
Routing with Locality in Partitioned-Bus Meshes

Steven Cheung Francis C.M. Lau

Department of Computer Science
University of California
Davis, CA 95616, USA

Abstract

We show that adding partitioned-buses (as opposed
to long buses that span an entire row or column) to
ordinary meshes can reduce the routing tame b y ap-
proximately one-third f o r permutation routing with lo-
cality. A matching time lower bound i s also proved.
The result can be generalized to multi-packet routing.

1 Introduction

Permutation routing on mesh-connected computers
has been extensively investigated [7] [8] [lo] [ll] [19]
[21]. In permutation routing, each processor initially
has a packet to send, and packets have unique destina-
tions. A good routing algorithm should route packets
to their destinations as quickly as possible and should
require as few buffers a t each processor as possible.
Among the best known is the algorithm by Leighton,
Makedon, and Tollis [lo] which can solve the problem
for an n x n mesh in 2n - 2 steps using a constant-sized
buffer. Because the mesh’s diameter is 2n - 2, their
algorithm is optimal in the worst case. However, it is
no longer time optimal when the packets only have to
travel a short distance, say log n or fi. This routing
with locality problem (or restricted distance routing
problem) has been studied in [4] [7] [6] [$I. Rout-
ing with locality problems arise naturally when spe-
cific known algorithms are implemented on the mesh
[7] and when other types of processor or process net-
works are embedded onto mesh-connected computers
to yield a small dilation [4]. If the maximum distance
of all the packets is bounded by d , the authors have
presented in [4] a d + O (d / f (d)) step, O (f (d)) buffer
size routing algorithm which is asymptotically optimal
if f(d), a function of d , is chosen to be a large con-
stant (because an obvious lower bound is d steps). In
our mesh model, all the processors are assumed to run
in synchronous MIMD mode. At any time step, each

Department of Computer Science
The University of Hong Kong

Hong Kong .

processor can communicate with all of its grid neigh-
bors, and can both send and receive one packet along
each mesh link. In addition, processors can also store
packets in their own queues. This model (hereafter
referred to as the base model) is the same as the ones
used in [7] [8] [9] [lo].

Augmenting arrays of processors with various faster
mechanisms has been suggested as a means to speed
up communication among the processors. Examples
are meshes with fixed buses which have a bus in each
column and each row [l] [13], meshes with separable
row and column buses in which row/column buses can
be separated into multiple shorter buses through turn-
ing on/off bus switches [16], and reconfigurable mesh-
es in which mesh links can be connected together to
form buses [2]. A number of proposed bused mesh
models assume the propagation delay of a bus to be a
constant which is independent of the number of pro-
cessors attached to it. This assumption is thought to
be a reasonable one in practical situations [18] [3] [13]
[l] [2]. However, Lu, Burr, and Peterson [12] inves-
tigated physical implementations of buses and found
that meshes with short buses outperform those with
long buses for permutation routing because short bus-
es have shorter propagation delay. We assume that the
propagation delay of the buses is one time step which
is also assumed in [ll] [l] [MI. As we will see, our al-
gorithms can be tuned to use short, or constant-length
buses.

In the bused mesh models we consider in this paper,
broadcast buses are added to the base model. Each
broadcast bus is connected to a set of processors. In
each time step, only one processor attached to a bus
can send a packet via the bus. In addition, a processor
can receive packets from all the buses attached to it in
a time step. Upper and lower bounds for unrestricted
distance routing on meshes with fixed and reconfig-
urable buses can be found in [ll] [5] [14] [17] [20].
For instance, for meshes with fixed buses, Leung and
Shende [ll] proved that 2n/3 is the tight worst case

0-8186-6427-494 $04.00 0 1994 IEEE
715

time bound for permutation routing on an 72-processor
one-dimensional mesh.

In this paper, we study how and to what extent bus-
es can help in solving restricted distance permutation
routing problem on bused meshes. In the following,
we first define partitioned-bus mesh, and prove lower
bounds for the routing with locality problem on bused
meshes. Then we present our routing algorithms for
local permutation routing in one- arid two-dimensional
partitioned-bus meshes.

Our partitioned-bus mesh is a variant. of the mesh
with fixed buses. In a two-dimensional partit,ioned-bus
mesh, each row/column bus can be partitioned into
several short buses and any two adjacent short bus-
es are incident on a common processor. In addition,
these short buses can be active simultaneously. Our
model is similar to mesh with separable row and col-
umn buses studied in [16], except that adjacent short
buses do not meet a t a common processor in t,hat mod-
el. Note that any algorithm designed for meshes with
separable buses can be used on our partitioned-bus
meshes without time loss. To enable bus partition-
ing, there are two locally controllable bus swit.ches
for the column buses and the row buses to which it
attaches within each processor. Turning on the row
bus switch connects the left, and right row buses, and
turning on the column bus switch connects the upper
and lower column buses. In addition, each of these
switches can be set independently before the entire
computation starts. Figure 1 shows some examples
of one- and two-dimensional partitioned-bus meshes,
in which each row/column bus is partitioned into two
shorter buses. The partit,ioned-bus mesh has a higher

- Bus - Link

Figure 1: Examples of Partitioned-Bus Meshes

implementation cost, than the mesh with fixed buses
because of the switch overhead. However, the increase
in cost may be justified by the gain in performance.
Furthermore, the short-bus model is a candidate most
suitable for being partitioned into bused submeshes
to serve different computational requests. Partitioned-

buses instead of short fixed buses are used because the
best value of the bus length depends on the maximum
source-destination distance. We will briefly discuss
the possibility of using meshes with short fixed buses
a t the end of this paper.

2 Lower Bounds

When the maximum distance between the source
and the destination of any packet is d and d 5 2 1 i / 3 ,
we show that permutation routing cannot be solved
on meshes with fixed buses in less than d steps. The
proof, shown below, is a generalization of Leung’s and
Shende’s 2n/3 time steps lower bound proof for the
permutation routing problem on meshes with fixed
buses [113.

For simplicity, we consider one-dimensional mesh
with fixed buses and d is even in the proof, which can
be easily generalized to two- and higher-dimensional
cases. Consider processor with index i , where i E
[l, 2, . . . ~ d / 2] , which has a packet to send to proces-
sor i + d and vice versa. Any of those cl packets must
have a bus ride in order to reach its destination within
cl steps. However, the bus can only carry one packet
during every time step. Thus, any algorithm needs a t
least d time steps for this problem. The reason why
this architecture is not suitable for restricted distance
routing problems is that only one packet can ride the
bus during any time step, and because of the packets’
restricted distances, they cannot really afford to wait
too long for the bus. This observation led us to consid-
er another variant-the partitioned-bus mesh model.
This model looks more promising in handling restrict-
ed distance packets because more than one packet can
be riding a bus in a column or row simultaneously.

We now prove a lower bound for restricted distance
permutation routing on one-dimensional partitioned-
bus meshes. If d < n/2 , consider the scenario that
all the packets in a processor sub-array of length 2d
send a packet to the processor which has distance d
from it and within the same sub-array. In the middle
of the sub-array, we have 2d packets crossing a cut of
size 3-a bidirectional link and a bus. Hence the 2 d / 3
time bound. Note that this lower bound is valid also
for two-dimensional partitioned-bus meshes. It can be
proved by applying this one-dimensional construction
to each row of the meshes. Moreover, we get a d steps
lower bound if the middle link of this construction is
mapped to the gap between two adjacent short buses
in meshes with separable buses. In other words, buses
in meshes with separable buses cannot help in this
local routing problem.

716

3 Routing on One-Dimensional Parti-
tioned-Bus Meshes

In this section, we present an asymptotically
(2d/3)-step algorithm for the restricted distance per-
mutation routing problem. The one-dimensional
partitioned-bus mesh is assumed to be partitioned in-
to segments of length b each (that is, each segment
has b links in i t) , where b is an odd integer and b << d.
In odd-numbered steps, each bus segment will be used
to route packets from left to right, and vice versa for
even-numbered steps. The processors a t the ends of
buses are called bus terminals.’ When packets are
transmitted via buses, they usually travel from bus
terminal to bus terminal, except when their destina-
tions are in the middle of a bus segment, in which
case the packets will go directly to their destinations
instead of to the bus terminal a t the other end of the
bus. Note that each bus terminal has two adjacent
buses attached to it.

Algorithm 1 (Iterative Walk-and-Ride Algorithm)
Consider an arbitrary processor P .

Case 1: P is not a bus terminal. If P receives a
packet’

e

e

Case 2:

e

e

0

from a mesh link, P forwards the packet b y
mesh link;

from a bus (that is, P is its destination), P
stores the packet into its local memory.

P is a bus terminal. If P receives a packet

from a mesh link and bus is available in the
next time step, P routes it b y bus to the next
bus terminal or to its destination, whichever
as nearer;

from a mesh link but bus is not available in
the next time step, P routes it b y mesh link;

from a bus, the packet has to wait for one
time step before it leaves b y walking.

The basic idea of Algorithm 1 is to ensure that
after a packet has “walked” (i.e., being transmitted
through links) T distance units, it can take a bus to

‘In our model, we can always choose b to be an odd integer
by setting the switches appropriately. In case we really have to
choose an even b, we can use two additional buffers in each bus
terminal to simulate a virtual neighboring processor.

2For simplicity, at time 0, every packet is treated as having
come from a mesh link.

cover s units. As a result, all packets with source-
destination distance d can reach their destinations in
approximately d x r / (T + s) steps. This walking-riding
cycle continues until the packet reaches its destination.
Hence, no packet will suffer from too long a walk. The
lower bound shown above gives us a cue for the ratio
T / S . Algorithm 1 makes the packets to wait for one
step after they have ridden a bus because a bus and a
link are available for transporting two packets in the
corresponding direction in those time steps. One may
be tempted to give as many bus rides as possible to
packets that have a long distance to travel instead of
forcing them t o walk. However, as i t is shown later,
with our particular design, the algorithm is asymptot-
ically time optimal in the worst case. This design also
makes the algorithm simpler to operate and analyze.

Lemma 1 Given a permutation routing problem on
a linear array, all packets will have their source-
destination distances reduced b y D (or they will reach
their destinations in case their source-destination dis-
tance is < D) after running Algorithm 1 for (D -
[D/3bJ x b) + [D/3b] x 2 steps or less.

Proof Except the ones that had a bus ride in the
previous step, every packet advances in each time step.
Without loss of generality, consider only those packets
that are moving to the right. By choosing the segment
length b to be odd, we can ensure that , in every 2b
steps, any packet can reach the left end of a bus in one
of these steps and the corresponding bus will serve it
in the next step. In other words, each ‘packet travels
a distance of 36 in 2b + 2 steps because it only walks
2b steps and the cost of a bus ride followed by waiting
is 2 time steps. Any packet traveling for a distance
of D takes at least [D/3bJ bus rides, and it walks for
a t most (D - [D/3bJ x b) steps. Moreover, it only
spends at most 2 x [D/3b] time steps for riding buses
and waiting at bus terminals. 0

Theorem 1 For the permutation routing problem on
a linear array with the maximum source-destination
destination d, Algorithm 1 can be used to solve it in
asymptotically 2d/3 time steps and only a constant
number o f auxiliary buffers are required per processor.3

Proof: Substitute d for D in Lemma 1 and choose b
to be o(d) and an odd integer. Note that only two
auxiliary buffers are needed for each processor t o hold
the last packet arriving at i t by bus. 0

3We assume that in each processor there are two buffers as-
sociated with each bidirectional link and one buffer for each bus
attached to the processor. It is possible that all these buffers
are filled at the start of the algorithm. Auxiliary buffers refer to
any additional buffers that are needed other than these buffers.

717

4 Routing on Two-Dimensional
Partitioned-Bus Meshes

The algorithm for permutation routing on two-
dimensional partitioned-bus meshes has two essen-
tial ingredients, namely, sorting and greedy algorith-
m. Sorting is used to redistribute the packets so as
to ensure that packets destinated at the same row are
routed along many columns. Thus not too many pack-
ets will turn at any processor, and hence the number
of buffers required for each processor is small. The
greedy algorithm we use is as follows: every packet is
first routed along its column (column routing) until it
reaches its destination row. Then it is routed along its
destination row (row routing) to its destination.

Before proving the two-dimensional case, we first
define some notation and prove a result on the many-
one routing problem on a linear array. In many-one
routing, an arbitrary number of packets can start a t a
processor, and packets have unique destinations. Let
b be the length of each bus, and f(d) be a function of
d. Let the processors of a linear array be numbered
from 0 to n. Define a processor to be of type i, i E
(0, 1 , 2 } , if its ID mod 3 equals i. A packet is of type
i if its destination processor is of type i. As before, we
partition the array into segments of length b and assign
one bus t o each segment. Bus terminals have an extra
set of labels and they are labeled from 0 to n/b and a
type E { 0 , 1 , 2 } is assigned to each of them similarly
based on these labels. Informally speaking, we want
to divide the packets into types and schedule them
according to their types in such a way that packets
of different types do not interfere with each other and
packets of the same type have similar behavior (e.g.
the paths they travel). For simplicity, we assume 3b
divides d h e n ~ e f o r t h . ~

Next, we will prove a result on many-one routing
with the restriction that all type i packets reside in
type i terminals initially. Then we will describe how
to perform many-one routing without this restriction.

Algorithm 2 (Many-One Routing with Restriction)

1. A packet with source-destination distance (d - x)
starts moving after step [x/3b] x (26 + 2) + [(z -
Lx/3bJ x 36)/3J x 2.

2. The packet performs the following repeatedly until
it reaches its destination:

(a) Walking for 2 segments.

As we are interested in the case b .t: d, so we can make d a
multiple of 36 without causing any significant increase in time
complexity.

(b)

Lemma

Taking a bus r i d e to the next terminal.
Right-moving packets wait for one step at
each bus terminal just after each bus ride,
while left-moving ones do so before each
ride.5

2 Given a many-one routing problem on a
linear array with maximum source-destination dis-
tance d and all t y p e i packets residing in type i termi-
nals initially, then Algorithm 2 can route all packets
to their destinations in (1 + l / b) 2 d / 3 time steps.

Proof Without loss of generality, consider the packets
moving to the right only. Basically, we make packets
with a farther distance to start earlier. Packets are di-
vided into batches according to their distances. Those
with distances (d - 3b + 1) to d are of the first batch
and they start moving during the first (2 b + 2) time
steps. Then packets with distances (d - 6b + 1) to
(d - 3b) start in the second (2 b + 2)-step interval, and
so on.

For packets of the same type, their distances differ
by a multiple of three. For any two type i packets with
destinations that are three processors apart, the one
with a farther destination will be scheduled to leave
two steps earlier than the other one. It is because we
enforce that type i packets can leave type i terminals
only at odd-numbered steps, while the right of leaving
type i terminals a t even-numbered steps is reserved for
packets of type ((i- 1) mod 3) , which will be explained
later.

Note that for any segment, there are only two d-
ifferent types of packets that might walk through it,
while the remaining ones not belonging to those t-
wo types take the bus associated with that segment.
Moreover, as each type i packet leaves type i termi-
nals in odd-numbered steps, while type ((i- 1) mod 3)
packets leave type i terminals in even-numbered steps,
packets of these two different types will not interfere
with each other. This is the case because the segmen-
t length b is chosen to be an odd integer. Observe
that once a packet starts moving, i t will never be de-
layed by any other packet. Hence it needs at most
(d - x) - (L(d - x)/3b] x b) + [(d - c) /3b l x 2 more
steps to reach its destination by Lemma 1 .

Therefore, time required for a packet with distance
(d - x) to reach its destination

'Because a bus can take only one packet at a time, left-
moving packets and right-moving packets are scheduled to use
the buses in alternate steps. Alternatively, we can have left-
moving packets start one step later than the right-moving ones.
In this case, all packets wait for one time step after each bus
ride.

7 18

= starting time + traveling time
5 2 ~ / 3 + L ~ / 3 b] x 2 + (d - Z) - ([(d - ~) / 3 b J x b) +
5 2 ~ / 3 + [+/3bJ x 2 + (d - X) - (d / 3 - [~ / 3 b J x

[(d - ~) / 3 b l x 2

b) + 2d/3b - [~ / 3 b J x 2
5 2d/3 + 2d/3b
0
Lemma 2 shows us how to route any many-one

problem in which type i packets start a t type i bus
terminals. In the following, we make use of this re-
sult to route any many-one problem without this re-
striction. In short, our strategy is first compute the
starting time step of every packet in the latter prob-
lem, and then apply the routing scheme of the former
problem. For a type i packet p whose source is s, let
its virtual source be the nearest type i bus terminal
in the opposite direction from its destination.6 In the
following, let packet p be at a distance (d - 2) from
its destination and be at a distance y from its virtual
source.

Algorithm 3 (Many-One Routing without Restric-
tion)

1. Packet p starts moving after step L(3b + x -
- y)/3bJ x (2b + 2) + [((3b + 2 - Y) - L(3b +

y)/3b] x 3b)/3J x 2 + min{y, 26)

2. The path taken b y packet p is the portion of the
path starting from s if p were originated at its
virtual source and Algorithm 2 were used.

Lemma 3 Given a many-one routing problem on a
linear array with maximum source-destination dis-
tance d in which packets are arbitrarily distributed a-
mong processors. Packets can be scheduled so that all
of them can reach their destinations in (1 + l / b) 2 d / 3 +
(2b + 2) time steps.

Proof This many-one problem is now transformed to
one in which type i packets are originated from type
i terminals with maximum distance (d + 3b) as in Al-
gorithm 2. Specifically, we make use of Lemma 2 by
pretending that each packet were originated from its
virtual source. If p were originated from its virtual
source, v , its distance from its destination would be
((d + 3b) - (3b + z - y)), or it would start a t step

2 - y)/SbJ x 3b)/3J x 2 by Lemma 2. Furthermore,
it would leave s min{y,2b} steps later. The starting

L(3b + z - y)/3bJ x (26 + 2) + [((3b + x - y) - [(3b +

'For packets near the ends and do not have a virtual source,
we extend the array conceptually to create virtual sources for
them.

time step of p is calculated by adding the values of
these two expressions. There are two cases concerning
the min{y, 2b} term. If the distance between the v and
s is less than 2b, the packet would walk from v to s in
the entire imaginary journey, thus s will transmit this
packet y steps after leaving v. If the distance between
v and s is equal to or more than 2b, s will transmit the
packet over the bus 2b steps after the starting time at
v . The stated time bound follows from Lemma 2. 0

In the following, we present an algorithm, Sorting
+ Greedy Algorithm, for solving permutation routing
on two-dimensional partitioned-bus meshes.

Algorithm 4 (SortingiGreedy Algorithm)

1. Partition the partitioned-bus mesh into submesh-
es o f size do/ f (do) x d o / f (d o) each, where do is
the maximum source-destination distance before
sorting. Sort all the packets within each submesh
in row-major ordering7 with respect to the row-
major indexing of the processors;'

2. Perform the following in parallel with row rout-
ing being started (b + 4) steps later than column
routing

(a) Packets not situated in their destination
rows participate in column routing according
to Algorithm 1;

(b) Others participate in row routing as in Algo-
rithm 3.

Theorem 2 The restricted distance permutation
problem with maximum distance do on a two-
dimensional n x n partitioned-bus mesh can be solved
b y Algorithm 4 which has time complexity 2d(l +
l / b) / 3 + 3b + 6 + O(do/ f (d 0)) and bufler complexity
O(f (do)) (per processor), where d = do + 2do/f(do).

Proof: After sorting is performed in each submesh,
a packet may be displaced from its destination for a
distance of do/ f (do) vertically and do/f (do) horizon-
tally. Thus the maximum source-destination distance

'Let (T , c) denote the destination address of a packet, where
T and c are the row and column address respectively of the des-
tination processor; then the row-major ordering of two packet-
s with destination addresses (~ 1 ~ ~ 1) and (T Z , c 2) is defined as

8The processors are indexed by a one-one mapping onto
{ l , - . . , n 2 } and the sorting problem with respect to this map-
ping is to move the i t h smallest packet to the i t h indexedproces-
sor. In row-major indexing of the processors, processor (T I , c 1)

has a smaller index than that of processor (T Z , C ~) when either
T I < 2-2, or T I = r2 and c1 < c 2 .

(~ 1 ~ ~ 1) I (~ 2 , c z) i f f r l 5 7 2 .

7 19

after sorting, d, is do + 2do/f(do). Once a packet s-
tarts moving, it always advances to its destination by
first moving along column edges and then along row
edges. It is obvious that column routing and row rout-
ing work correctly by their own. To prove the correct-
ness of this algorithm, we only need to show that a
packet can reach its destination row by the time it
has to start row routing as in Lemma 3. Consider a
packet that has horizontal distance d - d,. By Lem-
ma 1 (instead of considering packets moving in the left
and right directions, we now consider packets moving
in the up and down directions), any packet with ver-
tical distance d, reaches its destination row after at
most 2du/3 + [du/3b] x 2 + b steps (which bounds
(d, - [d,/3bJ x b) + [dV/3b] x 2 from above.) From
the proof of Lemma 3 and the fact that row routing is
started b+4 steps later than column routing, we know
that this packet starts row routing only after step

[(3b + d, - y)/3bJ x (26 + 2) + [((3b + d, - y) -
L(3b + d, - y)/3bJ x 3b)/3J x 2 + min{y, 2b) + (b + 4)

2 2d,/3 + 2d,/3b + b + 2
Thus, we can guarantee that any packet can finish the
column routing on time.

The total time of this algorithm consists of two
components: Step 1 requires O(do/f(do)) time steps
[15]; performing column and row routing in parallel
requires 2d(1 + l/b)/3 + 3b + 6 steps. It is because
2d(1 + l/b)/3 + (2b + 2) steps are needed to complete
the row routing phase and row routing starts (b + 4)
steps after column routing starts. Regarding buffer
size complexity, each processor requires only O(f(d0))
buffers as there are only O(f(d0)) packets turning at
any processor. We omit the proof of the buffer com-
plexity which can be found in [4]. c]

5 Concluding Remarks

Routing with locality problems on partitioned-bus
meshes have been studied. In particular, we have pro-
posed an algorithm for the restricted distance per-
mutation routing problem with maximum distance
do on an n x n partitioned-bus mesh which need-
s 2d(l + l/b)/3 + O(do/f(do)) + 3b + 6 time steps
and O(f(d0)) buffers, where d = do + 2f(do). It is
asymptotically time and buffer optimal if f (&) is cho-
sen as a large constant and b = o(d0). One third of
the running time is saved after the partitioned-bus is
employed. After setting b, our algorithms do not re-
quire any further reconfiguration of the buses. Thus,
one may want t o replace partitioned-buses by cheap-
er short fixed buses. By fixing b as a large constant,

we can still achieve close to optimal results for large
d. Our lower bound and upper bound results can be
generalized to local multi-packet (or k-k) routing algo-
rithms giving an asymptotically tight 2kd/3 bound in
one- and two-dimensional partitioned-bus meshes. In
the k-k problem, each processor initially has at most
k packets to send, and no more than k packets share
the same destination. Finally, the results developed in
this paper can also be used in partitioned-bus rectan-
gular meshes and tori.

References

A. Bar-Noy and D. Peleg, “Square Meshes are not
always Optimal”. IEEE Transactions on Com-
puters, Vol. 40, No. 2, February 1991, pp. 196-
203.

Y . Ben-Asher, D. Peleg, R. Ramaswami, and A.
Schuster, “The Power of Reconfiguration”. Jour-
nal of Parallel and Distributed Computing, Vol.
13, 1991, pp. 139-153.

S.H. Bokhari, “Finding Maximum on an Array
Processor with a Global Bus”. IEEE Transaction-
s on Computers, Vol. C-33, No. 2, February 1984,
pp. 133-139.

S. Cheung, and F.C.M. Lau, “Mesh Permutation
Routing with Locality”. Information Processing
Letters, Vol. 43, 1992, pp. 101-105.

S. Cheung, and F.C.M. Lau, “A Lower Bound for
Permutation Routing on Two-Dimensional Bused
Meshes”. Information Processing Letters, Vol. 45,
1993, pp. 225-228.

M. Kaufmann, and J.F. Sibeyn, “Optimal Multi-
Packet Routing on the Torus”. Proceedings of the
3Pd Scandinavian Workshop on Algorithm The-
ory. Lecture Notes in Computer Science 621,
Springer-Verlag, July 1992, pp. 118-129.

D. Krizanc, S. Rajasekaran, and T. Tsanti-
las, “Optimal Routing Algorithms for Mesh-
Connected Processor Arrays”. Proceedings of the
3”d Aegean Workshop on Computing: VLSI Algo-
rithms and Architectures. Lecture Notes in Com-
puter Science 319. Springer-Verlag, June 1988, p-
p. 411-422.

M. Kunde, “Routing and Sorting on Mesh-
Connected Arrays”. Proceedings of the 3’d Aegean
Workshop on Computing: VLSI Algorithms and

720

Architectures. Lecture Notes in Computer Science
319, Springer-Verlag, June 1988, pp. 423-433.

[9] M. Kunde, and T. Tensi, “(k-C) Routing on Mul-
tidimensional Mesh-Connected Arrays”. Journal
of Parallel and Distributed Computing, Vol.11,
1991, pp.146-155.

[lo] T. Leighton, F . Makedon, and I.G. Tollis, “A 2n
- 2 Step Algorithm for Routing in an n x n Ar-
ray with Constant Size Queues”. Proceedings of
the 1989 ACM Symposium on Parallel Algorithms
and Architectures, pp. 328-335.

[18] Q.F. Stout, “Mesh-Connected Computers with
Broadcasting”. IEEE Transactions on Computer-
s, Vol. C-32, No. 9, September 1983, pp. 826-830.

[19] T. Suel, “Optimal Deterministic Routing and
Sorting on Mesh-Connected Arrays Processors” .
Technical Report TR-93-18, Department of Com-
puter Sciences, University of Texas at Austin,
September 1993.

[20] T. Suel, “Routing and Sorting on Meshes with
Row and Column Buses”. Technical Report TR-
94-09, Department of Computer Sciences, Uni-
versity of Texas at Austin, April 1994.

[l l] J.Y.T. Leung and S.M. Shende, “On Multi-
dimensional Packet Routing for Meshes with B~~
es”. Journal of Parallel and Distributed Comput-
ing, Vol. 20, No. 2, February 1994, pp. 187-197.

[21] L.G. Valiant, and G.J. Brebner, “Universal
Schemes for Parallel Communication”. Proceed-
ings of the 13th Annual ACM Symposium on The-
ory of Computing, 1981, pp. 263-277.

[12] Y.W. Lu, J.B. Burr, and A.M. Peterson, “Permu-
tation on the Mesh with Reconfigurable Bus: Al-
gorithms and Practical Considerations”. Proceed-
ings of the 7th International Parallel Processing
Symposium, April 1993, pp. 298-308.

[13] V.K. Prasanna Kumar and C.S. Raghavendra,
“Array Processor with Multiple Broadcasting” .
Journal of Parallel and Distributed Computing,
Vol. 4, 1987, pp. 173-190.

[14] S. Rajasekaran, “Mesh Connected Computers
with Fixed and Reconfigurable Buses: Packet
Routing, Sorting, and Selection”. Proceedings of
the ldt Annual European Symposium on Algo-
rithms. Lecture Notes in Computer Science 726,
Springer-Verlag, October 1993, pp. 309-320.

[15] C.P. Schnorr, and A. Shamir, “An Optimal Sort-
ing Algorithm for Mesh Connected Computers”.
Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, 1986, pp. 255-263.

[16] M.J. Serrano, and B. Parhami, “Optimal Ar-
chitectures and Algorithms for Mesh-Connected
Parallel Computers with Separable Row/Column
Buses”. IEEE Transactions on Parallel ana‘ Dis-
tributed Systems, Vol. 4, No. 10, October 1993,
pp. 1073-1080.

[17] J.F. Sibeyn, M. Kaufmann, and R. Ramen, “Ran-
domized Routing on Meshes with Buses”. Pro-
ceedings of the 1*‘ Annual European Symposium
on Algorithms. Lecture Notes in Computer Sci-
ence 726, Springer-Verlag, October 1993, pp. 333-
344.

721

