g., using plane-
sweep). If the data in a bucket do not fit in memory, the 
algorithm recursively repartitions the cell into smaller 
parts and re-hashes the objects. In order to alleviate 
repartitioning of skewed data, which increases the cost 
of the algorithm, PBSM defines the hash buckets by 
grouping multiple grid tiles together. A tile numbering 
with a hash function is defined and tiles with the same 
hash value are assigned to the same bucket.  

Figure 2b shows a 4×4 tiling with some objects 
hashed in it. Three buckets are used to hash the objects 
and the tiles are assigned to them according to a round-
robin hash function. Skewed data are now distributed 
more evenly to buckets than if we used three 
continuous partitions. Objects that span the grid 
borderlines are assigned to multiple buckets during 
PBSM (replication), thus the output of the algorithm 
has to be sorted in order to remove pairs reported more 
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than once. Duplicate elimination, however, can be 
combined with the refinement step incurring minimal 
overhead.  

partition

repartition
2 0 1 2

1 2 0 1

1 20 0

1 20 0

(a) Regular partitioning (b) Hashing using tiles
Figure 2: Regular partitioning by PBSM 

2.3 Closest pairs queries 
Given two datasets A and B, the closest pairs (CP) 
query asks for the k closest pairs in A×B. If both A and 
B are indexed by R-trees, the concept of synchronous 
tree traversal (employed by RJ) and DF or BF 
(discussed in section 2.1) can be combined for query 
processing. As an example consider that k=1 and DF 
(depth-first) is applied. A CP-DF algorithm would visit 
the roots of the two R-trees and recursively follow the 
pair of entries <EA, EB>, EA ∈ RA and EB ∈ RB, whose 
mindist is the minimum among all pairs. The difference 
from RJ is that sometimes nodes that do not overlap 
have to be visited, if they can contain points whose 
distance is smaller than the minimum distance found. 
The application of BF is also similar to the case of NN 
queries. A number of optimization techniques, 
including the application of other metrics (maxdist,
minmaxdist) for pruning, have been proposed in [HS98, 
CMTV00]. Additional techniques [SML00] include 
sorting and application of plane-sweep during the 
expansion of node pairs, using estimates of the k-closest 
pair distance to suspend unnecessary computations of 
MBR distances. Since we deal with ANN queries we 
focus on the relevant techniques. 

2.4 Existing techniques for ANN queries 
A naïve approach to process an ANN query is to 
perform one NN query on dataset B for each object in 
dataset A. In [BEKS00], several optimization 
techniques are proposed to improve the CPU and I/O 
performance of multiple similarity queries on a dataset 
(in our case, we perform multiple nearest neighbor 
queries on B). The optimizations assume that the 
queries fit in main memory; thus, they cannot be 
directly applied to ANN problem when the size of A is 
larger than the size of the available memory. 

[HS98] and [CMTV01] use CP algorithms to 
process ANN queries. Both papers propose the same 
processing method. A bitmap S0 of size |A| indicates the 
points in A for which the NN has been found. An 
incremental CP query is executed and this memory-
resident bitmap is updated while the closest pairs are 
computed. Since the closest pairs are output in 

increasing distance order, we know that if a pair <ai, bj>
is the first for ai, then bj is the NN for ai; S0[ai] is set to 
1 to prevent updating the NN of ai in the future (i.e., 
when another pair containing ai is found). The 
algorithm terminates when S0[ai] = 1 for all ai ∈ A.

As shown in the experimental section, this method 
is even worse than the straightforward application of 
one NN query for each point in A. Its inherent 
drawback is that it was developed based on the 
requirements of CP processing (i.e., multiple pairs for 
each point in A, incremental output of the results), 
whereas ANN queries have different characteristics. 
For example, assume that there is a point ai in A whose 
distance NNdist(ai,B) from its NN in B is large. Since 
the termination condition for the CP-based algorithm is 
the identification of the nearest neighbor for all points 
in A, many node pairs with smaller distance than 
NNdist(ai,B) will have to be visited, incurring 
significant overhead.  

An external memory algorithm for ANN is 
proposed in [GTVV93], suitable for the case where 
A=B, i.e., the NN are retrieved from the same dataset. 
This method applies on a non-indexed dataset, and 
initially hashes all points in vertical stripes. It then 
performs sorting in each stripe and uses a plane sweep 
algorithm that concurrently scans all stripes (potentially 
in parallel) finding the NN of each point in its current 
or neighbor stripes. The authors do not provide 
algorithmic details and they study only the worst case 
I/O performance. [BK02] study the nearest neighbor 
join, which finds for each object in one dataset, its k
nearest neighbors in another dataset (when k = 1, this 
corresponds to an ANN query). Their solution is based 
on a specialized index structure called multipage index 
and is inapplicable for general-purpose index structures 
(e.g., R-trees).  

In this paper, we propose alternative techniques for 
processing ANN queries. Depending on whether A or B
are indexed by R-trees, we suggest different evaluation 
strategies. For simplicity, our methods compute for 
each point a single nearest neighbor, even if there exist 
multiple (with equal distance). Extensions to the 
generalized case are straightforward. Table 1 
summarizes the most frequently used symbols 
throughout the paper. 

Symbol Description 
|A|,|B| Cardinality of A, B
RA, RB R-tree for A, B
NA, NB (Leaf) node of RA, RB

EA, EB Node entry of RA, RB

GA Group of objects from A
HA, HB Hash bucket from A, B
PS(t) Pending set of a hash tile t
NN(ai, X) NN of ai∈A in X=B, NB, HB, t 
NNdist(ai, X) Distance between ai and NN(ai, X)

Table 1: Table of Symbols 
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3 Index-based ANN methods 
When B is indexed, we can take advantage of RB to 
accelerate search. Starting from the rather 
straightforward approach that applies one NN query on 
RB for each point in A, we propose more sophisticated 
methods that aim at reducing the processing cost. All 
methods are based on depth-first traversal due to its 
lower I/O cost in the presence of buffers [CMTV00]. 
The extension to the best-first search paradigm is 
straightforward.  

3.1 Multiple nearest neighbor search 
The multiple nearest neighbor (MNN) algorithm can be 
considered as the counterpart of index-nested-loops in 
relational databases. In particular, MNN applies |A| NN 
queries (one for each point in A) on R-tree RB. The 
order of the NN queries is very important since if two 
consecutive query points (of A) are close to each other, 
a large percentage of pages from RB needed during the 
second query will be in the LRU memory buffer due to 
the first one. In order to achieve this, we employ the 
following methods: 

If A is not indexed, we sort its points using a space 
filling curve (e.g., Hilbert order [Bia69]) and visit them 
in this order, to maximize locality. 

If A is indexed, its points are already well-clustered 
in the leaf nodes of RA. We exploit this clustering and 
further increase spatial locality, by traversing the tree, 
following the entries of each node by Hilbert value 
(with respect to the center of node’s MBR), and using 
this order to apply NN queries on leaf node entries.   

Due to the proximity of successive query points, 
MNN is expected to be efficient in terms of I/O. 
However, its CPU cost is high because of the numerous 
distance calculations for each NN search. Let fB be the 
average fanout of RB, and NANN(ai,RB) the average 
number of node accesses in RB for finding the nearest 
neighbor of ai ∈ A. Then, the number of distance 
computations for MNN(A,B) is |A|⋅fB⋅NANN(ai,RB). In 
other words, for each NN query the distance between ai

and all entries in the visited nodes from RB has to be 
computed. In addition, these distances have to be sorted 
(or inserted in a heap) individually for each query 
(since the entries of a node are visited in increasing 
distance order). 

3.2 Batched nearest neighbor search 
In order to reduce the high computational cost of MNN, 
we propose a batched NN (BNN) method, which 
retrieves the nearest neighbors for multiple points at a 
time. BNN splits the points from A into a number of n
groups GA1, GA2, …, GAn, such that ∪GAi = A and ∀i,j,
1≤i<j≤n: GAi∩GAj = ∅. Then for each group, RB is
traversed only once, reducing considerably the number 
of distance computations.  

BNN first initializes information about the NN of 
each point ai in GA (and its distance) and a 

globaldist(GA, B) parameter, which stores the maximum 
NNdist(ai, B) for all points ai ∈ GA. Then RB is traversed 
as in MNN, by recursively visiting the nodes in 
increasing mindist order from GA. In case of a tie, i.e., 
two or more entries have the same mindist from GA, we 
pick the one with the maximum overlap with GA.
Obviously, entries EB in intermediate nodes of RB for 
which mindist(GA, EB) > globaldist(GA, B) can be 
pruned from search, since they cannot point to the NN 
of any point in GA.

When a leaf node NB of RB is visited, each ai ∈GA

updates its NN in the points of NB. A brute-force 
approach would compute the distance dist(ai, bj) ∀ ai

∈GA , bj ∈NB. In order to reduce this quadratic cost, we 
remove from consideration (i) all ai, for which 
NNdist(ai, B) < mindist(ai, NB) and (ii) all bj for which 
mindist(GA, bj) > globaldist(GA, B). For example 
consider the GA and NB instances of Figure 3, where the 
radii of the circles centered at each ai ∈ GA correspond 
to the current NNdist(ai, B). Point a1 will be pruned at 
this preprocessing step because NNdist(a1,
B)<mindist(a1, NB). The same is true for b6 and b7

because their mindist from GA is larger than the current 
globaldist(GA, B) = NNdist(a4,B), i.e., the largest radius 
of the points in GA.

b
NB

GA

a1 a4

b6
b7

b1
b2 b3

b4

5

a2

mbr

a3

Figure 3: Optimizing updateNN

After pruning some points, we can avoid checking the 
Cartesian product of the remaining ones by employing a 
method similar to that of [SML00] for CP queries. Let 
mbr be the MBR of the remaining points in NB (the 
MBR of b1,…,b5 in the example). The axis with the 
largest mbr projection (let x) is chosen and all 
remaining bj’s are sorted in increasing order of their x-
coordinate (i.e., b1, b2, b3, b4, b5). Observe that if a point 
ai ∈ GA is on the left of some bj and NNdist(ai,
B)<dist(ai.x, bj.x) then no point bm, m>j can be the NN 
of ai. Similarly, if ai is on the right of bj, all bm, m<j can 
be pruned. We use this observation to accelerate search 
as follows. For each ai, binary search is applied to find 
the point bj with the smallest x-distance from ai. The 
actual dist(ai, bj) is then computed and NN(ai, B) is 
updated if necessary. We continue checking (in both x-
directions) the other points in the list in increasing x-
distance order from ai, until a point bj for which 
NNdist(ai, B)<dist(ai.x, bj.x) is found. Consider for 
instance Figure 3, and assume that we want to update 
NN(a2, B). The closest point in the x-axis is b1, which is 
checked first. Then b2 is visited and we find that 
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NNdist(a2, B)<dist(a2.x, b2.x). Thus, we need not 
compute a2’s distance from b2 and subsequent points. 
Similarly, for a3 we (bi-directionally) check b2, b3 and 
b1 and avoid checking b4 and b5. These optimization 
methods reduce the computational cost of BNN 
considerably (50%-100% for our experimental data), so 
we include them in the implementation of BNN. 

Although a bound similar to globaldist(EA, B) could 
reduce the cost of CP, in practice it cannot be applied 
because it requires knowledge of NNdist(ai, B) for each 
ai ∈ A, which cannot be kept in memory. On the other 
hand, NNdist(ai, B) for each ai ∈ GA can be easily 
maintained by BNN. This further increases the value of 
BNN in processing ANN queries; better pruning 
bounds lead to better performance. 

3.3 Choosing groups in BNN 
Optimization of BNN must take into account several 
criteria: (i) the number of points in each group GA

should be maximized in order to decrease the number 
of NN queries, (ii) the MBR of each group should be 
minimized in order to reduce the cost of each NN 
query; (iii) each group should be small enough to fit in 
memory. Notice that criterion (i) is in conflict with (ii) 
and (iii). In the extreme case where only criterion (i) is 
considered, BNN transforms to an algorithm that would 
attempt to read the whole A dataset in memory and 
compute the NN of all points simultaneously.  In the 
opposite case (the MBR of each group is minimized), 
BNN degenerates to MNN. An optimal trade-off 
between these criteria is difficult to obtain. 

Although the problem resembles clustering, it is 
essentially different. First, clustering does not have a 
MBR size constraint for each cluster. Second, 
clustering usually involves a parameter, which is the 
number of desired clusters. In our case the number of 
groups can be arbitrary. Third, there is a maximum 
allowed population for each group (but not for each 
cluster). Finally, clustering methods are too expensive 
to be considered for this problem; grouping should be 
performed with minimal overhead on the overall 
performance of BNN.  

Assume first that dataset A is not indexed. To group 
the points in this case, we first sort them by to their 
Hilbert value to maximize proximity. Then consecutive 
points in this order are grouped1 until (i) the area of the 
group’s MBR exceeds a maximum threshold 
(max_area), or (ii) the number of points in the group 
exceeds a threshold (max_num). Notice that since 
successive groups are formed according the Hilbert 
order, they are likely to access similar pages and utilize 
the buffer.  

1  We have also tested another grouping condition that 
considers a maximum allowed density |GA|/MBR(GA) for each 
group, but found that it is not appropriate for this problem. 

The values of max_area and max_num are such that 
the expected nodes of RB accessed by BNN(GA, RB) fit 
in memory, together with the points of the current 
group GA. In this way, we maximize the probability that 
a page of RB required by the next group will be in the 
buffer. In addition, the MBR of GA should not be too 
large, in order to avoid accessing unnecessary nodes of 
RB in areas where A is much sparser than B. Using 
global statistics about RB to tune the thresholds is not 
effective for real-life skewed data, since the local 
characteristics of RB may vary. Therefore, we employ 
the following heuristic to optimize grouping: when a 
new group GA is initialized, a NN query is performed 
for the next point ai and the average area avg_area of 
the accessed leaf nodes from RB is computed and used 
as an estimate of the leaf nodes of RB close to GA. If 
MBR(GA) becomes larger than avg_area, GA accesses 
more nodes than the available memory. Moreover, GA

may be much sparser than B, so nodes will be 
unnecessarily accessed. In our implementation we use 
max_area = avg_area, which provides a good trade-off 
between CPU and I/O efficiency. Threshold max_num 
is violated earlier than max_area in regions where A is 
very dense, and the points are not expected to fit in 
memory together with the nodes accessed by BNN. The 
value of max_num is estimated by cost models [PM97, 
BBKK97] for NN search.

If dataset A is indexed we utilize the R-tree as 
follows. Starting from the root, BNN follows entries 
recursively according to their Hilbert value with respect 
to the center of their container node. If a leaf node is 
reached, its points are inserted into the current group, 
until a grouping threshold is violated. Therefore, a leaf 
node may be split in several groups and in some cases 
(e.g., dense regions), a group may contain points from 
more than one leaf node. Figure 4 shows four leaf 
nodes of RA, sorted by Hilbert value of their center with 
respect to the MBR of their container node (not shown). 
Assuming that the max_area is as shown in the figure, 
the first three points a1, a2, a3 of node A1 are grouped 
into G1. Adding the fourth point a4 would cause a 
max_area violation; thus, a4 is a group by itself (G2),
whereas the fifth point a5 together with the points of A2,
A3, and A4 form the third group G3. Observe how 
irregular a good distribution of points to groups can be. 

A1

A 2

A3

A4

G1

G2

G3
max_area

a5

a1
a3

a2

a4

Figure 4: Adaptive grouping in the presence of RA

4 ANN on non-indexed datasets 
If RB is not present, we cannot directly use index-based 
ANN algorithms. A plausible solution is to build the 
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tree on-the-fly and apply the algorithms of section 3.1. 
Although bulk loading can accelerate the construction 
of RB, the cost of external sorting can be high. 
Therefore we also investigate the application of an 
alternative technique based on hashing. 

4.1 A hash-based ANN algorithm 
We propose a two-phase hash-based ANN algorithm 
which (i) hashes the points from A and B in spatial 
partitions, (ii) loads pairs <HA, HB>, HA ∈ A, HB ∈ B of 
buckets covering the same region and searches for each 
ai ∈ HA its NN in HB. In order to distribute the points 
evenly to the hash buckets, we consider the spatial 
hashing method used by PBSM [PD96] (described in 
section 2.2). A fine regular grid that contains more cells 
than the number of hash buckets is used to partition the 
points. Each bucket contains multiple tiles (i.e., grid 
cells) at different areas of the space. Since HA and HB

cover the same area, the NN of each point ai ∈ HA is 
likely to be in HB. However, there are cases where 
NN(ai, B) may not be in HB. This holds for points that 
lie close to the border of a tile. In Figure 5a, for 
instance, the nearest neighbor b3 of point a2 ∈ t1 lies in 
the neighbor tile t2. Moreover, there may be a tile 
containing points from A, but no point from B.

t1 t2

t3

a 1

a2

a3
b1

b2
b3

t4
a4 b4

oid NN NNdist 
  3 
  4 
   

pending list

a2

a3

b2

b1

1
PS(t2)

2

2
PS(t3)

2
PS(t4)

(a) hash-based ANN (b) pending list and sets 
Figure 5: Finding NN in different tiles 

In order to handle these cases, we maintain in memory 
a list that contains information about the border points, 
the NN of which is not guaranteed to be in the same tile 
that contains them. An entry in this pending list 
contains the point, its current NN and its distance 
NNdist from it. We also assign to each tile t an initially 
empty list of points, called pending set PS(t), which 
keeps references to points from other hash buckets that 
may have their NN in that tile. When a pair of buckets 
<HA, HB> is processed and a border point ai ∈ HA is 
found (i) it is inserted into the pending list and (ii) a 
reference to it is inserted into the pending set PS(t) of 
each tile t for which mindist(ai,t)<NNdist(ai,HB). When 
a future hash bucket from B that contains t is loaded, all 
points in PS(t) will seek a potentially closer neighbor 
there. If at some stage no pending set is pointing to a 
point, then its actual NN has been found and it is 
removed from the pending list. 

Consider again the example of Figure 5a and 
assume that the current bucket pair to be processed 
includes t1, but not t2, t3 and t4. The nearest neighbors of 
all points are computed in t1: NN(a1, t1) = b1, NN(a2, t1)

= b2, and NN(a3, t1) = b1. Since NN(a2,t1) = b2 and 
mindist(a2, t2) < dist(a2, b2), a2 is inserted in the pending 
list and in PS(t2). For the same reason, a3 is also 
inserted into the list and in PS(t2), PS(t3) and PS(t4), 
because a neighbor closer than b1 could be in any of 
these three tiles. Later, when t2 is processed, the actual 
NN of a2 (i.e., b3) will be discovered. Figure 5b shows 
the pending list and sets after processing t1.

A point may enter the pending set of a tile after the 
tile’s bucket has been processed. Assume that bucket 
HB containing t1 is already processed, and t3 is the 
current tile. The NN of a4 in t3 (point b4) is found to be 
further than t1. If HB is still in memory, we immediately 
search for the NN of a4 there. However, if HB has been 
evicted, a4 is inserted into PS(t1). Therefore, after 
processing all bucket pairs, there may still be non-
empty pending sets. The corresponding buckets are then 
loaded in a second pass; in the worst case, B will be 
read twice during the matching phase of the algorithm, 
assuming that the pending list and sets fit in memory.  

4.2 Optimization of HANN 
The computational cost of HANN can be minimized by 
some optimization techniques. When loading buckets 
<HA, HB>, their contents are hashed in memory 
according to the tiles contained in them. Thus, 
ANN(HA, HB) is broken to multiple problems, one for 
each tile of the bucket. These problems have much 
smaller size and processing cost. We also use the CPU 
optimization techniques of BNN described in section 
3.2 to decrease the quadratic number of distance 
computations. 

In order to reduce the I/O cost of HANN we need to 
minimize the number of page accesses required by the 
2nd pass of the algorithm. In other words, we have to 
minimize the number of buckets from B that need to be 
loaded twice. A straightforward policy is to keep in 
memory pages from B as long as possible. If the 
memory is large enough to fit many partitions, border 
points whose potential NNs are in previous buckets 
may be processed immediately. Therefore, it is 
important to process buckets in an order such that the 
tiles in memory are close to each other with high 
probability. Consider Figure 5a and assume that each 
tile is a hash bucket. If we process t1 first and keep its 
contents from B in memory while processing tiles t2, t3,
and t4, we can be sure that this tile will never be needed 
again in the future, since no points from tiles other than 
t2, t3, and t4 can affect its pending set. 

If the buckets contain multiple tiles, such a schedule 
is difficult to achieve, unless the neighbors of all tiles in 
a specific bucket belong to a small number of neighbor
buckets. Then HANN can process the pairs <HA, HB> in 
an order such that part of the neighbors of the current 
bucket HB are processed immediately before HB (and 
thus they are in memory), and the rest immediately after 
HB. In this way: (i) border points of HB close to tiles 
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processed before will find their NNs in memory, (ii) 
border points of HB close to tiles not processed yet will 
find their NNs into the buckets processed immediately 
after HB and memory will be freed. 

The (round-robin) tiling scheme, described in 
section 2.2 for PBSM, has a nice tile neighborhood 
property. Assume that the number of tiles is n×n and let 
m be the number of buckets. If a tile belongs to bucket 
b, the tile on its left belongs to bucket b-1 mod m, the 
one on its right to bucket b+1 mod m, the tile above to 
bucket b-n mod m, and the one below to bucket b+n
mod m. Thus, the neighbor buckets of b are fixed for 
each tile in b. Figure 6a illustrates this tiling scheme 
with n=7 and m=10. The numbers correspond to bucket 
ids. Observe that all tiles belonging to a partition have 
the same neighbors at the same directions. Thus, if the 
neighbor buckets of the currently processed pair are 
loaded either just before or just after it, the data from B
that need to be read during the 2nd pass will be 
minimized. 

However, defining a good bucket ordering on the 
round-robin tiling is hard. Therefore we propose an 
alternative tiling scheme. The space is divided using 
large regular windows, called supertiles, of m tiles 
each. Thus, there are n×n/m supertiles. The m tiles in 
each of them are ordered according to their Hilbert 
value with respect to the center of the supertile and 
assigned to partitions in this order. Figure 6b shows an 
example where n=8 and m=16. The hash buckets during 
the matching phase of the algorithm are also loaded in 
this (Hilbert) order. This Hilbert tiling has several 
benefits. First, the buckets have the same neighbors in 
all tiles; the nice property of round-robin tiling is 
preserved. Second, the order in which buckets are 
visited preserves spatial locality. Finally, the tiles of a 
corresponding bucket are scattered at different areas of 
the space and points are evenly distributed; skewed data 
are hashed effectively. 
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(a) round-robin tiling (b) Hilbert tiling 
Figure 6: Tiling schemes for HANN 

If the regular grid is very fine or the data distribution is 
very skewed, the pending list and sets can grow larger 
than the available memory. In this case, we first 
perform a cache clean-up by removing points from 
pending sets, for which the NN has already been found 
and their references are still in some lists. In Figure 5, 
assume that t3 is processed after t1 and the NN of a3 is

found in t3. The normal lazy policy of HANN leaves a3

in PS(t2) and PS(t4). Later, when these tiles are 
processed, updating a3 will be found unnecessary. 
However, if HANN runs out of memory a cache clean-
up function immediately visits the pending list and sets 
and removes redundant entries. Notice that an eager 
policy which performs cache clean-up every time a NN 
is updated is expensive (the pending sets need to be 
scanned very often). If after the clean-up there is still 
not enough memory, the pending sets of tiles that 
already have been processed are flushed to disk (since 
they will be needed only during the second pass) and 
memory is freed. The same is done for points in the 
pending list that seek their NN only in such tiles. In 
general, these techniques have high cost, so it is 
important to use a good tiling scheme and bucket 
ordering in order to avoid them. 

A challenging problem is to choose an appropriate 
number of tiles. If a very fine grid is used, then the 
probability that the points are evenly distributed to 
buckets increases. On the other hand, the number of 
border points also increases, and so do the chances that 
a bucket needs to be reloaded at a second pass. 
Therefore there is a trade-off in the choice of the grid. 
In our experimental instances, the best results of HANN 
are achieved when a small number of tiles (in the order 
of 10) correspond to each partition. The number of 
partitions is such that the expected buckets from B that 
fit in memory are between 5-10. Of course this number 
is also constrained by the available memory (at most M-
1 buckets can be defined if M is the number of memory 
pages). 

Finally, we need to comment on how we handle 
cases where tiles are empty (in A or B). Obviously 
empty tiles in A can be handled trivially. On the other 
hand, empty tiles in B need special consideration. 
During hashing, we construct a memory-resident 
bitmap indicating the empty tiles in B. Consider a tile t
containing points from A, which is empty in B. Instead 
of putting all these points into multiple pending sets, we 
keep them in memory and wait for one from the closest 
non-empty tiles from B to be loaded in order to handle 
them then. The closest non-empty tiles can be easily 
determined from the bitmap and the encoding of the 
tile. We also use the bitmap to avoid assigning points to 
pending sets of empty tiles. In the example of Figure 5, 
if t4 is empty in B, we need not put a3 in PS(t4).

5 Experimental Evaluation 
In this section we study the performance of the methods 
proposed in sections 3 and 4, under various conditions. 
We also evaluate an implementation of the best (to our 
knowledge) CP-based ANN algorithm from previous 
work [HS98], described in section 2.4. All methods 
were implemented in C++ and the experiments were 
executed using a PC with a Pentium III 733MHz 
processor, running Windows NT. The page and R*-tree 

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04) 
1099-3371/04 $ 20.00 © 2004 IEEE 



node size is set to 4K. Each leaf node entry contains the 
coordinates of a point (in two double precision 
numbers) and an object id, summing to 20 bytes. Thus, 
the capacity of a leaf node is 204. Unless otherwise 
stated in all problem instances we set the size of the 
LRU buffer to 512K. 

For the experiments we employed four datasets 
[Map] representing different layers of North America’s 
map, described in Table 2. Datasets containing line 
segments were transformed to point datasets, by taking 
the middle point of each segment. We also used 
uniform datasets whenever we needed to test 
algorithmic performance based on parameters for which 
real datasets were not available. 

Dataset Cardinality Description 
D1 9,203  Cultural landmarks 
D2 24,493  Populated places 
D3 191,637  Railroad segments 
D4 569,120  Road segments 

Table 2: Description of real datasets 

5.1 Experiments with indexed datasets 
In the first set of experiments we compare the 
performance of index-based ANN algorithms. In order 
to include the CP-based method, we assume that both 
datasets are indexed. Figure 7 shows the response time 
of all methods (split into I/O and CPU cost) for four 
ANN queries, representing different problem size cases; 
in the first query A is small and B is large, in the second 
query A is large and B is small, and in the last two cases 
both A and B have sizes in the same order, i.e., they are 
both small or large. 
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Figure 7: Response time (sec) for indexed data 

In all cases BNN is the best method, since it retains the 
low I/O cost of MNN and at the same time reduces the 
distance computations. CP is clearly inappropriate for 
ANN queries; it is outperformed by both MNN and 
BNN in all cases, except for case (b), where the number 
of NN queries performed by MNN is huge, with high 
computational cost. A comparison between case (c) and 

case (d) reveals that the improvement of BNN over 
MNN is independent of the problem size. This 
observation is confirmed by subsequent experiments. 

On the other hand, the I/O cost of MNN is nearly 
optimal. The algorithm incurs at most 10% more I/Os 
than the total number of pages in trees RA, RB. BNN has 
marginally higher I/O cost, which is by far 
compensated by the large computational savings. Only 
in the first case both MNN and BNN have similar cost. 
We observed that in this case BNN reduces to MNN; 
each GA has 3 points on the average. A is very sparse 
compared to B and grouping many points results in low 
I/O performance. The adaptive nature of BNN predicts 
this and chooses small point groups. We validated the 
importance of adaptive grouping by rerunning the 
experiment for A=D1, B=D4, and comparing BNN with 
another version of the algorithm that selects as 
(intuitive) groups the leaf nodes NA of RA. Figure 8
shows that the non-adaptive version has indeed high I/O 
cost; the leaf nodes of RA have very large MBRs 
compared to the leaf nodes of RB and a large part of RB

must be loaded. 
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Figure 8: Performance of BNN versions (A=D1, B=D4)

In order to test the robustness of BNN to the available 
memory, we executed the most expensive query of 
Figure 7d varying the memory buffer size. As shown in 
Figure 9, MNN and BNN are not sensitive to the 
memory size, since their efficiency is based on the 
locality of two consecutive NN or BNN queries. A 
small buffer of 128K suffices to maximize the 
probability that the access path of a query is in memory. 
On the other hand, CP accesses an excessive number of 
node pairs and the size of the buffer affects the I/O cost. 
Even when the datasets are relatively small and the I/O 
cost is reduced, CP is outperformed by BNN, since the 
latter has much lower computational cost (see Figure 
7c).
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Figure 9: ANN(A=D3, B=D4) varying buffer size 

We performed another experiment to test the scalability 
of BNN, using synthetic datasets of uniform points. In 
the experimental instances the cardinality of both A and 
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B was the same and varied from 104 to 106 points. 
Figure 10 shows the response time of BNN and MNN. 
Observe that BNN is consistently around 4 times faster 
than MNN. 
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Figure 10: Scalability of BNN 

Finally, we compare the algorithms for the case where 
A=B. This query is frequent in clustering applications, 
where all nearest neighbors and their distances need to 
be identified in a single dataset. We used the largest 
datasets D3 and D4 and executed BNN, MNN and CP, 
after adapting them in order not to report a point as the 
nearest neighbor of itself. Figure 11 shows the 
response time of the algorithms. Again BNN 
outperforms MNN and CP by far. Interestingly, for 
ANN(D3, D3), MNN is slower than CP, due to its 
excessive CPU cost. Notice that results of the small 
datasets are meaningless since they fit in memory.
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Figure 11: Response time (sec) for ANN(A,A) queries 

We have also performed experiments assuming that A is
not indexed, in which case CP is not applicable. For 
MNN and BNN, the only difference is the Hilbert 
sorting, which is the same for both methods. Beyond 
this, the cost is similar to that shown in Figure 7. We 
omit the plots, since they essentially do not contain any 
additional information.  

5.2 Experiments with non-indexed datasets 
In order to test the efficiency of HANN, we 
implemented another method that builds RB on-the-fly 
and applies BNN, the most efficient index-based ANN 
algorithm. For bulk-loading R-trees we use sort-tile-
recursive [LEL97], an effective algorithm that creates 
leaf nodes with small overlap. Figure 12 shows the 
response time of the algorithms for the four ANN 
queries of Figure 7. The costs are broken to five parts 
for easier analysis; the CPU cost, the I/O cost of 
preprocessing (i.e., sorting or hashing) each dataset, and 
the cost for ANN (i.e., reading the datasets during BNN 
or the match phase of HANN). Observe that both 
methods are I/O bound, due to the multiple passes over 

the data (for bulk loading and hashing). The relative 
performance of the algorithms is different in the various 
cases, so we will interpret them individually. 
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Figure 12: Response time (sec) for non-indexed data 

First, consider cases (a) and (d), where B is much larger 
than the memory buffer. Bulk loading RB requires two 
passes (2 reads + 2 writes). On the other hand, HANN 
hashes B in only one pass. In these cases, the cost for 
ANN is similar for both algorithms; BNN accesses 
90%-150% of the pages from RB and HANN reloads on 
the average around 25% of the hash buckets from B
during the second pass. In case (b), A is much larger 
than B, which fits in memory. The performance of the 
algorithms is then almost the same. RB is constructed by 
reading B once and remains in memory, and so are the 
hash buckets HB during HANN. Sorting and hashing A
have similar cost, because we combine the second pass 
of externally sorting A with the application of BNN. In 
(c) set B fits in memory, as well, so BNN has minimal 
cost. However, in this case the hash buckets of HANN 
occupy more space than the original datasets, since 
many of them are half-full after hashing. As a result, 
few pages of B are flushed to disk and loaded again, 
and HANN is slightly more expensive than BNN. 
HANN is computationally cheaper than BNN in all 
cases because the tiles in HANN contain more objects 
than the groups in BNN and the CPU optimization 
techniques are more effective.  

We also compared BNN and HANN for the case 
where A=B. Figure 13 shows the performance of the 
algorithms on datasets D3 and D4. As expected, HANN 
is faster than BNN, since the query dataset does not fit 
in memory in either case. In general, we expect the 
hash-based algorithm to do better than bulk-loading + 
BNN, in problems where B is much larger than the 
available memory. However, this does not decrease the 
value of BNN, which is a simple, easy to implement 
and very efficient in the presence of spatial indexes. We 
also observed that BNN has robust behavior for special 

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04) 
1099-3371/04 $ 20.00 © 2004 IEEE 



cases with skewed data distributions, e.g., when A
covers different part of the space than B. In this case 
HANN generates large pending sets, which may not fit 
in memory during its execution. 

I/O (ANN)I/O (preprocessing)CPU

0

10

20

30

40

50

60

BNN HANN

0

50

100

150

200

250

BNN HANN

(a) A=D3 (b) A=D4

Figure 13: Response time(sec) for ANN(A,A) queries 

6 Conclusions 
This paper studies ANN queries in spatial databases. 
Multiple Nearest Neighbor (MNN) and Batched 
Nearest Neighbor (BNN) presume the existence of an 
R-tree on the inner dataset B, and take advantage of the 
structure to accelerate search. These approaches are up 
to an order of magnitude faster than CP-based methods. 
BNN is more efficient than MNN, since (i) it retains its 
low I/O cost by applying consecutive NN queries with 
spatial locality (ii) it significantly reduces the 
computational cost by minimizing the number of NN 
queries. If B is not indexed, we compare the 
straightforward approach of bulk-loading RB and 
applying BNN with HANN, an alternative approach 
based on spatial hashing. The hash-based algorithm is 
more efficient for large problems, where building the 
tree requires multiples passes over B.

It would be interesting to see how ANN evaluation 
methods scale with dimensionality. R-trees are not 
appropriate for high-dimensional data, but there are 
structures with similar properties [SYUK00], which 
scale well with dimensionality. Our index-based 
methods can be easily employed with these structures. 
On the other hand, HANN is not expected to perform 
well for high dimensional data, since many tiles will be 
empty and the expected number of border points 
increases fast with dimensionality.  
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