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Abstract

Software DSM provides good programmability for
cluster computing, but its performance and limited
shared memory space for large applications hinder its
popularity. This paper introduces LOTS, a C++
runtime library supporting a large shared object
space. With its dynamic memory mapping mechanism,
LOTS can map more objects, lazily from the local disk
to the virtual memory during access, leaving only a
trace of control information for each object in the local
process space. To our knowledge, LOTS is the first
pure runtime software DSM supporting a shared object
space larger than the local process space. Our testing
shows that LOTS can utilize all the free hard disk
space available to support hundreds of gigabytes of
shared objects with a small overhead. The scope
consistency memory model and a new mixed coherence
protocol allow LOTS to achieve better scalability with
respect to problem size and cluster size.

Keywards: distributed shared memory, large object
space, dynamic memory mapping mechanism.

1. Introduction

Cluster computing has emerged as a more popular
platform for high performance computing, By con-
necting commodity PCs or workstations together with a
communication network, the cluster is able to provide
computing power comparable ic supercomputers at a
fraction of the cost. This increase in computing capabi-
lity also allows more complex problems to be solved.

Over the years, two major cluster programming pa-
radigms have been developed, namely message passing
and distributed shared memory (DSM). The latter
provides the virtual view of globally shared memory
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among machines in the cluster (Figure 1), and hides the
fact that each machine can only access its own physical
memory. When a machine wants to access an object {a
variable) mot stored in its own memory, the DSM
system automatically brings in the object through the
network. Application programmers need not insert
explicit send and receive commands in the programs, as
they would in message-passing systems. [t is widely
agreed that programs written following the DSM
paradigm have better resemblance to sequential ones.
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Figure 1. The virtua! shared address space
provided by DSM (object-based view)

However, over the years, distributed shared memory
has not been gaining as wide an acceptance as it should
be. One reason is performance. Most of the early-day
DSM systems were not efficient, as their machines tend
to send 0o much redundant data to each other. The
situation has been improved since the invention of
certain relaxed consistency models 11, 2, 3, 4] and
coherence prorocols [5, 6, 7]. We believe that it is not
completely fair to compare the performance of DSM
systems with their message passing counterparts
directly, since it is unlikely that the DSM systems will
ever be able to send the exact amount of data needed
by a machine during execution, while the application
programmer has every control over message passing.
Thus some of this DSM overhead should be regarded
as part of a tradeoff to gain programmer-friendliness.

Another problem of equal significance, if not more,
which exists in virtwally every DSM system to date, is
the limited shared object (memory) space provided by
the system. Most of the existing systems try to map all
the shared objects to the virtual address space of every
process, regardless the process is going to access them
or not. Moreover, the same object must be mapped to
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the same virtual addresses in every process, and two
shared objects cannot map to the same addresses. For
example, in JIAJIA [8], a variable mapped to address
0x4000abed in one process must also be mapped to
address 0x4000abcd in other processes running the
DSM application. The maximum amount of shared
memory that can be created is thus bounded by the size
of the process space. For 32-bit machines, at most 4GB
of shared memory can be claimed. The actual size is
often much smaller, since the upper 1GB of the process
space is reserved for the kernel, and the heap and stack
areas also occupy some space. Worst of all, this limit is
fixed, regardless of how many machines we are using.
This viclates one original objective of DSM: To
provide more memory for each machine by combining
the memory available in each machine together.

Such limitation in shared object space hinders the
usage and popularity of DSM in two ways: Either the
application is too large to fit in the system, or the
programmer needs to use less memory-consuming data
structures and slower algorithms, so that the application
can execute using DSM. Intuitively, one can solve the
address space limitation by increasing the number of
addressable bits. Some 64-bit machines are available in
the market nowadays. However, we firmly believe this
should not be the preferred solution due to two main
reasons: First, 32-bit machines are still the mainstream
in the current commodity market, and they should not
be abandoned as they are far more cost-effective than
64-bit counterparts. Second, we believe that scientific
problems in real life are becoming more complex, with
ever-growing memory consumptions that may not even
be able to fit into the 2%-byte address space. Consider
some NP-complete problems: If we want a full analysis
of all possible moves in a Weiqi (Go) game (about 3%
configurations), or an optimal solution to the Rush
Hour problem [9], the address space needed to hold the
data is enormous. Thus we need an alternative solution
that can increase the size of the shared object space
beyond the limit posed by the process space.

This paper introduces LOTS {Large ObjecT Space),
a DSM systern whose main objective is to provide a
large shared object space, with the use of the local disk
of each machine as backing store. LOTS can provide
more than 4GB of shared object space, with an upper
bound being the space available in the local hard disk.
To let the virtual address space store more objects, only
a trace of control information for each object is needed
to be resident in the virtual address space, while the
actual object data are dynamically but lazily mapped
into the virtual memory when being accessed.

For all applications we have tested, the large shared
object space support only incurs a small but acceptable
averhead of about 5-15% of the total execution time.
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Such overhead can be cancelled out by using a more
efficient memory consistency model and coherence
protocol. We shall also demonstrate the large shared
object space support. In our test, LOTS can allocate a
shared object space of 117.77 GB, fully utilizing the
free local hard disk space available.

For the rest of the paper, Section 2 overviews the
previous refated work. Section 3 discusses the design
and implementation of LOTS. Section 4 describes the
system testing procedurces and the results analysis. The
conclusion and future work form Section 5.

2. Related work

The first software DSM system, IVY [10], emerged
in 1989. Howevecr, its performance was poor due to the
use of a strict Sequential Consistency model [1]. Later
systems tried to improve the efficicncy by introducing
numerous relaxed models, so as to reduce the amount
of redundant data sent through the network. The most
successful one is TreadMarks [11], which adopts the
Lazy Release Consistency model [2]. Another one is
JIAJLA [8]. using Scope Consistency {3] as proposed
by Princeton University, JIAJIA’s open-source-ness
provides the base for further DSM research, such as
our previous work, JUMP [12], using the migrating-
home protocol [6] instead of a home-based one [7).
The migrating-home protocol allows the home, that is,
the master copy of a shared page or object to transfer
from one process to another. It differs from the home-
based protocol, where the home is fixed, or the home-
less protocol [11], where there is no notion of home.

One of the latest DSM systerns worth mentioning is
DOSA [13]). Developed by the same group that intro-
duced TreadMarks, DOSA aims at improving DSM
efficiency for both fine-grained and coarse-grained
applications. It uses a handle-based implementation.
Shared object accesses are redirected through an object
table to actual objects. By limiting the application
programming language to be type-safe (that is, no
pointer arithmetic is allowed on the shared objects),
together with certain compiler optimizations, DOSA is
able o outperform TreadMarks.

All the DSM systems mentioned above do not
address the critical issue of the need of a large shared
object space. The maximum size of shared memory that
can be obtained by using these systems is thus very
limited. For example, the maximum amount of shared
memory obtainable in TreadMarks is just equal o the
minimum RAM size among all machines, while JIAJIA
only allows a maximum of 128MB of shared memory.
For JTAJIA, the limit can be relaxed, but it will still not
be able to store more than 4GB of shared data.



The need for a large shared object space has not
been well addressed in the DSM or parallel computing
area, but effort has been made by database systems
people to implement a persistent store to accommodate
very large objects. One of their most well-known
techniques is pointer swizzling [14], in which artificial,
invalid addresses or poinlers are translated or swizzled
to machine-addressable form during access. Assume we
are using 32-bit machines, one most popular way o
achieve such (ranslation is to convert source addresses
of larger than 32 bits to 32-bit target addresses at page
fanlt time. The generation of the source addresses
needs compiler support. When page fault occurs, the
runtime system will trigger the page-fault handler to
convert source addresses to machine-valid target ones,
to allocate memory and to map the actual data to that
segment. Objects swizzled into the memory but are
unused for a long period of time will be removed
(unswizzled}, and the contents will be sent back to the
local disk or remote server. Systems such as Quick-
Store [15], ObjectStore [16] and Thor [17] use pointer
swizzling or its variant to support a distributed data-
base with size larger than the logical address space.

Although the authors of [14] state that their
approach can benefit DSM systems, we have not found
a systern making use of such strategy to increase the
shared object space. As a large shared object space is
vital to the usability of the DSM system, we try to
implement LOTS by using a strategy similar to pointer
swizzling for supporting large object space., We adopt a
pure runtime strategy, which can enhance the system’s
portability as well as reduce sofiware dependency.

We should point out the difference between our
large object space support and the Phvsical Address
Extension (PAE) feature [i8] of Intel chips supported
by many operating systems. PAE allows machines with

4GB to 64GB of RAM 1o be addressable by multiple

processes, but most operating systems supporting PAE
only allow each process to address 4GB of RAM due
to the 32-bit process space limit. The only exception is
Solaris 7, which maps the RAM to the process space
dynamically during runtime, so that a process can ad-
dress more than 4GB of RAM. Our large object space
support allows more than 4GB of objects to be mapped
in the process space, and we peed not concern how
much RAM is available; the OS virtual memory system
takes care of this issue. Theoretically, our large object
space support can work whether PAE is enabled or not.

3. Design and implementation of LOTS

This section looks ito the design of LOTS, ad-
dressing the major features and how they are achieved.
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3.1. An overview of LOTS

As mentioned in Section 1, the main objective of
LOTS is to provide a large shared object space for
cluster applications. Figure 2 shows the simplificd
scheme describing how this can be done. LOTS is
implemented as a C++ language runtime library in
Linux. The cluster application making use of LOTS
will be compiled with this library using ordinary g++.
Each machine runs a copy of the application binary.
When the process in one of the machines wants to
access the shared object, LOTS will check the status of
the object by examining the object control information
resident in the virtual memory. If the local copy of the
ohject is not clean, a valid copy of the object will be
brought in from a remote machine. On the other hand,
if the object data is not mapped to the Jocal virtual
memory, it will be brought in from the local disk. The
address of the object to be accessed will be returned to
the application. We call this dynamic virtual memory
mapping, the key to allow the total size of all shared
objects to exceed the size of the process space.
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Figure 2. Hlustrating the dynamic virtual
memory mapping mechanism in LOTS

In this paper, we shall mainly focus on the various
memory-related features in LOTS that contribute to the
large shared object space support and performance im-
provement, Other components, such as synchronization
faciiities provided and the communication method used
by LOTS, are more straightforward, and we shall only
briefly describe them in Section 3.6.

3.2, The memeory allocator

A LOTS appiication first declares shared objects
through the LOTS memory allocator, which is a C++
class called Pointer with type template. For example,
to declare a shared integer pointer or array, we use the
code Pointer <int> i_ptr. By declaring a shared
object, a unique, known-to-all-machines object ID will
be generated internaily. This object ID will be the key
to access all internal data structures for the object. Note
that physical memory is not allocated at this moment.
Shared memory is allocated to the objects when the



application calls the alloc () member function in the
Pointer class, which is analogous to the malloc () in
C or new in C++. The statement i_ptr.alloc(50),
for example, allocates memory for 50 integers in each
machine, which is pointed to by the variable i _ptr.

In LOTS, l-dimension array is treated as a single
object. For pointer of pointers or 2-dimension arrays,
LOTS treats each pointer or row as a separate object.
Hence the allocation of shared memory follows that in
traditional malloc{) in C or new in C++.

The alloc () function allocates shared memory by
mapping a piece of memory in each machine to any
virtual address. The Doug Lea memory allocator {19]
which is originally used in the C++ new function does
not exactly maich the requirement of LOTS, Thus the
LOTS allocator uses the Linux mmap () system call to
bypass the Doug Lea allocator. The alloc () function
also assigns a unique shared memory ID to the claimed
piece of memory, and the control information of the
shared object is set to point to the start of this allocated
address. The mapping state of the memory area is set to
“mapped”, and the shared state is set to “initial”.
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Figure 3. Process space utilization by LOTS

As mentioned, the LOTS allocator uses a different
memory allocation strategy from that of the Doug Lea
allocator. Figure 3 shows that LOTS partitions the
process space into several regions for efficient memory
management. The heap, stack and kernel-reserved areas
are unchanged. The middle part of the process space
from address ¢x50000000 to OxAFFFFFFF is used for
storing shared objects. This area is further subdivided
into three equal segments: The dynamic memory
mapping (DMM) area, for mapping shared object data
dynamically during access; the twin area, storing a
copy of the mapped object before synchronization, so
that the actual updates can be calculated at the next
synchronization point; and the control area, for storing
the timestamp and lock information associated with the
objects. To simplify the implementation, an object
occupying an address A in the DMM area will also
occupy the corresponding address (A+0x20000000) in
the twin area and the control area (A+0x40000000).

LOTS is designed to allocate memory in a space-
efficient manner, and potentially takes advantage of
possible spatial locality. Small objects are assigned to
the upper half of the DMM area, while medium-sized
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objects are assigned in decreasing addresses of the
lower half, and large-sized objects arc allocated in in-
creasing addresses of the lower half. For small objects
of the same size, LOTS tries its best to allocate them in
the same page. This will reduce the number of page
faults invoked by the virtual memory subsystem of the
operating system if’ these objects are accessed one after
the other. Such access patterns can occur frequently,
for example, when an application is traversing a linked
list, in which every element is of the same size.

Free Queue

| 8 ]16{24]32}40]..]..[ 1M|2m]| am]...]...] G|

D Free
%‘ [:i Used

| 8[16]24]32[40]..]..[1m[2m[am]...] ... [nc]
Used Queue

Figure 4. Used and free virtual memory blocks
inside DMM area are organized in linked lists,
with the head pointed to by various queues

doagy
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LOTS makes use of an approximation of the best-fit
algorithm to map the shared objects to the DMM area.
To implement this algorithm, 1024 queues are used,
each of them storing either unused or allocated blocks
of size within a specified range (Figure 4). If the size of
an object is larger than the current contiguous space
available in the DMM area, LOTS will trigger the
swapping routine to swap out some of the mapped
objects. These obiects will be sent to the local disk. We
shall discuss swapping in more detail in Section 3.3.

3.3. The dynamic memory mapper

After the shared object is declared and memory is
allocated, the application is able to access the objects
in the same way as a sequential program. It is clear that
during each access, LOTS should check the status of
the object, so that if the object is currently not mapped
in the DMM area, it should be brought in from the
local disk. To maintain shared memory consistency, the
clean copy should also be brought from the remote
machine. As LOTS uses a pure runtime approach, it
does not need to add status checking code before each
shared object access during compile time. We do not
ask application programmers to explicitly insert such
code either, since it is error-prone and user-unfriendly.
The solution is to make use of the C++ operator
overloading facility to invoke this status checking.

LOTS provides a large collection of operator over-
loading functions, which are to be invoked before the



actual object data is accessed. For example, when a
program statement a[5}=1 is executed, where a is a
shared array, the [ 1 operator will be overloaded. The
overloading function then checks if the object a is map-
ped in the DMM area, and whether the local copy is
clean. Consequently, a clean copy will be brought in to
the DMM area, and the correct virtual address is re-
turned to the application. The status checking routine is
made very light-weight, In most cases, when the object
is mapped to the DMM area and the copy is clean, the
checking routine is just a table lookup, converting the
object ID to the address peinter to be returned.

If the shared object is not mapped, and the DMM
area does not have a large enough contiguous space to
dynamically map the shared object, swapping has to be
performed, as described in Section 3.2. However, there
may also be other shared objects going to be accessed.
If they are swapped out, incorrect results may be
obtained. Consider a program statement a[5]1=b[5]1+
cl[51. if a, b, ¢ are all shared objects, most g++
compilers will overload the [ 1 operator associated
with object a first, followed by that associated with
objects b and ¢. After all the addresses are resolved,
the values of bI[5] and <[5]1 will be read, and the
result is stored in the address pointed to by a[5]. If
object a is swapped out of the DMM area {e.g., to
allow object ¢ to be swapped in) before it is written,
al5) will get the wrong result. LOTS requires all
objects referenced in a single statement be resident in
the DMM arca until the statement is cornpleted. Thus,
we introduce the pinning mechanism, which is actually
a timestamp on each object recording its fatest access.
Objects with a more recent timestamp are less likely to
be swapped out of the DMM area. Hence the swapping
mechanism is a combination of the least-recently-used
(LRUY) and the hest-fit strategy.

The data structure used for table lookup in LOTS is
in fact very similar to the handle-based implementation
in DOSA, and the table lookup works in a fashion very
similar to pointer swizzling. The main difference is that
. pointer swizzling directly copies the mapped address to
the control field of the object. LOTS does not do that,
because we want to keep the size of the Pointer class
to be the same as that of a pointer, which 1s four bytes,
The Pointer class contains only the object ID, which
fis the size of a pointer. This makes pointer arithmetic
possible. Users can perform pointer arithmetic on the
shared objects, as if they are normal C++ pointers, In
fact, the language supported by LOTS is not only type-
safe; LOTS supports a timited set of pointer operations.
For example, with a shared array a, pointer dereference
statements such as * (a+4) =1 are valid m LOTS. This
adds user-friendliness to programming as the language
syntax of LOTS is very close to the original C++.
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3.4. Memory consistency issue

Any DSM system must guarantee that the different
copies of objects in different machines are consistent.
The rulcs (consistency model) and the implementation
mechanisms (coherence profocol) both affect very
much the efficiency and user-friendliness of the DSM
system. LOTS takes much care in these two aspects. It
uses Scope Consistency as the memory model. Scope
Consistency states that “When a process ¢ acquires a
lock L previously occupied by another processor P, all
the updates made inside the critical section guarded by
lock L is made known to processor 7. This is a very
relaxed memory model, since all updates outside the
critical section guarded by lock L do not need to
propagate to processor P, and processes other than P
and @, such as R in Figure 3, are not invelved. This
would not affect the programming, since the program
behavior will be correct as long as the same lock is
used to guard the access of the same object. An
example of Scope Consistency is shown in Figure 3.

I Q 3
@ In Scope Consistency, P sends

update of y to Q only, since only
¥ is updated in the same scope
asitisread by Q.

Acq (L)
Scope ¢ A=y
lﬂesult using ScC:b=5,a!l= s—l

Figure 5. lllustrating the behavior of Scope
Consistency (ScC)

A coherence protocol that works well with the
memosy consistency model is also critical in enhancing
the efficiency of the DSM system. LOTS combines two
well-known coherence protocols to adapt to most of the
shared memory access patterns: A homeless, write-
update protocel for propagating object updates during
lock synchronization, and a migrating-home, write-
invalidate protocol for propagating object updates at a
barrier operation. An example of this mixed protocol is
shown in Figure 6. The following is the rationale for
such a combination: Locks are usuvally used for objects
following a migratory or producer-consumer access
pattern. Using write-update will reduce the number of
object update requests by the processes accessing the
objects, and a homeless approach has proven to be
efficient in the case of TreadMarks [11]. For barriers,
however, write-update is obvicusty unfavorable, since
this will lead to very heavy all-to-all traffic during
barrier synchrenization. Thus write-invalidate is more
preferred. Moreover, a migrating-home approach will



benefit during global synchronization in threc ways:
First, if there is only a single process writing an object
before the barrier, there is no need to propagate the
updates. The home is simply migrated to the writer, and
this information can be piggybacked on the barrier exit
message. Second, the presence of a home avoids the
updates of an object to be scattered by two or more
processes, This means after the barrier, a process
requesting an object only needs to send the message to
the home process. Third, after barrier synchronization,
all updates are propagated to the home process. Other
processes, like PO, P2 and P3 in Figure 6, are then able
to invalidate their own copies of the non-home objects,
and free the memory storing the updates. This allows
simpler and more efficient bookkeeping.

Barrier
r - - s 1
Inv New Inv Inv
XY Home XY X, Y| Time

Figure 6. lllustrating the mixed coherence
protocol used in LOTS

3.5. Solution to the diff accumulation problem

As discussed, LOTS follows TreadMarks™ homeless
protocol to propagate object updates synchronized by
locks. LOTS aiso follows TreadMarks® approach in
sending diffs (runtime encoding of updates) instead of
the whole object. If the object update is sparse, sending
diffs is more favorable than sending whole objects as
diffs will be much shorter. However, different copies of
diffs, representing updates at different times, have to be
sent to the object requester in order to obtain the clean
copy of the object. In such case, timestamps need to be
implemented, Moreover, since diffs with the same
timestamp must be sent as a whole, some redundant
information may be sent as well, as depicted in Figure
7a. If the object is updated frequently, such as when the
object has a migratory vpdate pattern, the redundant
traffic will slow down the DSM. This is a phenomenon
known as diff accumulation [20].

LOTS solves this problem by asscciating the lock
and timestamp information to each field of the shared
object in the contro} area. As shown in Figure 7b, the
actual diff is calculated on demand by comparing the
timestamp and lock ID information with that provided
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by the requester, hence eliminating outdated data being
sent. This way of calculaiing diffs may not be favorable
a decade ago when TreadMarks was developed. But
since the CPU speed has increased at a faster rate than
the network speed during these years, as CPU speed for
commodity PCs increases from 75MHz to over 2GHz
in ten years, while 100-based Ethernet is stili the most
popular network facility now, we believe that shifting
the burden from the network to the CPU is justified.

@ ret [l xel6] XD x| 78 [ xe[ %[ ]
i flh, |
[ xe] xa xa %] %6 [ e 5]

Clean
copy of X

= obsolete updates
(value overwritten)

(b) Value | Xqa| Xz2| Xa| Xa| Xs| X6 ] X7| Xa
Time ;2131401431 ]|4]3

Figure 7. (a) Traditional way of handling diffs,

as adopted by TreadMarks, (b) eliminating the

diff accumulation problem by storing the last
updated time for each field of the object

3.6. Other components in LOTS

Apart from the memory-related features just discuss-
ed, LOTS provides users with barriers and locks as
synchronization facilities. Their associated memory
consistency behaviors are described in Section 3.4. In
addition, LOTS provides an alternative type of barrier,
nm_barrier (), which performs event synchronization
only, without any memory synchronization effect. The
nm_barrier () will be a good option if the application
program uses the same lock to guard all accesses of the
same shared object before and after the barrier,

Machines executing LOTS communicate with each
other through dedicated point-to-point socket channels,
following the UDP/IP protocol. LOTS also adopts a
simple flow control algorithm, which is slightly more
efficient than that of the TCP protocol. SIGIO handlers
are implemented to handle incoming messages.

4. Testing and results

As the main objective of LOTS is to provide a large
shared object space for cluster computing with reason-
able performance, the testing should aim at both the
efficiency of the systern and the capability of providing
a large shared object space. Hence we performed two
different tests. First, we compared the execution time
of four applications under LOTS with that under
JIAJTIA V1.1, a page-based DSM using a home-based
protocol. JIAJIA was chosen since it is open-source,
allowing us to trace how the memory consisiency



model, coherence protocol and network communication
work, so that we can analyze the testing results in
detail. Second, we ran an application that needed more
virtual memory than is locally available, to see if the
application worked correctly.

4.1. Performance testing and results analysis

For the first test, since both LOTS and JIAJIA use
UDP/IP protocol with similar flow control mechanisms
as discussed in Section 3.6, any difference in execution
time can be attributed to one or more of the following
three factors: (1) The coherence protocol efficiency, (2)
the overhead due to the difference in object-based and
page-based DSM. Such overhead is larger in object-
based DSM since the system must check the state of an
object at every access, and (3) the overhead for sup-
porting a large object space in LOTS. The size of (3)
can be easily determined by disabling the large object
space support as well as the pinning mechanism in
LOTS. The size of (2) can also be found by measuring
the amortized time used in calling the access checking
routine. The remaining differcnee in time, if any, can
be classified as the difference in protocol efficiency.

The first test was performed on a cluster of 16
Pentium IV 2GHz machines, conngcted by a 100-based
Ethernet vsing a 24-port Fast-Ethernet switch, Each
machine had 128 MB of RAM and ran a copy of Linux
Fedora, We used four common scientific applications:
ME (merge sort). LU (LU factorization), SOR (suc-
cessive red-black iterations) with 256 iteraticns, and
RX (radix sort). Small problem sizes were chosen so
that the programs could work on both JIAJIA and
LOTS to compare the performance. We also ran the
programs under LOFS-x, LOTS without the large ob-
Ject space support, to determine how large factor (3) is.

The testing results for Test 1 are shown in Figure 8.
The graph shows that LOTS runs faster than JIAJIA on
most data points, except RX, where LOTS becomes
slightly slower than JTAJIA as more processes are used.
We shall look at the reasons why in more detail.

LOTS runs ME faster than JIAJIA in general. The
reason is that objects in ME share a migratory access
pattern. When two sorted sub-arrays are merged
together in one of the merging phases, one of the
processes handles the merging. Thus at any time, half
of the total data is migrated. With the home-based
protocol in JIAJIA, only 1/p of ail the data will be
accessed locally in the home node, since JIAJIA uses a
round-robin home allocation on pages, In LOTS, how-
ever, using the migrating-home protocol (ME only uses
barriers to synchronize), haif of all the data are
accessed in the migrated home node. So LOTS can take
advantage of that to access more home objects, thus
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reducing data traffic and improving the performance.
Note that ME does not show a speedup for increasing
number of processes, because only the merging time is
counted while the local sorting time is excluded. Thus
more processes mean more stages, hence longer time.

The LU program demonstrates the adverse effect of
false sharing on page-based DSM. In LU, one process
always updatcs a row in the source matrix to do the
factorization, while all others will read the result of that
row to update the rows they are responsible to update,
If the row size does not it an imtegral multiple of
pages, both rcad-write and write-write false sharing,
i.e., two or more processes accessing different part of
the same page, can occur. Even if false sharing does
not occur, the home-based protocol still suffers from
the heavy network traffic due to excessive page
requests by all processes (readers). In LOTS, each row
is a unique object. False sharing will not happen, since
only one process will write to a particular row at any
time. By eliminating false sharing, LOTS improves the
overall performance drastically by up to about 80%,

LOTS aiso outperforms JIAJIA on SOR, a program
used to approximate engineering problems that involve
integrations. In SOR, the two matrices (red and black)
are divided into p horizontal “slices”, and each process
is responsible to update its own “slice” in each of the
two matrices, according to the values of the adjacent
positions in the other matrix. Thus it is clear that each
object (row) is updated by a single process throughout
the whole program, and only the rows at the edge of the
“slides™ are read-shared by two processes. This access
pattern certainly favors the migrating-home protocol in
LOTS, and testing results support the claim.

RX performs better on LOTS when two or four
processes are used, but it runs slightly slower than
JIAJIA in the p=8 case. This can also be explained by
the object access patterns. In our implementation of
RX, 256 shared buckets (objects) are initialized to store
the numbers during sorting. Each bucket, of size an
integral multiple of a page, is accessed by a processor
at a time (concuirent access is prohibited by barriers).
However, during the execution, 1/p of the total number
of buckets are always accessed by a single process,
while others are accessed alternatively by two process-
es. The former access pattern favors LOTS’ migrating-
home protocol since the accessing process will be
home after the first barrier. But for the aiternate access
pattern, migrating the home to the latest writer during
the barrier gives little benefits, since the bucket will be
requested next by the process that originally owns it.
As the number of processes p increases, the portion of
buckets (hence shared objects) having this ping-pong
access pattern also increases. The performance of
LOTS thus degrades and lags behind JIAJIA.
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Figure 8. Execution performance of LOTS {with and without large object space support) compared
with JIAJIA V1.1, The x-axis is problem size, while the y-axis is time in seconds

4.2. Overhead for large object support

We have also obtained the performance of LOTS-x
by disabling the large object support in LOTS. The
difference between LOTS and LOTS-x corresponds to
the overhead of LOTS supporting large objects. Results
show that this overhead depends on the number of
shared object accesses occurred in the program, since
every time an object is accessed, LOTS has to perform
access checking and pinning. For applications with fre-
quent shared object accesses, such as RX, the overhead
is around 10-15% of the total execution time. For other
applications, the overhead seldom exceeds 5%.

Note that the above figure does not include the
access checking overhead, since being an object-based
system, LOTS needs to check the shared object state so
that the clean copy of the object can be obtained before
it is actually accessed. We inserted timing functions in
the applications to record the access checking over-
head. Results show that each access check needs an
average of 20 10 25 nanoseconds in a 2GHz Pentium
[V machine. Although this value is small, it is critical
since an application may perform access checks for
millions or even billions of times. For example, in our
implementation of SOR with problem size of 1024,
when four processors are used, the number of object
access checks per process throughout the executicn is
about 1.5%10 times. This means around 30-37 seconds
out of 55 seconds of execution time is spent on access

232

checking. If the checking overhead is reduced, we
expect a good improvement on the efficiency of LOTS.

4.3. Testing large object space support

The second test, for testing the large object space
support, was performed on a cluster of four machines.
In the test, the machines try to allocate a shared large 2~
dimension integer array of X rows, with a total size
exceeding 4GB. This means that X shared objects are
created. Then DSM read/write statements are inserted
to access the shared objects, Large object space support
is thus invoked. The program is made simple (just
adding some numbers held by each process) since we
only want to demonstrate the invocation of the large
object space support, but there is still a lot of data
movement performed when the objects are swapped in
and out of the disk. In this program, every object is
swapped out once, thus more than 4GB data is written
to the disk. It is expected the execution time is to be
dominated by the disk access time. We used ditferent
machine configurations with different CPU speeds,
including a 4-node Pentium ITII PC cluster, a 4-ncde
Pentium IV PC cluster, and a 4-node 4-way Xeon
Pentium III SMP cluster. Different operating system
versions, RAM sizes and values of X are selected to
test the impact of each of the configurations to the
execution time, as well as how large the shared object
space can be. The results are shown in Table 1. The



data shows that using Pentium III 733MHz machines,
in RedHat 6.2, the execution time is 1114 seconds,
while RedHat 9.0 needs 976 seconds, This suggests
that RedHat 9.0 has a better /O support than RedHat
6.2, but frequent disk /O to and from the disk still
takes up hundreds of seconds. To be more specific, the
disk read/write time due tc the large object space
support in LOTS already takes 1004 scconds in RedHat
6.2, and 666 seconds in RedHat 9.0. This has not
included the I/O time caused by the virtual memory
swapping invoked by the operating system, By using
faster machines with more advanced /O systems, the
execution time will be much reduced. When we
performed the same test on four Pentium IV 2GHz
machines with Fedora 9.0, the time needed is just 142
seconds. The efficiency of the large object space
support thus counts on a fast /O facility.

Table 1. Testing the large object space
support of LOTS on various platforms and
various shared object size

Total
Machine/ RAM Sth;Zg Ozirct Shared |Exec
CPU | 0 |Size "5 Siize Object {Time
Speed (MB) Size [{sec)
(X)# | (MB) | gy
Redhat
pa. 6.2 384 33 128 | 4.125 {1114
733MHz H‘;"gat 128| 33 | 128 | 4.125 | 978
512 33 128 | 4.125 | 142
P4-2GHz | Fad
Z|medor Ty 132 | 128 | 16.50 | 873
1024 132 128 | 16.50 [ 507
Dell 1024 132 511 | 65.87 (2112
. |Fedora
P6300 1024| 201 511 |100.30 [3227
1024 236 511 [117.77 (3839
* The Dell Poweredge 6300 machines, with 4-way SMP,
each CPU is of Xeon Pentium ill 500MHz type
# The number of disk writes in each run = the number of;
shared objects, and the total amount of data written to disk
= the total shared object size

We also performed the experiment on four Deil
Poweredge 6300 machines, with 4-way SMP. Though
they are not new models, the 4-way SMP configuration
allows them to act as file servers for the cluster, as they
are equipped with two 72GB SCSI hard disks. In our
experiment, we are able to exhaust all the free space
available in the hard disks for storing shared objects,
obtaining a shared object space of 117.77GB. Thus
LOTS is able to support a large shared object space
greater than the 4GB process space. This size is only
limited by the local hard disk free space, and the single
object size is only limited by the size of the DMM area,
which is 512MB in our current implementation.

233

5. Conclusion and future work

We firmly believe that a large object space is
essential for the wide acceptance of DSM, as it allows
a wider range of scientific and real-life applications to
be run, and exploits the cost-efficiency of clusters with-
out sacrificing user-friendliness. This paper demon-
strates LOTS, a software DSM capable of enlarging the
shared object space beyond the size of the process
space through the dynamic object mapping mechanism.
All the mapping is done automatically through table
lookup at runtime, without any compiler preprocessing,
thanks to the C++ operator overloading facility. To the
best of cur knowledge, this is the first pure runtime
DSM system to support a large shared object space. It
offers rcasonable performance and retains good
programmability, as the programming interface is very
similar to C++. Only a minimal set of functions, such
as memory allocation function, locks and barriers are
exported (o users for using the DSM system.

From the testing results, we find the performance of
LOTS (o be quite acceptable. This is attributed to its
mixed coherence protocol, which works efficiently on
many access patterns {migratory and single-writer-
multipie-readers), its object-based nature (climinating
some false sharing in page-based systems) and also the
mechanism to eliminate diff accumulation. As a result,
LOTS is more scalable than its counterparts, both in
terms of problem size and cluster size. Currently,
LOTS is designed to support up to 256 processes.

We have performed the testing using the first
completed version of LOTS. There is reom for further
improvement. For example, the code can be further
optimized for better performance. In particular, the
access checking of LOTS can be made more light-
weight. A small improvement can lead to huge perfor-
mance gain since access checking is called very fre-
quently. The encoding and decoding of messages can
also be improved as well. Because sockets are used, the
maximum message size cannot exceed 64KB. Hence
for large messages, such as carrying a large object, we
need to split the message into multiple parts before
sending. Currently, although we can send out partial
messages during encoding, the receiver side must
receive all the message fragments in order to rebuild
the original message before decoding. This leads to a
performance boitleneck, and is also memory con-
suming. We should find a way so that the receiver can
work on partial messages as soon as they are received.

The pinning mechanism discussed in Section 3.3,
although avoids swapping away the accessing objects
in some sense, is not a perfect solution. The system can
do nothing if all the objects currently mapped in the



DMM area are accessed in the same program statement
(this is rare, but can occur if objects are very large). A
possible solution is to swap out unused partial objects.
Furthermore, the swapping can also be done not only to
and from local hard disks, but remote ones as well.
Such feasibilities will be further investigated.

Finally, the mixed coherence protocol in LOTS can
be refined to further enhance performance. Developing
an adaptive coherence protocol is one feasibility. Some
possible adaptations include that between vsing write-
invalidate against write-update, as well as sending the
whole object verses partial diffs according to the ohject
size and access patterns. With a good adaptation, the
network (raffic and hence application execution time
can be reduced.
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