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Abstract 

We show that adding partitioned-buses (as opposed 
to long buses that span an entire row or column) to 
ordinary meshes can reduce the routing tame b y  ap- 
proximately one-third f o r  permutation routing with lo- 
cality. A matching time lower bound i s  also proved. 
The result can be generalized to multi-packet routing. 

1 Introduction 

Permutation routing on mesh-connected computers 
has been extensively investigated [7] [8] [lo] [ll] [19] 
[21]. In permutation routing, each processor initially 
has a packet to send, and packets have unique destina- 
tions. A good routing algorithm should route packets 
to their destinations as quickly as possible and should 
require as few buffers a t  each processor as possible. 
Among the best known is the algorithm by Leighton, 
Makedon, and Tollis [lo] which can solve the problem 
for an n x n mesh in 2n - 2 steps using a constant-sized 
buffer. Because the mesh’s diameter is 2n - 2, their 
algorithm is optimal in the worst case. However, it is 
no longer time optimal when the packets only have to 
travel a short distance, say log n or fi. This routing 
with locality problem (or restricted distance routing 
problem) has been studied in [4] [7] [6] [$I. Rout- 
ing with locality problems arise naturally when spe- 
cific known algorithms are implemented on the mesh 
[7] and when other types of processor or process net- 
works are embedded onto mesh-connected computers 
to yield a small dilation [4]. If the maximum distance 
of all the packets is bounded by d ,  the authors have 
presented in [4] a d + O ( d / f ( d ) )  step, O ( f ( d ) )  buffer 
size routing algorithm which is asymptotically optimal 
if f(d), a function of d ,  is chosen to  be a large con- 
stant (because an obvious lower bound is d steps). In 
our mesh model, all the processors are assumed to run 
in synchronous MIMD mode. At any time step, each 
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processor can communicate with all of its grid neigh- 
bors, and can both send and receive one packet along 
each mesh link. In addition, processors can also store 
packets in their own queues. This model (hereafter 
referred to as the base model) is the same as the ones 
used in [7] [8] [9] [lo]. 

Augmenting arrays of processors with various faster 
mechanisms has been suggested as a means to speed 
up communication among the processors. Examples 
are meshes with fixed buses which have a bus in each 
column and each row [l] [13], meshes with separable 
row and column buses in which row/column buses can 
be separated into multiple shorter buses through turn- 
ing on/off bus switches [16], and reconfigurable mesh- 
es in which mesh links can be connected together to 
form buses [2]. A number of proposed bused mesh 
models assume the propagation delay of a bus to  be a 
constant which is independent of the number of pro- 
cessors attached to it. This assumption is thought to 
be a reasonable one in practical situations [18] [3] [13] 
[l] [2]. However, Lu, Burr, and Peterson [12] inves- 
tigated physical implementations of buses and found 
that meshes with short buses outperform those with 
long buses for permutation routing because short bus- 
es have shorter propagation delay. We assume that the 
propagation delay of the buses is one time step which 
is also assumed in [ll] [l] [MI. As we will see, our al- 
gorithms can be tuned to  use short, or constant-length 
buses. 

In the bused mesh models we consider in this paper, 
broadcast buses are added to the base model. Each 
broadcast bus is connected to  a set of processors. In 
each time step, only one processor attached to  a bus 
can send a packet via the bus. In addition, a processor 
can receive packets from all the buses attached to  it in 
a time step. Upper and lower bounds for unrestricted 
distance routing on meshes with fixed and reconfig- 
urable buses can be found in [ll] [5] [14] [17] [20]. 
For instance, for meshes with fixed buses, Leung and 
Shende [ll] proved that 2n/3 is the tight worst case 
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time bound for permutation routing on an 72-processor 
one-dimensional mesh. 

In this paper, we study how and to what extent bus- 
es can help in solving restricted distance permutation 
routing problem on bused meshes. In the following, 
we first define partitioned-bus mesh, and prove lower 
bounds for the routing with locality problem on bused 
meshes. Then we present our routing algorithms for 
local permutation routing in one- arid two-dimensional 
partitioned-bus meshes. 

Our partitioned-bus mesh is a variant. of the mesh 
with fixed buses. In a two-dimensional partit,ioned-bus 
mesh, each row/column bus can be partitioned into 
several short buses and any two adjacent short bus- 
es are incident on a common processor. In addition, 
these short buses can be active simultaneously. Our 
model is similar to  mesh with separable row and col- 
umn buses studied in [16], except that adjacent short 
buses do not meet a t  a common processor in t,hat mod- 
el. Note that any algorithm designed for meshes with 
separable buses can be used on our  partitioned-bus 
meshes without time loss. To enable bus partition- 
ing, there are two locally controllable bus swit.ches 
for the column buses and the row buses to which it 
attaches within each processor. Turning on the row 
bus switch connects the left, and right row buses, and 
turning on the column bus switch connects the upper 
and lower column buses. In addition, each of these 
switches can be set independently before the entire 
computation starts. Figure 1 shows some examples 
of one- and two-dimensional partitioned-bus meshes, 
in  which each row/column bus is partitioned into two 
shorter buses. The partit,ioned-bus mesh has a higher 

- Bus - Link 

Figure 1: Examples of Partitioned-Bus Meshes 

implementation cost, than the mesh with fixed buses 
because of the switch overhead. However, the increase 
in cost may be justified by the gain in performance. 
Furthermore, the short-bus model is a candidate most 
suitable for being partitioned into bused submeshes 
to  serve different computational requests. Partitioned- 

buses instead of short fixed buses are used because the 
best value of the bus length depends on the maximum 
source-destination distance. We will briefly discuss 
the possibility of using meshes with short fixed buses 
a t  the end of this paper. 

2 Lower Bounds 

When the maximum distance between the source 
and the destination of any packet is d and d 5 2 1 i / 3 ,  
we show that permutation routing cannot be solved 
on meshes with fixed buses in less than d steps. The 
proof, shown below, is a generalization of Leung’s and 
Shende’s 2n/3 time steps lower bound proof for the 
permutation routing problem on meshes with fixed 
buses [ 113. 

For simplicity, we consider one-dimensional mesh 
with fixed buses and d is even in the proof, which can 
be easily generalized to  two- and higher-dimensional 
cases. Consider processor with index i ,  where i E 
[l,  2,  . . . ~ d / 2 ] ,  which has a packet to send to proces- 
sor i + d and vice versa. Any of those cl packets must 
have a bus ride in order to  reach its destination within 
cl steps. However, the bus can only carry one packet 
during every time step. Thus, any algorithm needs a t  
least d time steps for this problem. The reason why 
this architecture is not suitable for restricted distance 
routing problems is that only one packet can ride the 
bus during any time step, and because of the packets’ 
restricted distances, they cannot really afford to  wait 
too long for the bus. This observation led us to consid- 
er another variant-the partitioned-bus mesh model. 
This model looks more promising in handling restrict- 
ed distance packets because more than one packet can 
be riding a bus in a column or row simultaneously. 

We now prove a lower bound for restricted distance 
permutation routing on one-dimensional partitioned- 
bus meshes. If d < n/2 ,  consider the scenario that 
all the packets in a processor sub-array of length 2d 
send a packet to  the processor which has distance d 
from it  and within the same sub-array. In the middle 
of the sub-array, we have 2d packets crossing a cut of 
size 3-a bidirectional link and a bus. Hence the 2 d / 3  
time bound. Note that this lower bound is valid also 
for two-dimensional partitioned-bus meshes. It can be 
proved by applying this one-dimensional construction 
to each row of the meshes. Moreover, we get a d steps 
lower bound if the middle link of this construction is 
mapped to  the gap between two adjacent short buses 
in meshes with separable buses. In other words, buses 
in meshes with separable buses cannot help in this 
local routing problem. 
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3 Routing on One-Dimensional Parti- 
tioned-Bus Meshes 

In this section, we present an asymptotically 
(2d/3)-step algorithm for the restricted distance per- 
mutation routing problem. The one-dimensional 
partitioned-bus mesh is assumed to be partitioned in- 
to segments of length b each (that is, each segment 
has b links in i t) ,  where b is an odd integer and b << d. 
In odd-numbered steps, each bus segment will be used 
to route packets from left to right, and vice versa for 
even-numbered steps. The processors a t  the ends of 
buses are called bus terminals.’ When packets are 
transmitted via buses, they usually travel from bus 
terminal to  bus terminal, except when their destina- 
tions are in the middle of a bus segment, in which 
case the packets will go directly to their destinations 
instead of to the bus terminal a t  the other end of the 
bus. Note that each bus terminal has two adjacent 
buses attached to it. 

Algorithm 1 (Iterative Walk-and-Ride Algorithm) 
Consider an arbitrary processor P .  

Case 1: P is not a bus terminal. If P receives a 
packet’ 

e 

e 

Case 2: 

e 

e 

0 

from a mesh link, P forwards the packet b y  
mesh link; 

from a bus (that is, P is its destination), P 
stores the packet into its local memory. 

P is a bus terminal. If P receives a packet 

from a mesh link and bus is available in the 
next time step, P routes it b y  bus to the next 
bus terminal or to its destination, whichever 
as nearer; 

from a mesh link but bus is not available in 
the next time step, P routes it b y  mesh link; 

from a bus, the packet has to wait for one 
time step before it leaves b y  walking. 

The basic idea of Algorithm 1 is to  ensure that 
after a packet has “walked” (i.e., being transmitted 
through links) T distance units, it can take a bus to 

‘In our model, we can always choose b to be an odd integer 
by setting the switches appropriately. In case we really have to 
choose an even b,  we can use two additional buffers in each bus 
terminal to simulate a virtual neighboring processor. 

2For simplicity, at time 0, every packet is treated as having 
come from a mesh link. 

cover s units. As a result, all packets with source- 
destination distance d can reach their destinations in 
approximately d x r / ( T +  s) steps. This walking-riding 
cycle continues until the packet reaches its destination. 
Hence, no packet will suffer from too long a walk. The 
lower bound shown above gives us a cue for the ratio 
T / S .  Algorithm 1 makes the packets to wait for one 
step after they have ridden a bus because a bus and a 
link are available for transporting two packets in the 
corresponding direction in those time steps. One may 
be tempted to give as many bus rides as possible to  
packets that  have a long distance to travel instead of 
forcing them t o  walk. However, as i t  is shown later, 
with our particular design, the algorithm is asymptot- 
ically time optimal in the worst case. This design also 
makes the algorithm simpler to  operate and analyze. 

Lemma 1 Given a permutation routing problem on 
a linear array, all packets will have their source- 
destination distances reduced b y  D (or they will reach 
their destinations in case their source-destination dis- 
tance is < D )  after running Algorithm 1 for ( D  - 
[D/3bJ x b)  + [D/3b] x 2 steps or less. 

Proof Except the ones that had a bus ride in the 
previous step, every packet advances in each time step. 
Without loss of generality, consider only those packets 
that are moving to  the right. By choosing the segment 
length b to  be odd, we can ensure that ,  in every 2b 
steps, any packet can reach the left end of a bus in one 
of these steps and the corresponding bus will serve it 
in the next step. In other words, each ‘packet travels 
a distance of 36 in 2b + 2 steps because it only walks 
2b steps and the cost of a bus ride followed by waiting 
is 2 time steps. Any packet traveling for a distance 
of D takes at least [D/3bJ bus rides, and it walks for 
a t  most ( D  - [D/3bJ x b )  steps. Moreover, it only 
spends at most 2 x [D/3b] time steps for riding buses 
and waiting at bus terminals. 0 

Theorem 1 For the permutation routing problem on 
a linear array with the maximum source-destination 
destination d, Algorithm 1 can be used to solve it in 
asymptotically 2d/3 time steps and only a constant 
number o f  auxiliary buffers are required per processor.3 

Proof: Substitute d for D in Lemma 1 and choose b 
to be o(d) and an odd integer. Note that only two 
auxiliary buffers are needed for each processor t o  hold 
the last packet arriving at i t  by bus. 0 

3We assume that in each processor there are two buffers as- 
sociated with each bidirectional link and one buffer for each bus 
attached to the processor. It is possible that all these buffers 
are filled at the start of the algorithm. Auxiliary buffers refer to 
any additional buffers that are needed other than these buffers. 
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4 Routing on Two-Dimensional 
Partitioned-Bus Meshes 

The algorithm for permutation routing on two- 
dimensional partitioned-bus meshes has two essen- 
tial ingredients, namely, sorting and greedy algorith- 
m.  Sorting is used to redistribute the packets so as 
to ensure that packets destinated at  the same row are 
routed along many columns. Thus not too many pack- 
ets will turn at  any processor, and hence the number 
of buffers required for each processor is small. The 
greedy algorithm we use is as follows: every packet is 
first routed along its column (column routing) until it 
reaches its destination row. Then it is routed along its 
destination row (row routing) to its destination. 

Before proving the two-dimensional case, we first 
define some notation and prove a result on the many- 
one routing problem on a linear array. In many-one 
routing, an arbitrary number of packets can start a t  a 
processor, and packets have unique destinations. Let 
b be the length of each bus, and f(d) be a function of 
d. Let the processors of a linear array be numbered 
from 0 to n. Define a processor to  be of type i, i E 
(0, 1 , 2 } ,  if its ID mod 3 equals i. A packet is of type 
i if its destination processor is of type i. As before, we 
partition the array into segments of length b and assign 
one bus t o  each segment. Bus terminals have an extra 
set of labels and they are labeled from 0 to  n/b  and a 
type E { 0 , 1 , 2 }  is assigned to each of them similarly 
based on these labels. Informally speaking, we want 
to  divide the packets into types and schedule them 
according to their types in such a way that packets 
of different types do not interfere with each other and 
packets of the same type have similar behavior (e.g. 
the paths they travel). For simplicity, we assume 3b 
divides d h e n ~ e f o r t h . ~  

Next, we will prove a result on many-one routing 
with the restriction that all type i packets reside in 
type i terminals initially. Then we will describe how 
to perform many-one routing without this restriction. 

Algorithm 2 (Many-One Routing with Restriction) 

1. A packet with source-destination distance ( d  - x )  
starts moving after step [x/3b] x (26 + 2) + [(z - 
Lx/3bJ x 36)/3J x 2. 

2. The packet performs the following repeatedly until 
it reaches its destination: 

(a) Walking for 2 segments. 

As we are interested in the case b .t: d, so we can make d a 
multiple of 36 without causing any significant increase in time 
complexity. 

(b) 

Lemma 

Taking a bus r i d e  to the next terminal. 
Right-moving packets wait for one step at 
each bus terminal just after each bus ride, 
while left-moving ones do  so before each 
ride.5 

2 Given a many-one routing problem on a 
linear array with maximum source-destination dis- 
tance d and all  t y p e  i packets residing in type i termi- 
nals initially, then Algorithm 2 can route all packets 
to their destinations in (1 + l / b ) 2 d / 3  time steps. 

Proof Without loss of generality, consider the packets 
moving to the right only. Basically, we make packets 
with a farther distance to start earlier. Packets are di- 
vided into batches according to their distances. Those 
with distances ( d  - 3b + 1) to d are of the first batch 
and they start moving during the first ( 2 b  + 2) time 
steps. Then packets with distances (d  - 6b + 1) to 
( d  - 3b) start  in the second ( 2 b  + 2)-step interval, and 
so on. 

For packets of the same type, their distances differ 
by a multiple of three. For any two type i packets with 
destinations that are three processors apart, the one 
with a farther destination will be scheduled to leave 
two steps earlier than the other one. It is because we 
enforce that type i packets can leave type i terminals 
only at  odd-numbered steps, while the right of leaving 
type i terminals a t  even-numbered steps is reserved for 
packets of type (( i- 1) mod 3) ,  which will be explained 
later. 

Note that for any segment, there are only two d- 
ifferent types of packets that might walk through it, 
while the remaining ones not belonging to those t- 
wo types take the bus associated with that segment. 
Moreover, as each type i packet leaves type i termi- 
nals in odd-numbered steps, while type ((i- 1) mod 3)  
packets leave type i terminals in even-numbered steps, 
packets of these two different types will not interfere 
with each other. This is the case because the segmen- 
t length b is chosen to  be an odd integer. Observe 
that once a packet starts moving, i t  will never be de- 
layed by any other packet. Hence it needs at  most 
( d  - x )  - (L(d - x)/3b] x b )  + [ (d  - c ) /3b l  x 2 more 
steps to  reach its destination by Lemma 1 .  

Therefore, time required for a packet with distance 
( d  - x )  to reach its destination 

'Because a bus can take only one packet at a time, left- 
moving packets and right-moving packets are scheduled to use 
the buses in alternate steps. Alternatively, we can have left- 
moving packets start one step later than the right-moving ones. 
In this case, all packets wait for one time step after each bus 
ride. 
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= starting time + traveling time 
5 2 ~ / 3  + L ~ / 3 b ]  x 2 + (d - Z) - ( [ ( d  - ~ ) / 3 b J  x b)  + 
5 2 ~ / 3  + [+/3bJ x 2 + (d - X) - ( d / 3  - [ ~ / 3 b J  x 

[(d - ~ ) / 3 b l  x 2 

b )  + 2d/3b - [ ~ / 3 b J  x 2 
5 2d/3 + 2d/3b 
0 
Lemma 2 shows us how to route any many-one 

problem in which type i packets start a t  type i bus 
terminals. In the following, we make use of this re- 
sult to  route any many-one problem without this re- 
striction. In short, our strategy is first compute the 
starting time step of every packet in the latter prob- 
lem, and then apply the routing scheme of the former 
problem. For a type i packet p whose source is s, let 
its virtual source be the nearest type i bus terminal 
in the opposite direction from its destination.6 In the 
following, let packet p be at  a distance (d  - 2) from 
its destination and be at  a distance y from its virtual 
source. 

Algorithm 3 (Many-One Routing without Restric- 
tion) 

1. Packet p starts moving after step L(3b + x - 
- y)/3bJ x (2b + 2)  + [((3b + 2 - Y) - L(3b + 

y)/3b] x 3b)/3J x 2 + min{y, 26) 

2. The path taken b y  packet p is the portion of the 
path starting from s if p were originated at its 
virtual source and Algorithm 2 were used. 

Lemma 3 Given a many-one routing problem on a 
linear array with maximum source-destination dis- 
tance d in which packets are arbitrarily distributed a- 
mong processors. Packets can be scheduled so that all 
of them can reach their destinations in (1  + l / b ) 2 d / 3 +  
(2b + 2)  time steps. 

Proof This many-one problem is now transformed to  
one in which type i packets are originated from type 
i terminals with maximum distance ( d  + 3b) as in Al- 
gorithm 2. Specifically, we make use of Lemma 2 by 
pretending that each packet were originated from its 
virtual source. If p were originated from its virtual 
source, v ,  its distance from its destination would be 
( (d  + 3b) - (3b + z - y)), or it would start a t  step 

2 - y)/SbJ x 3b)/3J x 2 by Lemma 2. Furthermore, 
it would leave s min{y,2b} steps later. The starting 

L(3b + z - y)/3bJ x (26 + 2 )  + [((3b + x - y) - [(3b + 

'For packets near the ends and do not have a virtual source, 
we extend the array conceptually to create virtual sources for 
them. 

time step of p is calculated by adding the values of 
these two expressions. There are two cases concerning 
the min{y, 2b} term. If the distance between the v and 
s is less than 2b, the packet would walk from v to  s in 
the entire imaginary journey, thus s will transmit this 
packet y steps after leaving v.  If the distance between 
v and s is equal to or more than 2b,  s will transmit the 
packet over the bus 2b steps after the starting time at  
v .  The stated time bound follows from Lemma 2. 0 

In the following, we present an algorithm, Sorting 
+ Greedy Algorithm, for solving permutation routing 
on two-dimensional partitioned-bus meshes. 

Algorithm 4 (SortingiGreedy Algorithm) 

1. Partition the partitioned-bus mesh into submesh- 
es o f  size do/ f (do)  x d o / f ( d o )  each, where do is 
the maximum source-destination distance before 
sorting. Sort all the packets within each submesh 
in row-major ordering7 with respect to the row- 
major indexing of the processors;' 

2. Perform the following in parallel with row rout- 
ing being started ( b  + 4) steps later than column 
routing 

(a )  Packets not situated in their destination 
rows participate in column routing according 
to Algorithm 1; 

(b) Others participate in row routing as in Algo- 
rithm 3. 

Theorem 2 The restricted distance permutation 
problem with maximum distance do on a two- 
dimensional n x n partitioned-bus mesh can be solved 
b y  Algorithm 4 which has time complexity 2d(l + 
l / b ) / 3  + 3b + 6 + O(do/ f ( d 0 ) )  and bufler complexity 
O( f (do)) (per processor), where d = do + 2do/f(do). 

Proof: After sorting is performed in each submesh, 
a packet may be displaced from its destination for a 
distance of do/ f (do)  vertically and do/f (do)  horizon- 
tally. Thus the maximum source-destination distance 

'Let ( T ,  c )  denote the destination address of a packet, where 
T and c are the row and column address respectively of the des- 
tination processor; then the row-major ordering of two packet- 
s with destination addresses ( ~ 1 ~ ~ 1 )  and ( T Z ,  c 2 )  is defined as 

8The processors are indexed by a one-one mapping onto 
{ l , - .  . , n 2 }  and the sorting problem with respect to this map- 
ping is to move the i t h  smallest packet to the i t h  indexedproces- 
sor. In row-major indexing of the processors, processor ( T I ,  c 1 )  

has a smaller index than that of processor ( T Z , C ~ )  when either 
T I  < 2-2, or T I  = r2 and c1 < c 2 .  

( ~ 1 ~ ~ 1 )  I ( ~ 2 , c z )  i f f r l  5 7 2 .  
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after sorting, d, is do + 2do/f(do). Once a packet s- 
tarts moving, it always advances to its destination by 
first moving along column edges and then along row 
edges. It is obvious that column routing and row rout- 
ing work correctly by their own. To prove the correct- 
ness of this algorithm, we only need to  show that a 
packet can reach its destination row by the time it  
has to start row routing as in Lemma 3. Consider a 
packet that has horizontal distance d - d,. By Lem- 
ma 1 (instead of considering packets moving in the left 
and right directions, we now consider packets moving 
in the up and down directions), any packet with ver- 
tical distance d, reaches its destination row after at 
most 2du/3 + [du/3b] x 2 + b steps (which bounds 
(d, - [d,/3bJ x b) + [dV/3b] x 2 from above.) From 
the proof of Lemma 3 and the fact that row routing is 
started b+4 steps later than column routing, we know 
that this packet starts row routing only after step 

[(3b + d, - y)/3bJ x (26 + 2) + [((3b + d, - y) - 
L(3b + d, - y)/3bJ x 3b)/3J x 2 + min{y, 2b) + ( b  + 4) 

2 2d,/3 + 2d,/3b + b + 2 
Thus, we can guarantee that any packet can finish the 
column routing on time. 

The total time of this algorithm consists of two 
components: Step 1 requires O(do/f(do)) time steps 
[15]; performing column and row routing in parallel 
requires 2d( 1 + l/b)/3 + 3b + 6 steps. It is because 
2d( 1 + l/b)/3 + (2b + 2) steps are needed to complete 
the row routing phase and row routing starts (b + 4) 
steps after column routing starts. Regarding buffer 
size complexity, each processor requires only O(f(d0)) 
buffers as there are only O(f(d0)) packets turning at  
any processor. We omit the proof of the buffer com- 
plexity which can be found in [4]. c] 

5 Concluding Remarks 

Routing with locality problems on partitioned-bus 
meshes have been studied. In particular, we have pro- 
posed an algorithm for the restricted distance per- 
mutation routing problem with maximum distance 
do on an n x n partitioned-bus mesh which need- 
s 2d(l + l/b)/3 + O(do/f(do)) + 3b + 6 time steps 
and O(f(d0)) buffers, where d = do + 2f(do). It is 
asymptotically time and buffer optimal if f (&) is cho- 
sen as a large constant and b = o(d0). One third of 
the running time is saved after the partitioned-bus is 
employed. After setting b, our algorithms do not re- 
quire any further reconfiguration of the buses. Thus, 
one may want t o  replace partitioned-buses by cheap- 
er short fixed buses. By fixing b as a large constant, 

we can still achieve close to optimal results for large 
d. Our lower bound and upper bound results can be 
generalized to local multi-packet (or k-k) routing algo- 
rithms giving an asymptotically tight 2kd/3 bound in 
one- and two-dimensional partitioned-bus meshes. In 
the k-k problem, each processor initially has at most 
k packets to send, and no more than k packets share 
the same destination. Finally, the results developed in 
this paper can also be used in partitioned-bus rectan- 
gular meshes and tori. 
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