
Maintenance of Discovered Association Rules in Large Databases:
An Incremental Updating Technique *

David W. Cheungt Jiawei Hant Vincent T. Ngtt C.Y. Wongj

t Department of Computer Science, The University of Hong Kong, Hong Kong. Email: dcheung@cs.hku.hk.

School of Computing Science, Simon Fraser University, Canada. Email: han@cs.sfu.ca.

tt Department of Computing, Hong Kong Polytechnic University, Hong Kong. Email: cstyng@comp.polyu.edu.hk.

t Department of Computer Science, The University of Hong Kong, Hong Kong. Email: cywong@cs.hku.hk.

Abstract
A n incremental updating technique is developed

for maintenance of the association rules discovered
b y database mining. There have been many stud-
ies on eficient discovery of association rules in large
databases. However, it is nontrivial t o maintain such
discovered rules in large databases because a database
may allow frequent or occasional updates and such up-
dates may not only invalidate some existing strong
association rules but also turn some weak rules into
strong ones. In this study, an incremental updating
technique is proposed for eficient maintenance of dis-
covered association rules when new transaction data
are added to a transaction database.

1 Introduction
Database mining has recently attracted tremendous

amount of attention in the database research because
of its wide applicability in many areas, including deci-
sion support, market strategy and financial forecast.

According to many studies in knowledge discovery
in databases [lo, 41, mining knowledge from databases
has the following characteristics.

1. The size of the database is significantly large, it
could scale up to gigabytes, terabytes, or even
larger, in some applications.

2. The rules discovered is valid only in statistical
terms. Users are looking for rules that hold for
a significant amount of data, but not necessarily

*The research of the first three authors were supported in
part by RGC (the Hong Kong Research Grants Council) grant
338 f O65/OO26. The research of the second author was also sup-
ported in part by NSERC (the Natural Sciences and Engineer-
ing Research Council of Canada) research grant OGP0037230
and an NCE (the Networks of Centres of Excellence of Canada)
research grant, IRIS-HMI5.

for all the data. Therefore, the number of rules
returned from a mining activity could be large.

3. The rules discovered from a database only reflect
the current state of the database. To make the
rules discovered stable and reliable, a large vol-
ume of data should be collected over a substantial
period of time.

These observations indicate that the promise of
database mining lies in the techniques to handle a
large amount of data, to manage a substantial number
of rules, and to maintain the rules over a significantly
long period of time. Therefore, the following two prob-
lems are essential in order to make database mining a
feasible technology.

1. Design efficient algorithms for mining different
types of rules or patterns.

2. Design efficient algorithms to update, maintain
and manage the rules discovered.

The first problem has been studied substantially
with many interesting and efficient database mining
algorithms reported (e.g., see [l, 2, 3, 5 , 6, 8, 9,
111). Such database-oriented knowledge mining al-
gorithms can be classified into two categories: con-
cept generalization-based discovery and discovery at
the primitive concept levels. The former relies on the
generalization of concepts (attribute values) stored in
databases and then summarization of the data reg-
ularities at a high concept level. One such example
is the DBLearn system [3, 51. The latter relies on
the discovery of strong regularities (rules) from the
database without concept generalization. Association
rule [l, 2, 91 is an important type of rules discovered
by this approach.

1063-6382/96 $5.00 0 1996 IEEE
106

However, very little work has been done on the
second problem. A method for handling incremen-
tal database updates for the rules discovered by the
generalization-based approach was briefly discussed
in [5]. However, previous work has not been seen
on incremental updating of association rules. Since
database updates may introduce new association rules
and invalidate some existing ones, it is important to
study efficient algorithms for incremental update of as-
sociation rules in large databases, which is the theme
of this paper.

In the pioneer work [l], it is shown that the prob-
lem of mining association rules can be decomposed
into two subproblems, The first problem is to find out
all large itemsets which are contained by a significant
number of transactions with respect to a threshold
minimum suppori. The second problem is to generate
all the association rules from the large itemsets found,
with respect to another threshold, the minimum con-
fidence. Since it is easy to generate association rules
if the large itemsets are available, major efforts in the
research community have been focused on finding ef-
ficient algorithms to compute the large itemsets in re-
cent studies.

Among all the algorithms proposed, the Apriori
(and its modifications) [l] and the DHP (Direct Hash-
ing and Pruning) [9] algorithms are the two most suc-
cessful. They both run a number of iterations and
compute the large itemsets of the same size in each
iteration, starting from the size-one itemsets. In each
iteration, they first construct a set of candidate item-
sets and then scan the database to count the number
of transactions that contain each candidate set. The
key for optimization lies on the techniques used to
create the candidate sets. The smaller the number of
candidate sets is, the faster the algorithm would be.

The goal in this work is to solve the efficient update
problem of association rules after a nontrivial number
of new records have been added to a database. As-
suming that the two thresholds, minimumsupport and
confidence, do not change, there are several important
characteristics in the update problem.

1. The update problem can be reduced to finding
the new set of large itemsets. After that, the new
association rules can be computed from the new
large itemsets.

2. Generally speaking, an old large itemset has
the potential to become small in the updated
database.

3. Similarly, an old small itemset could become large
in the new database.

4. In order to find the new large itemsets, all the
records in the updated database, including those
from the original database, have to be checked
against every candidate set.

One possible approach to the update problem is to
re-run the association rule mining algorithm on the
whole updated database. This approach, though sim-
ple, has some obvious disadvantages. All the computa-
tion done initially at finding out the old large itemsets
are wasted and all large itemsets have to be computed
again from scratch.

In this paper, an efficient algorithm FUP (stands
for Fast Update) is presented for computing the large
itemsets in the updated database. We will show that
the information from the old large itemsets can be
reused. Moreover, at finding the new large itemsets,
the pool of candidate sets can be pruned substan-
tially. Some optimization technique for reducing the
database size during the update process will also be
discussed.

Extensive experiments have been conducted to
study the performance of FUP and compare it against
the cases in which either Apriori or DHP is applied to
the updated database to find the new large itemsets.
FUP is found to be 2 to 16 times faster than re-running
Apriori or DHP. More importantly, the number of can-
didate sets is found to be about 2-5 % of that in DHP.
This shows that FUP is very effective in reducing the
number of candidate sets. Also, the overhead of run-
ning FUP on an updated database is measured, and
found to be only about 5-20% (which is very efficient).

The remaining of the paper is organized as follows.
A detailed problem description is given in Section 2.
The algorithm FUP is described in Section 3. Per-
formance study is discussed in Section 4. Section 5
discusses the variations of the techniques, and Section
6 concludes our study.

2 Problem Description
2.1 Mining of association rules

Let I = {i l , iz , . . . , i m } be a set of literals, called
items. Let DB be a database of transactions, where
each transaction T is a set of items such that T C_ I .
Given an atemset X E I , a transaction T contains X
if and only if X E T. An associatzon rule is an im-
plication of the form X j Y, where X C I , Y C I
and X n Y = 8. The association rule X j Y holds in
DB with confidence c if c% of the transactions in DB
that contain X also contain Y. The association rule
X 3 Y has support s in DB i fs% of the transactions
in DB contain X U Y. Given a minimum confidence
threshold minconf and a minimum support threshold

107

minsup, the problem of mining association rules is to
find out all the association rules whose confidence and
support are larger than the respective thresholds. We
also call an association rule a strong rule to distin-
guish it from the weak ones, i.e., those that do not
meet the thresholds [6]. For an itemset X , its support
is definited similarly as the percentage of transactions
in DB which contain X . Given a minimum support
threshold minsup, an itemset X is large if its support
is no less than minsup. The problem of mining asso-
ciation rules is reduced to the problem of finding all
large itemsets for a pre-determined minimum support

2.2 Update of association rules
Let L be the set of large itemsets in the database

D B , s be the minimumsupport, and D be the number
of transactions in DB. Assume that for each X E L,
its support count, Xsuppor t , which is the number of
transactions in DB containing X , is available.

After some update activities, an increment db of
new transactions is added to the original database
D B , and d is the number of transactions in db. With
respect to the same minimum support s, an item-
set X is large in the updated database DB U db if
the support of X in DB U db is no less than s, i.e.,
X.support 2 s x (D + d) .

Thus the essence of the problem of updating asso-
ciation rules is to find the set L’ of large itemsets in
DB U db. Note that a large itemset in L may not be a
large itemset in L’, on the other hand, an itemset X
not in L, may become a large itemset in L’.

3 Fast Update Algorithm FUP
Basically, the framework of FUP is similar to that of

Apriori and DHP. It contains a number of iterations.
The iteration starts at the size-one itemsets, and at
each iteration, all the large itemsets of the same size
are found. Moreover, the candidate sets at each iter-
ation are generated based on the large itemsets found
at the previous iteration. The features of FUP which
distinguish it from Apriori and DHP are listed as fol-
lows.

111 *

At each iteration, the supports of the size-k large
itemsets in L are updated against the increment
db to filter out the losers, i.e., those that are no
longer large in the updated database. Only the
increment db has to be scanned to do the filtering.

While scanning the increment, a set of candidate
sets, ck, is extracted from the transactions in db,
together with their supports in db counted. (Note
that the size of db is in general much smaller than

that of the original database DB.) The supports
of these sets in ck are then updated against the
DB to find the “new” large itemsets.

More importantly, many sets in c k can be pruned
away by a simple check on their supports in db
before the update against D B starts. (This check
will be discussed in the following.)

The size of the updated database is reduced at
each iteration by pruning away some items from
some transactions in the updated database.

These features combinkd together form the core in the
design of FUP and make FUP a much faster algorithm
in comparison with the rerunning of Apriori and DHP
on the updated database. Our experimental results
show a factor of 2 to 16 improvement in performance
in the comparison.

The following notations are used in the remaining
of the paper. Lk is the set of all size-k large itemsets
(called large k-itemsets) in DB, and L i is the set of
all large k-itemsets in D B U db. c k is the set of size4
candidate sets in the k-th iteration of FWP. Moreover,
X.supportD, X.supportd and x.supportr/D represent
the support counts of an itemset X in D B , db and
D B U db, respectively. The following is a detailed de-
scription of the algorithm FUP. The first iteration of
FUP is discussed followed by the discussion of the re-
maining iterations.

3.1 First iteration: Removing size-one
losers, generating size-one candidate
sets, and finding size-one winners

The following properties are useful in the derivation
of the large 1-itemsets for the updated database.

Lemma 1 A n I-itemset X in the original large 1-
itemsets L1 is a loser in the updated database DBUdb
(i.e., not an the large I-aternset L i) i f and only af
X.SuppOrtUD < s x (D + d) .
Proof. Based on the definitions of minimum suppod
and large 1-itemset. 0

Lemma 2 A n I-itemset X not an the original large
1-itemsets L1 can become a winner an the updated
database D B U db (i.e., being included in the large 1-
itemset L i) only if X.Supportd 2 s x d .
Proof. Since X is not in the original large 1-itemsets
L1, X.SuPPOTtD < S X D. If X.supportd < s x d ,
then X.supportuD = X.SUppOPtD + X.supportd < s x
(D + d) . That is, X cannot become a large item in
the updated database. Thus we have the lemma.

108

n losers candidate set C1 scan DB

Figure 1: Processes in the first iteration of FUP.

Based on these properties, the finding of large 1-
itemset L', in the updated database D B U d b is outlined
as follows. (The steps in the outline are described
graphically in Figure 1 for easy understanding.)

1. Scan the increment db , for all itemsets X E L1,
update its support count X.supportuD. Once the
scan is completed, all the losers in L1 are found
by checking the condition XsupportvD < s x
(D + d) on all X E L1 (according to Lemma 1.)
By removing the losers, the itemsets in L1 which
remain large after the update are identified.

2. In the same scan, a set C1 is created to store, for
each T E db, all size-one itemset X T which is
not in L1. This becomes the set of candidate sets
and their support in db can also be found in the
scan. More importantly, according to Lemma 2,
if X E C1 and X.supportd < s x d , X can never
be large in D B U d b . Because of this, all the sets in
C1, whose support counts are less than s x d, are
pruned off. This gives us a very small candidate
set for finding the new size-one large itemsets.

3 . A scan is then conducted on D B to update the
support count X.supportuD for each X E C1. By
checking their support count, new large itemsets
from C1 are found. By combining with those iden-
tified in L1, the set of all size-one large itemsets,
L',, is generated.

Example 1 A database DB is updated with an in-
crement db such that D = 1000, d = 100 and s = 3%.
I1,12,I3, and I4 are four items. I1 and I2 are the
large itemsets in L1 with I1.supportD = 3 2 , and
Iz.supportD = 3 1 .

Assume that Il.supportd = 4 and I2.supportd = 1.
After a scan on db, we have I1.SUppOrtUD = 36 >
llOOx3%and I2.supportuD = 32 < 1 1 0 0 ~ 3 % . Hence

Iz is a loser, and only I1 is included in L', (i.e., remains
to be large in the updated database.)

Assume that Is and I4 are two itemsets which are
not in L1 but occur in the increment db. Both I3 and
14 are potential candidate sets. In the scan of db, it
is found that I3.supportd = 6 and I4.supportd = 2.
Since I4.supportd < s x d = 3% x 100, it is removed
from the candidate set C1 (i.e., it is unnecessary to
check I4 against the updated database.) Only I3 is
included in C1. Suppose that I3.supporit~ = 28 is
obtained in the scan of D B . Thus, I3.supportu~ =
34 > 1100 x 3%, and 13 is included in L i . 0

In comparison with the first iteration of Apriori and
DHP, FUP first filters out the losers and obtains the
first set of winners from the original large 1-itemsets
by examining only the incremental database db. It
also filters out from the remaining candidate set in db
those items whose occurrence frequencies are too small
to be considered as potential winners. Both func-
tions are performed in a single scan of the incremental
database db. It then scans the original dattabase DB
once to check the remaining potential winners. In con-
trast, Apriori and DHP must take all the data items
as size-one candidate sets and check them against the
whole updated database. A much smaller candidate
set gives FUP a competitive edge in performance when
compared with Apriori and DHP.
3.2 Second iteration and beyond: Remov-

ing other losers, pruning candidate
sets, and finding remaining winners

The following properties are useful in the derivation
of the large k-itemsets (where k > 1) for the updated
database.

Lemma 3 I f { X l , . . . , X k - l } isaloser a i t h e (k - 1) -
t h i tera t ion (i . e . , the i t e m s e t is i n Lk-1 but not i n
L i - l) , a large k- i t emse t an L k (for any k) containing

109

t h e i t e m s e t cannot be a w i n n e r in t h e k - t h i tera t ion
(i.e., being included in t h e large k - i t e m s e i LL).
Proof. This is based on the property that all t h e sub-
se t s of a large i t e m s e t must also be large, proved in [2].

0

Lemma 4 A k - i t e m s e t { X I , . . . , xk} in t h e original
large k - i t e m s e t s Lk is a loser (i e . , no t in t h e large
k - i t e m s e t Lk) in t h e updated database D B U db i f and
only zf {XI , . . . , Xk}.supportUD < s x (D + d) .
Proof. Based on the definitions of minimum support
and large k - i t e m s e t .

Lemma 5 A k - i t e m s e t {XI , . . . , xk} n o t in t h e orig-
ina l large k - i t e m s e t s Lk can become a winner (z.e., be-
ing included in t h e large k - i t e m s e t L i) in t h e upda ted
database D B U db only if { X I , . . . ,Xk}.supportd 2
s x d .
Proof. Based on the similar reasoning as for Lemma 2.

0

Based on the above properties, the finding of large
2-itemset L', in the updated database D B U db is out-
lined as follows.

1. Similar to the first iteration, losers in L2 will be
filtered out in a scan on db. The filtering is done
in two steps. Firstly, according to Lemma 3 , some
losers in Lz can be filtered out without checking
them against db. The set of losers L1 - L/, have
been identified in the first iteration. Therefore,
any set X E L2, which has a subset Y such that
Y E LI - L i , cannot be large and are filtered out
from L2 without checking against db. Secondly, a
scan is done on db and the support count of the
remaining sets in L2 are updated and the large
itemsets from L2 are identified.

2. Similar to the first iteration, the second part at
this iteration is to find the new size-two large
itemsets. The key is to generate a small set of
candidate sets. The set of candidate sets, C2, is
generated, before the above scan on db starts, by
applying the apriori-gen function on L', [a]. The
sets in L2 are excluded when creating Cz because
they have already been handled. The support
count of the itemsets in C2 are accumulated in
the same scan of db. The itemsets in C2 can now
be pruned by checking their support count. For
all X E C2, if X.supportd < s x d , X is removed
from C2. Based on Lemmas 5, all the removed
sets cannot be large in DB U db.

3. The last step is to scan DB to update the sup-
port count for all the itemsets in C2. At the end

of the scan, all the sets X E C2, whose support
count X.supportUD 2 s x (D + d) , are identi-
fied as the new large itemsets. The set L;, which
contains all the large itemsets identified from L2
and C2 above, are the set of all the size-two large
it emsets.

Example 2 A database LIB is updated with an in-
crement d b such that D = 1000, d = 100 and s = 3%.
I 1 , 4 , 13, and I4 are four items and the size-1 and size-
2 large itemsets in D B are L1 = {II, 1 2 , 1 3 } and L2 =
{ I1 12, I 2 13}, respectively. Also I1 I 2 .supportr, = 50
and I213.support~ = 31. Suppose FUP has completed
the first iteration and found the "new" size-1 itemsets
Li = {II, Iz, 14}. This example illustrates how FUP
will find out L', in the second iteration.

Note that
I3 E L1 - Li , therefore, the set l 2 I 3 E L2 is a loser
and is filtered out. For the remaining set I1112 E L2,
FUP scans db to update its support count. Assume
that 1112.supportdb = 3. Since 1112.supportu~ =
(3+50) > 3 % ~ 1100, therefore, I 1 I 2 is large in D B U d b
and is stored in Li.

Secondly, FUP will try to find out the "new" large
itemsets from db. Note that apriori-gen applied on Li
generates the candidate set C2 = {I~12,1114,12~4}.
Since Ill, E L2 has already been handled, it is re-
moved from Cz. For the remaining sets 11 I 4 and 4 4

in C2, FUP scans db to update their support counts.
Suppose IlI4.supportd = 5 and 1214.supportd = 2.
Since 1214.supportd = 2 < 3% x 100, it cannot be a
large itemsets in D B U db. Therefore, I214 is removed
from the candidate set C2.

For the remaining set I l l 4 E C2, FUP scans D B to
update its support count. Suppose I1 I4.support~ =
30. Since I 1 I 4 . s u p p o r t ~ ~ = 30+5 > 3% x 1100, it is a
large itemset in the updated database. Therefore I1 I4
is added into L i . At the end of the second iteration,

0

FUP first filters out losers from L2.

Lk = (1112,1114) is returned.

The same algorithm is applied to the later iterations
until no large itemsets is found. At the k-th iteration
of FUP, the whole updated database is scanned once.
However, for the large (k - 1)-th itemsets in the orig-
inal database, they only have to be checked against
the small increment db. For the new large itemsets,
their candidate sets are extracted from the increment
and are pruned according to their support count in
the increment. This pool for candidate sets is much
smaller than those found by using either Apriori or
DHP on the updated database. This shows that FUP
is a much faster algorithm than the previous rule min-
ing algorithms on database updates.

110

3.3 The FUP Algorithm

is presented as follows.
Based on the above discussion, the FUP algorithm

Algorithm 1 FUP: A fast update algorithm for
maintenance of association rules on database
up dates.

Input: (1) DB: the original database (with its size,
i.e., the total number of transactions, equal to
D); (2) Lk: the set of all large k-itemsets in L)B,
where k = 1 , . . . , r ; (3) db: an increment database
(with its size equal to d) ; and (4) s: the minimum
support threshold.

Output: L': The set of all large itemsets in D B U db.

Method:

The 1st iteration: /* find L i , the set of all large 1-
itemsets in DB U db */

w = L1; c = 0; L: = 0 ; P = 0;
/* W: winners, C: candidate sets,
L i : initialized, P: for optimization */
for-all T E db do /* scan db */

forall 1-itemset X C T do {
if X E W then X.supportd++;
else {
i f X $ C
then { C = C U { X } ; X.supportd = 0; }
/*init the support count and add X into C */
X .supportd ++ ; }

1;
forall X E W do /*put winners into Li */
if X.SUPPOT~UD >_ s x (D + d)
then L: = Li U { X } ;

if X . S U p p O T t d < S X d
forall X E C do /*prune candidate sets in C */

then { C = C- { X } ; P = PU{X}; }
/* P will be used for optimization. */

forall T E D B do /* scan DB */

if X E C then X.supportD++;
if X E P then removes X from T ;
/* Transaction T is reduced */

forall 1-itemset X 2 T do {

1;
forall X E C do /*put winners into L',*/
if X . s u p p o r t u ~ 2 s x (D + d)
then L i = L i U { X } ;

return L i . /* end of the 1st iteration */

The k-th iteration: /* for IC = 2 or larger, repeat this
program fragment to find L',, the set of all large

k-itemsets in the updated database, until either
L', returned is empty or db = 0 */

W = Lk; L', = 0 ;
/* W: winners; L i initialized */

/* the size-k candidate sets */

/* prune off losers in W */
forall (k-1)-itemset Y E Lk-1 - L',-l do

C = apriori-gen(li-l) -Lk;

forall k-itemset X E W do

if Y X then { W = W - {X}; break; }
forall T E db do { /* scan db */

forall X E Subset(W, T) do X . ~ u p p ~ ~ t d + + ;
/* Subset(W,T) returns all the sets in W
contained in T [2] */

for-all X E Subset(C, T) do X.supportd++;
/* find support of all X E C */

Reduce-db(T);
/*Some items in transactions in db can
be removed, discussed in next section*/

1
for211 X E W do

/*put the winners from W into L i "/
if X . s u p p o r t v ~ _> s x (D + d)
then L; = L', U { X } ;

forall X E C do /* prune candidate sets in C */

forall T E D B do { /* scan D B */
if X.supportd < s x d then C = C - { X } ;

forall X E Subset(C,T) do X.supportr>++;
Reduce-Db (T) ; }
/* Some items in transactions in D B can
be removed, discussed in next section */

for-all X E C do
/* put the winners from C into L', "/
if X.supportuD 2 s x (D + d)
then L', = L; U { X } ;

return L',. /* The end of the k-th iteration */

Rationale: The algorithm follows the lemmas and dis-
cussions in Sections 3.1-3.2. Moreover, the state-
ments for the reduction of the size of the database
are reasoned at the next subsection. Hence the al-
gorithm correctly finds all the association rules in

0 the updated database and terminates.

3.4 Reduction of the size of the updated
database

FUP applies the techniques used in DHP to reduce
the size of the updated database. At the first itera-
tion, all the candidate sets which do not have enough
support in the increment db are stored in the set P .
Later, during the scan of the original database, all
items in P can be removed from all the transactions,

111

because they will not appear in any large itemset in
the later iteration.

At any k-th iteration, some items in db or D B ,
which is not needed for finding large itemsets in the
next iteration, can be identified and hence removed.

At any k-th iteration, during the scan in the incre-
ment db, while FUP is counting the support for sets
in the candidate sets C and W , for each transaction
TI the Reduce-db function is called. It counts, for each
I E TI the number of sets in C and W which contain
I . This number gives an upper bound on the num-
ber of large k-itemsets that contain I . If this number
is smaller than k, then I cannot belong to any large
(k+l)-itemset, and hence can be removed from all the
transactions. Using this number, Reduce-db can prune
off some items from db.

After the set C has been pruned against db, it can
be seen that any items in D B which does not belong
to any set in L k or C will not belong to any large
IC + l-itemset. Therefore, in the scanning of D B to
compute the supports of sets in C, all items that do
not belong to any set in L k or C can be removed. In
the FUP algorithm, the function Reduce-DB performs
this reduction.

In FUP, we have also integrated the direct hashing
technique in [9], which further reduces the number of
the candidate sets used in iteration two.

4 Performance Study
In order to assess the performance of FUP, experi-

ments are conducted to compare its performance with
that of Apriori and DMP. The experiments were per-
formed on an AIX system on an RS/6000 workstation
with model 410. As will be presented in the follow-
ing, the result shows that FUP is much faster than
the most successful mining algorithm with respect
to updating association rules. FUP performs 2 to 6
times faster than DHP for a moderate size database
of 100,000 transactions. When the database is scaled
up to 1,000,000 transactions, the speed-up is 2 to 16
times. As explained before, the key of the speed-up
lies on the much smaller amount of candidate sets. In
some cases, the number of candidate sets generated
were counted, and it was found that the amount gen-
erated in FUP is reduced to the range of 1.5 - 5% of
that in DHP. This is a very significant reduction.

As mentioned above, we also tested FUP with some
very large databases. It was found that FUP actually
performs much better in larger databases.
4.1 Generation of synthetic data

The databases used in our experiments are syn-
thetic data generated using the same technique intro-
duced in [l] and modified in [9]. The parameters used

I L I

Number of transactions in database D B
Number of transactions in the increment d
Mean size of the transactions
Mean size of the maximal potentially
large itemsets
Number of potentially large itemsets
Number of items

Table 1: Parameter Table.

TlO.l4.DlOO.dl
3 8.00 1 1
a
E 6.00 E 4.00
0 z 2*oo 3 0.00

6.00% 4.00% 2.00% 1.00% 0.75% W

Minimum support

DHPFUP ~ p r i 0 1 - i ~ ~ ~

Figure 2: Performance Ratio.

are similar to those in [9] except that the size of the
increment is an additional parameter. Table 1 is a list
of the parameters used in our synthetic database.

In the following we use the notation Tx.Iy.Dm.dn,
modified from the one used in [9], to denote a database
in which D = m thousands, d = n thousands, IT1
= x, and 111 = y. In our experiments, we set ILI =
2000, N = 1000, and the secondary parameters S, = 5 ,
P, = 50, and M j = 2000. S, is the clustering size
used in the generation of potential large itemsets. P,
is the pool size to store potential large itemsets from
which transactions will receive their items. M j is the
multiplying factor associated with the pool. Readers
not familiar with these parameters please refer to [l,

The way we create our increment is a straight for-
ward extension of the technique used to synthesize the
database. In order to do comparison on a database of
size D with an increment of size d. A database of
size (D + d) is first generated and then the first D
transactions are stored in the database D B and the
remaining d transactions is stored in the increment
db. Since all the transactions are generated from the
same statistical pattern, it models very well real life

91.

112

11 0.14.01 0O.dl
5 0.06

a 0.05

f 0.04

Z 8 0.03
C

0 0 5 0.02

g 8 0.01
K 0.00

6.00% 4.00% 2.00% 1.00% 0.75%

Minimum Support
0 FUP/DHP FUP/APRIORI

i3 E! 3.:

Q 2.5 e 2

1.5
4

15K 25K 75K 125K 175K 250K 350K
In creme n t Size

Figure 3: Reduction on Candidate Sets.

Figure 4: Speed Up Ratio vs Increment Size.
updates.
4.2

We have compared the performance of FUP against
that of DHP and Apriori. The first comparison was
done on an updated database T10.14.DlOO.dl. The
performance ratios between them are shown in Fig-
ure 2. In our implementation of the DHP, a hash
table of size 100 is used, and hashing is only used in
the generation of the size-2 candidate sets. This is the
same policy used in [9]. For small support, FUP is 3 to
6 times faster than DHP, and 3 to 7 times faster than
Apriori. For larger support, it is less costly to re-run
the mining algorithm on the updated database since
the number of large itemsets is relatively smaller. In-
terestingly, FUP is still 2 to 3 times faster in this case.
4.3 Reduction on the number of candi-

As explained before, FUP substantially reduces the
number of candidate sets generated. The effect is par-
ticularly significant at the first iteration. In Figure 3,
the chart shows the ratio of the number of candidate
sets generated by FUP when comparing with the two
mining algorithms. The amount of reduction ranges
from 98% to 95% when FUP is compared to DHP. It
is even greater when it is compared with Apriori.
4.4 Performance of FUP with large incre-

ment
In general, the larger the increment is, the longer it

would take to do the update. Also, the gain in speed-
up would slow down. Two sets of experiments have
been performed to support this analysis. A database
T10.14.DlOO.dmwith updates of lK, 5K and 10K were
generated, and different updates with different sup-
ports were done by FUP and DHP. For the same sup-

FUP versus DHP and Apriori

date sets

port, the speed-up ratio decreases when update size
increases. For example, when the support is 2%, the
ratio decreases from 5.8 to 3.7.

We also want to find out whether the decreas-
ing of the performance ratio as the size increases in
the update would eventually bring the performance
of FUP down to that of DHP. In the same setting
of T10.14.DlOO.dm, we increase the increment size m
from 10K gradually to 350K for comparison. The per-
formance ratio is plotted in Figure 4. A gradually level
off only appears when the increment size is about 3.5
times the size of the original database. The fact that
FUP still exhibits performance gain when the incre-
ment is much larger than the original database shows
that it is very efficient.
4.5 Small overhead of FUP

We also have done some experiments for the pur-
pose of analyzing the overhead incurred by the FUP.
In general, if the time to compute the set L’ from an
updated database DB U db is added to the time to
compute the original set L of large itemsets from the
database DB by a mining algorithm, the sum would
be larger than that if the same mining algorithm was
applied directly on DBUdb to compute L’. The differ-
ence of these two time values is a measurement of the
overhead of the update. If the overhead is small, then
it indicates that the update was done very efficiently.

We have designed some experiments to analyze the
overhead of FUP by measuring this difference. It was
found that the bigger the increment is, the smaller this
overhead becomes. In our experiment, what was dis-
covered is that, when the increment is !much smaller
than the original database, the 0verhea.d percentage

113

ranges around 10 - 15%. Once the increment is larger
than the original size, the overhead decreases very
rapidly from 10 to 5%. This is a very encouraging
result because it shows that FUP not only can benefit
update with small increment, it actually works very
well in the case of large increment.
4.6 Performance in scaled-up databases

Our last experiment is done in a scaled-up database.
The database is T10.I4.D1000.d10 which contains 1
million transactions. The performance ratio between
DHP and FUP in this scaled-up database, ranges from
3 to 16. The result shows that the gain from FUP will
in fact increase if the database becomes larger. This
shows that FUP is very adaptive to size increase and
can be applied to very large databases.

5 Discussion and Conclusions
We studied an efficient, fast, incremental updating

technique for maintenance of the association rules dis-
covered by database mining. The developed method
strives to determine the promising itemsets and hope-
less itemsets in the incremental portion and reduce the
size of the candidate set to be searched against the
original large database. The method is implemented
and its performance is studied and compared with the
best algorithms for mining association rules studied
so far. The study shows that the proposed incremen-
tal updating technique has superior performance on
database updates in comparison with direct mining
from an updated database.

The incremental updating technique is applicable
to the databases which allow frequent or occasional
updates when new transaction data are added to a
transaction database. We have also investigated the
cases of deletion and modification of a transaction
database.

Recently, there have been some interesting stud-
ies at finding multiple-level or generalized association
rules in large transaction databases [6, 111. The exten-
sion of our incremental updating technique for mainte-
nance of multiple-level or generalized association rules
in transaction databases is an interesting topic for fu-
ture research.

References
R. Agrawal, T. Imielinski, and A. Swami. Mining
Association Rules between Sets of Items in Large
Databases. In Proc. 1993 ACM-SIGMOD Int.
Conf. Management of Data, 207-216, May 1993.

R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proc. 1994 Int. Conf.
Very Large Data Bases, pages 487-499, Santiago,
Chile, September 1994.

D.W. Cheung, A. W.-C. Fu, and J. Han.
Knowledge discovery in databases: A rule-based
attribute-oriented approach. In Proc. 1994 Int ’1
Symp. on Methodologies for Intelligent Systems,
pages 164-173, Charlotte, North Carolina, Octo-
ber 1994.

U, M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy. Advances in Knowledge Dis-
covery and Data Mining. AAAI/MIT Press, 1995.

J. Han, Y. Cai, and N. Cercone. Data-
driven discovery of quantitative rules in relational
databases. IEEE Trans. Knowledge and Data En-
gineering, 5:29-40, 1993.

J . Han and Y. Fu. Discovery of multiple-level
association rules from large databases. In Proc.
1995 Int. Conf. Very Large Data Bases, Zurich,
Switzerland, Sept. 1995.

M. Klemettinen, H. Mannila, P. Ronkainen,
H. Toivonen, and A. I. Verkamo. Finding inter-
esting rules from large sets of discovered associa-
tion rules. In Proc. 3rd Int’I Conf. on Informa-
tion and Knowledge Management, pages 401-408,
Gaithersburg, Maryland, Nov. 1994.

R. Ng and J . Han. Efficient and effective cluster-
ing method for spatial data mining. In Proc. 1994
Int. Conf. Very Large Data Bases, pages 144-155,
Santiago, Chile, September 1994.

J.S. Park, M.S. Chen, and P.S. Yu. An effec-
tive hash-based algorithm for mining association
rules. In Proc. 1995 ACM-SIGMOD Int. Conf.
Management of Daia, San Jose, CA, May 1995.

G. Piatetsky-Shapiro and W. J. Frawley. Knowl-
edge Discovery in Ratabases. AAAI/MIT Press,
1991.

R. Srikant and R. Agrawal. Mining generalized
association rules. In Proc. 1995 Int. Conf. Very
Large Data Bases, Zurich, Switzerland, Sept.
1995.

114

