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Abstract

We examine the problem of detecting the direction of mo-
tion in a binary sensor network; in such a network each
sensor’s value is supplied reliably in a single bit of infor-
mation: whether the moving object is approaching towards
or moving away from the sensor. We demonstrate that the
geometric properties of the network itself can be exploited
for the detection of movement direction, from a single in-
stance of sensor reading only. Moreover the estimation is
performed in a distributed processing fashion, with only a
minimal data collection at situation-dependent leading sen-
sors and features a low computational burden on each sen-
sor. In addition, different detection instances drain the re-
sources of different groups of sensors, of a small size com-
pared to the size of the whole network. Our experiments
demonstrate high accuracy that increases with sensor den-
sity and/or sensing range, while the responsiveness of the
detection model is practically instantaneous.

1. Introduction

Recent advances in sensor technology [15] have en-

gendered the integration of physical (e.g. acoustic, seis-

mic, thermal, optical or magnetic) sensing, data processing,

memory and communication capabilities into single minia-

ture devices. Such devices are used for the widespread de-

ployment of wireless sensor networks with inherent compu-

tation power. Networks of this kind present revolutionary

opportunities for a wide range of applications. Energy con-

servation is a major preoccupation for a sensor network sys-

tem design, while the limited computing power and mem-

ory of sensor nodes impose a constraint on the nature of

algorithms they can execute and the size of intermediate re-

sults and historical information they can store [7]. A corol-

lary of these constraints is that data transmission to a cen-

tral node is too expensive for sensor networks of non-trivial

size. Therefore at least part of the computation is preferably

performed locally. Since sensor networks have very differ-

ent communication and computation constraints from those

of state-of-the-art desktop computers and other dedicated

data equipment, data processing in such networks cannot

rely on existing techniques.

Several mainstream sensor network applications, like

wildlife monitoring and battlefield surveillance, involve the

detection and/or tracking of moving targets and the answer-

ing of queries about the motion patterns observed. In this

paper we specifically investigate a fundamental problem the

underlies such applications, namely the detection of the di-

rection of a target’s movement. We adopt a pragmatic min-

imalist model, whereby each sensor provides a single bit of

information; this bit indicates whether a tracked object is

arriving to or departing from the sensor. This model is re-

alistic, as its sensing element can be implemented with ba-

sic, established, co-locatable and passively operating sens-

ing hardware, such as acoustic, thermal or magnetic sensors

[1]. Mathematically, the bit obtained by such a binary sen-

sor is the sign of the derivative
d|�d|
dt , where |�d| is the Euclid-

ean distance of the moving object from the sensing device.

We call this a departure/arrival bit, to distinguish from a

proximity bit, which indicates whether a target lies within

a threshold distance. The former, as opposed to the latter,

provides information of a dynamic nature; in order to derive

this information it relies on minimal signal processing that

can be reasonably and reliably performed in situ [1].

A previous exploration of this model for motion tracking

[2] suggests a probabilistic method using particle filtering

techniques [6]. However, this approach does not fully ex-

ploit the geometric characteristics of the network itself. In

addition, it rests on the assumption that all data is avail-

able in a centralized repository. Such an approach inflicts

uneconomical energy consumption on the network and is

not scalable with its size. In our methodology we postulate

no centralized data collection and we allow any node to re-

quest and collect information. Our model makes use of the

geometric properties of the network and the computational

powers of the sensors themselves.
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2. Background and Related Work

The modern ubiquity of sensor networks and its prospec-

tive future growth has spawned considerable research at-

tention, encompassing their applicability for mobile target

tracking [4, 8, 16, 3, 14, 13, 11].

The binary sensor model was employed in [2] for detect-

ing the direction of motion, when a single departure/arrival
bit of information is available, as well as for localizing a

target, when an additional proximity bit of information is

available. [10] introduced a distributed tracking algorithm

for graphs employing a binary sensor model as well; in this

case, the single bit of information is a proximity bit and the

focus of the work is the difficulties of sensor localization. In

this paper we adopt the departure/arrival bit model, while

we assume that the localization problem has been solved

in advance. Methods of computational geometry [5] have

been employed for network data processing wherever the

geometry of the network itself is deemed relevant [9, 12].

In this paper we also follow a geometric approach for local-

ized data processing. whereby each sensor makes its own

decision based on its own measurement and the data it re-

ceives from its accessible neighbors.

3. Problem Formulation

Following the binary model, we assume that each sen-

sor can only supply one bit. However, we do not require

that this be transmitted to a base station. We adopt a more

pragmatic approach, in which every sensor’s bit is commu-

nicated only to its communication-range neighbors. Hence-

forward, we use the term neighbors in this specific sense.

Each sensor s is able to detect whether a moving target is

distancing itself from, or approaching towards s. In the for-

mer case s’s bit acquires a minus (−) value, while in the

latter a plus (+) value. We assume that each sensor can de-

tect motion within a certain sensing range of radius R, and

share its bit with its neighbors. Moreover, each sensor can

communicate its location to its neighbors. We focus on the

problem of estimating an object’s direction of movement

from the instantaneous readings of the sensors that detect

it in their range. Assume that a set of |S| binary sensors

S = {s1, s2, . . . , s|S|}, deployed within a bounded 2D area

can detect an object W moving inside this area. Let �V (t)
be the velocity vector of W , �N(t) the normal to �V (t), and
�X(t) a parametric representation of the object’s changing

position. Then if λt is the slope of �V (t) and λ̂t the slope of
�N(t), it will be λ̂t = − 1

λt
. Each sensor si ∈ S produces

a sequence of readings vj
i ∈ {−,+} indicating whether W

is departing from or approaching si at time tj . We devise a

protocol that will provide an estimate for the instantaneous

direction of movement expressed by λtj
.

3.1. Geometric Observations

For the purposes of our discussion, we define as slope
interval an ordered pair {φ, ψ}, φ, ψ ∈ [0, 2π). The pair

denotes an interval of angles around the trigonometric circle

in counterclockwise fashion. If φ > ψ then the interval

denotes the union [φ, 2π) ∪ [0, ψ], otherwise it denotes the

simple interval [φ, ψ]. Given an ordered pair of points in 2D
space, {p1, p2}, we can determine the direction of the vector−−→p1p2 as an angle in [0, 2π) using their coordinates. Notably,

the estimate for the direction of a target’s movement can be

expressed a slope interval.

For the sake of simplicity, in the rest of our exposition

we shall use the notation si to denote both a physical sen-

sor as well as its abstract geometric position as a point.

Let vq the reading of sensor sq at a certain time t. Let-

ting A = {si|vi = +}, B = {sj |vj = −}, and C(A)
(C(B)) be the convex hull of A (B), it is proved in [2] that

C(A) ∩ C(B) = ∅ and X(t) /∈ C(A) ∪ C(B). In other

words, W lies outside the (distinct) minus and plus sensors’

convex hulls. Moreover, these distinct hulls are separated

by the normal �N(t) to the velocity �V (t), while �V (t) points

to C(A). We extend these basic geometric observations by

the following Theorems:

Theorem 1 Given a pair of equi-signed sensors {si, sj},

vi = vj , and a third opposite-bit sensor sk, vk = −vi, then

the slope λ̂ of �N lies in the interval between the slopes of

the lines sisk and sjsk that is exterior to the convex angle

ŝisksj and its opposite angle formed by these lines.

Proof. Since �N separates the convex hull of negative-

signed sensors from that of positive-signed sensors, it fol-

lows that it separates {si, sj} from sk. Then a line L paral-

lel to �N anchored on sk leaves si and sj on the same semi-

plane, hence it is exterior to the angle ̂sisksj and its oppo-

site formed by the lines sisk and sjsk. Therefore, the slope

λ̂ of �N lies in the interval between the slopes of the lines

sisk and sjsk that is exterior to the convex angle ŝisksj

and its opposite formed by these lines.

Based on Theorem 1, we conclude that every triplet of

non-equal-signed sensors defines an allowed slope interval

for the slope λ̂ of �N , hence for the slope λ of �V as well. We

now prove a related theorem:

Theorem 2 Assume a network instance including at least

two + and two − sensors. Then for each + (−) sensor si

there exists at least one pair of − (+) sensors {si
j , s

i
k} such

that all other same-bit (as the pair) sensors lie within the

convex region bounded by the semi-lines sis
i
j and sis

i
k. We

call {si
j , s

i
k} the covering pair of si.
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Proof. For any given node si, let there be a random pair of

sensor nodes of the opposite sign, {sj , sk}. If there exists at

least one sensor sl, equi-signed to sj and sk, lying outside

the convex angle ŝjsisk, then the line sisl leaves sj and

sk on the same semi-plane (if it did not, then sl would lie

in the convex region bounded by the complementary semi-

lines of sisj and sisk; hence, the triangle of equi-signed

vertices sjsksl would include the opposite-signed si, which

is a contradiction). Without loss of generality, assume that

sj and sk lie on the left of the (directed) line sisl, hence sk

lies in the convex angle ŝjsisl. Then let node sl substitute

sk to get a new pair, {sj′ , sk′}. If there still exists a node

sl′ of the same sign lying outside the convex angle ̂sj′sisk′ ,

then let it again substitute the node with which it forms the

maximum convex angle headed at si. Let this process be re-

peated until it terminates, given the finite number of nodes.

The final pair is the desired covering pair of nodes {si
j , s

i
k}

such that all other equi-signed nodes lie within the convex
angle ̂si

jsisi
k. There may be more than one such pairs, in

case there are more than one nodes lying on the arms of the

convex angle ̂si
jsisi

k. The process will definitely terminate

at any of these pairs.

A Corollary of Theorem 2 is that, for a given sensor si

and the associated covering pair {si
j , s

i
k}, the convex an-

gle ̂si
jsisi

k is the maximum angle that can be formed with

its vertex in si and its arms defined by a pair of opposite-

signed sensors. Besides, according to Theorem 1, the triplet

{si, s
i
j , s

i
k} defines a slope interval for λ̂. This interval is

the tightest of all slope intervals similarly defined by si.

Accordingly, we call it minimal slope interval of si. As

a matter of fact, in all possible configurations, there exists

a quadruplet or triplet of sensors, consisting of at most a

pair of positive-bit sensors and at most a pair of negative-bit

sensors, which is sufficient in order to provide the tightest
possible constraint of the slope λ̂, as the following theorem

shows.

Theorem 3 Let there be a set of sensors S =
{s1, s2, . . . , sk}, divided into two convex hulls according

to their readings. Then, in the general case, there ex-

ists a quadruplet of sensors {si1 , si2 , sj1 , sj2}, such that

vi1 = vi2 = + and vj1 = vj2 = −, and the two diagonals

D1, D2 of the convex quadrilateral T , T = si1si2sj1sj2

divide the 2D plane in four areas, as follows: An area on

the side of si1 and si2 , where all positive-valued sensors are

found, an area on the side of sj1 and sj2 , where all negative-

valued sensors are found, and two interloping void areas.

Then a line L parallel to �N anchored on the intersection of

D1 and D2 will lie on the void areas and hence its slope is

bounded by the slopes of D1 and D2. We call this group

of four sensors critical quadruplet, and the pairs that define

D1 and D2 critical pairs, for the given motion. In special

cases, one of the two equal-signed sensor pairs within the

quadruplet may degenerate into a single sensor, hence the

quadruplet degenerates into a critical triplet. In all cases

there exist exactly two lines D1, D2, that cross (at least) a

pair of opposite-signed node points (vertices of the respec-

tive convex hulls) and both leave the rest of the two groups

of equal-signed node points (i.e. the two convex hulls) in

different semi-planes.

Proof. For any + node s1i , let {s1k, s1l } be its covering pair.

If there exists a + sensor s2i within the convex angle ̂s1ks
1
i s

1
l ,

then let s2i substitute s1i . Let {s2k, s2l } be the covering pair

of s2i . It follows that the convex angle ̂s2ks
2
i s

2
l is larger

than the antecedent convex angle ̂s1ks
1
i s

1
l , hence the mini-

mal slope interval of s2i is tighter than the respective of s1i .

If there exists a sensor s3i within the convex angle ̂s2ks
2
i s

2
l ,

then let the substitution process be repeated, until it termi-

nates, given the finite number of nodes. The resulting triplet

{sn
i , s

n
k , s

n
l } will leave all − sensors within the convex an-

gle ̂sn
ks

n
i s

n
l , and all + sensors outside this area. For the

sake of simplicity, let us call this triplet {si, sk, sl}. If all

+ sensors lie within the area bounded by the opposite con-

vex angle of ŝksisl, then the triplet {si, sk, sl} is a critical

triplet. Otherwise, if there exists a + sensor s1j lying outside

that convex angle, i.e. in one of the other two (interloping)

angles formed between the intersecting lines sisk and sisl,

then, without loss of generality, assume that s1j lies in the

same semi-plane defined by line sisl as sk, and let {s1q, s1r}
be its covering pair. Also without loss of generality, as-

sume that si lies in the same semi-plane defined by the line

s1js
1
q as s1r . Consider the quadruplet {si, s

1
j , sk, s

1
r} and let

c be intersection of lines sisk and s1js
1
r . If there still ex-

ists a + sensor s2j in one of the interloping angles ̂s1jcsk,

̂sics1r , then, without loss of generality, assume that s2j lies

in ̂s1jcsk. Let s2j substitute s1j in the quadruplet (if s2j lied in

̂sics1r we would let it substitute si). Let s2r be the member

of s2j ’s covering pair that leaves si and sl on different semi-

planes. Then let s2r substitute s1r in the quadruplet (in the

opposite case, if s2j substituted si, then sk would be sub-

stituted by the appropriate member of s2j ’s covering pair).

Let this substitution process be repeated, until it finds the

interloping angles empty. Note that the iterative process is

guaranteed to terminate, given the finite number of nodes

and the fact that the interloping angles can only decrease

after each substitution. For the sake of simplicity, call the

resulting quadruplet {si, sj , sk, sr}. Then all +(−) sensors

lie within a single area bounded by the diagonals D1, D2 of

the convex quadrilateral defined by the quadruplet and we

have established a critical quadruplet.

Figure 1 shows the critical quadruplet derived in a ran-
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dom network. A corollary of Theorem 3 is that the members

of the critical quadruplet are lying on the border of their re-

spective convex hulls; if they lied in a hull’s interior then

diagonals D1 and D2 would not leave all equal-signed sen-

sors on the same semi-plane. Let si the location of a node

and s′i be its projection to the line L parallel to �N anchored

on the moving object. If (i) s is in either +/− convex hulls,

(ii) the line segment sis
′
i does not cross the interior of the

respective signed convex hull, and (iii) s is a neighbor of an

opposite-signed node, then si is called a facing node. We

call property (ii) the projection property. The ordered poly-

line formed by facing nodes on the same (either + or −)

convex hull is called the facing line of the corresponding

convex hull. An example is illustrated in Figure 2.

++ +

Si1

Sj1

Sj2 -

+
Si2++

-

D2

T

Possible
slope

D1

- -
-

-
- -

-

Figure 1. A critical quadruplet of sensors within
a 2D sensor field for a given set of bit values

V

N
+

-

Figure 2. Facing lines of two convex hulls

3.2. Problem Statement

Given the above theoretical background, the following

problem poses itself: Given a set of |S| binary sensors

S = {s1, s2, . . . , s|S|}, deployed within a bounded 2D
sensor field and an object W moving inside this field, we

are interested in formulating a power-efficient and computa-

tionally effective model of intra-sensor communication and

computation that can determine the critical quadruplet, and

hence a valid slope interval for the slope λt of �V (t), at a

given time tj .

4. A Protocol for Direction Detection

4.1. Assumptions

We assume that the sensor nodes are randomly distrib-

uted across the whole sensing area with uniform density and

isotropic disk connectivity. The reading of each sensor is

derived continuously and passively, i.e. the sensor does not

need to transmit a signal in order to make a measurement

[1]. Whenever the measured value of a sensor changes, it

broadcasts an update signal to its neighbors. Each node is

equipped with adequate memory to store the readings and

locations of its neighbors’ set. The exchange of location in-

formation is made once during the network deployment and

initialization stage. Thereafter an update operation is exe-

cuted by sending the measured bit along with a sensor id.

Hence all nodes continuously keep track of their neighbors’

readings. Given the isotropic disk connectivity, it follows

that the set of + (−) facing nodes forms a contiguous se-

quence of + (−) convex hull vertices. If not, then there

would be a convex hull vertex, whose two adjacent vertices

were facing nodes, that would satisfy the projection prop-
erty but have no (opposite-signed) neighbors in an angle of

180 degrees - a contradiction 1. Let So ⊆ S be the set of

all sensors that detect an opposite-signed neighbor, and left

F be the set of all facing sensor nodes. Then it follows

that F ⊆ So, i.e. So includes all facing nodes as well other

nodes, which can detect an opposite-signed neighbor but are

not vertices of one of the two signed convex hulls. Notice

that, in a network S of uniformly distributed sensors with

balanced extent in two dimensions, if |S| is the total number

of its nodes, then the size |So| of the linearly distributed set

(and the corresponding number |F| of facing nodes) is ex-

pected to be O(
√|S|). The operation of our protocol rests

exclusively on nodes in So, while the rest remain asleep.

4.2. Direction Estimation

After a movement update, each node s establishes its

whereabouts in the instantaneous geometry of the network

as follows. First, s determines whether it has at least one

opposite-signed neighbor and gives notice of this informa-

tion to all its neighbors. For any such node, let the peerset
PS(s) of s be the set of nodes p ∈ So which are neigh-

bors of s and read the same sign as s. In effect, s becomes

aware of its peerset by their transmissions. Furthermore, s
establishes its closest opposite-signed neighbor, s−. After-

wards, each node s ∈ So enters a state of communication

alertness (during which a sequence of communications and

computations eventually derives the direction of the object

movement), while the remaining network stays asleep.

1The case when the target moves at the verge of the workspace notwith-

standing.
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Linking of Peers After it has established its property as

such, each node s ∈ So determines its left and right links
among its peerset, denoted as Ls and Rs respectively,

Ls,Rs ∈ PS(s). This pair of sensors is selected so that the

angle ̂LssRs divides the plane into two regions, one contain-

ing all opposite-signed nodes seen by s, and another con-

taining all equi-signed nodes seen by s. In order to facilitate

the links’ determination, the directed counterclockwise an-

gles that each node p ∈ PS(s) forms with s at the head and

s− at the other arm are calculated. Therewith the selected

left and right links, Ls and Rs are defined as:

Ls =
{
pl

∣∣p̂lss− = max
{pj∈PS(s)}

(
p̂jss−

)}

Rs =
{
pr

∣∣p̂rss− = min
{pj∈PS(s)}

(
p̂jss−

)}

The orientations left and right are meant with respect to

the direction looking towards the opposite-signed sensors’

semi-plane. An illustration of the concept behind these for-

mulae, along with a sketch of the calculated extreme angles,

is depicted in Figure 3.

V

-

1s
L

21 ss L
12 ss R

1s

2s

2s
R

+

N

Figure 3. Links and closest opposite nodes
for s1, s2

Determination of Edges In the same process, each node

s ∈ So determines whether it lies on the edge of a facing
line. This property is decided by the following rule: A node

s ∈ So is called an edge if and only if (i) it has recipro-

cal left/right relationship with one and only one of its links

(either Ls or Rs), and (ii) the line segments from s to s−
and from Ls to Rs do not cross each other. Symbolically,

let τ{a, b, c} denote the direction of the turn formed by the

ordered triplet a, b, c, which takes the values left, right
or none, and NOT CROSS(s) denote the second property

above. Then this property can be formally be expressed as:

NOT CROSS(s) = (τ{Ls,Rs, s} = left)
∨ (τ{s, s−, Ls} = τ{s, s−,Rs})

The above equation expresses the clause that the line

from Ls to Rs leaves both s and s− on the same (left, by

necessity) semi-plane, or the line from s to s− leaves both

Ls and Rs on the same semi-plane. All six possible config-

urations of the four involved nodes are depicted in Figure

4.

sL sR

s

s

sL sR

s

s

sL sR

s

s

(a) FALSE (b) TRUE (c) TRUE

sL sR

s

s

sL
sR

s

s

sL
sR

s

s

(d) TRUE (e) TRUE (f) TRUE

Figure 4. Six possible configurations of the
four involved nodes and respective values of
the NOT CROSS(s) function

Then the edge property is defined as:

EDGE(s) = s ∈ So

∧ ((RLs = s) ⊗ (LRs = s))
∧ (NOT CROSS(s))

Notice that the symbol ⊗ denotes the boolean exclusive

or. For example, a node s ∈ So at the left edge of a facing

line will naturally be the left link of its own right link, but

will not be the right link of the node that it has been unto-

wardly attributed to as a left link. Moreover, this node will

satisfy the NOT CROSS(s) property. Notice that there will

be exactly four edges for each network instant, two for each

facing line.

Let a non-crossing (crossing) node be a node that satis-

fies (does not satisfy) the NOT CROSS(s) property. Then

a non-crossing node that has a reciprocal relationship only

with its left link is a right edge, while one who has a recip-

rocal relationship only with its right link is a left edge, along

a facing line. Notice that there potentially exist other nodes

s ∈ So with a single non-reciprocal relationship; however,

these are crossing nodes, serving as auxiliary nodes that fa-

cilitate communication between their neighbors. An exam-

ple of such non-reciprocal, crossing, auxiliary link nodes is

depicted in Figure 5. The overall procedure that performs

the linking and edge-related decisions for a node s is shown

in Figure 6.

Message Transmission The above process leads to the

establishment of the four edges, positive and negative left-

ward and rightward edges, respectively. Each of them ini-
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V

-

1s

2s
L

1s
L

1s
R

2s
R

2s

1s

2s

+

N

Figure 5. Crossing, auxiliary link nodes be-
tween s1 and s2

Process Linking(Node s)

1. s− := nearest opposite-signed node of s;

2. compute Ls, Rs;

3. receive values RLs , LRs ;

4. compute EDGE(s);

5. if EDGE(s) then
6. if (RLs = s) then direction(s) := left;
7. if (LRs = s) then direction(s) := right;

Figure 6. Process for linking nodes in So and
determining edges

tializes a message transmission towards the center of its fac-

ing line. In effect, two messages are aggregated along each

of the two facing lines, from the edges towards their mid-

dle parts. These transmissions collect the coordinates of all

facing nodes. The nodes s ∈ So that participate in this

message propagation are divided into (i) facing nodes and

(ii) auxiliary nodes, which are not convex hull vertices, but

they must assist in the propagation, due to the limited com-

munication range. The critical quadruplet is composed out

of such nodes, therefore the accumulated messages need to

include only coordinates of such facing nodes. In practice,

the nodes which append their coordinates to a propagated

message m will be significantly fewer than the total nodes

which assist in its propagation, rendering the total size of

m manageable. The operation occurring on every node is

described in Figure 7.

Specifically, each edge node initiates a message m with

its own coordinates and forwards it to its appropriate link
l; in its own turn, l propagates m towards its own link in

the same direction. If l is non-crossing, before propagation,

it appends its own location information to m and prunes

from it any previously entered node-coordinates that are

now shown not to be facing nodes. This pruning is per-

formed using the basic step of the convex hull computation

algorithm [5]. However, in our distributed in-network con-

vexity computation approach the coordinate-sorting step of

the centralized algorithm is avoided.

Once a node receives messages from both directions, it

appends them to each other and broadcasts a signal to its

Process Receive/Transmit(Node s)

1. Receive compact message and direction information;

2. if NOT CROSS(s) then
3. Append own coordinates on message;

4. while last three nodes do not make turn of direction
5. delete middle of last three nodes;

6. Transmit message towards link in direction;

Figure 7. Process for receiving/transmitting
information along a facing line

neighbors that it assumes a leader role. In effect, one leader

emerges on each signed hull’s facing line, l+ for the plus
hull and l− for the minus hull. Then l− transmits its own

message to its closest opposite-signed neighbor. Therefrom

it is forwarded along the established path towards l+. In

effect, the aggregate coordinate information of all facing
nodes, f1

−, f
2
−, · · · , fm

− , f
1
+, f

2
+, · · · , fn

+, is collected in the

memory of a single sensor. Figure 8 illustrates the flow of

information within the network. Both auxiliary and facing
nodes are highlighted in the figure.

V

N

+

-

edge

auxiliary

facing

Figure 8. Message propagation along facing
and auxiliary nodes for the hulls of Figure 2

The overall process of computing and forwarding the set

F of facing nodes to node l+ requires a number of message

transmissions which O(|So| = O(
√|S|), according to our

uniformity assumption. Therefore the overall process is sig-

nificantly cheaper compared to the centralized algorithm of

[2], which requires that all sensors should send their read-

ings unconditionally to a centralized server for processing.

Determination of Slope Interval After collecting both

lists of facing nodes, sensor l+ proceeds to the computa-

tional task of establishing the critical quadruplet. This com-

putation operates with a mutating pair of opposite-signed

facing nodes, {n−, n+}; the original seed for this is the pair

of the two established leaders, {l−, l+}. The vector −−−→n−n+

this pair forms, of slope slope(n−, n+), is then rotated by

substituting its two members with an appropriate follower

in the facing line. This way, the pairs of opposite-signed

nodes that form the vectors of maximum clockwise (coun-

terclockwise) difference from slope(l−, l+) are established.

These two pairs from the critical quadruplet (or triplet, po-
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tentially) that we have been looking for. The algorithm (il-

lustrated by the pseudo-code of Figure 9) returns a criti-

cal pair {n1, n2} when executed in this (clockwise) version,

and another critical pair {n3, n4}, if its mirror-image (coun-

terclockwise) version (with left and right interchanged) is

executed instead. These two critical pairs from the criti-

cal quadruplet (or triplet), i.e. define the lines D1 and D2

whose slopes delimit the moving object’s velocity slope.

Algorithm RotateLine(l−, l+)
Input: Seed of two leading nodes l−, l+;

Output: A pair of critical nodes n+, n+;

1. n− := l−; n+ := l+
2. do
3. if ∃ adjacent node to n− on the facing line on the left of −−−−→n−n+

4. then
5. substitute n− by that adjacent node (−−−−→n−n+ rotates clockwise);

6. if ∃ adjacent node to n+ on the facing line on the right of −−−−→n−n+

7. then
8. substitute n+ by that adjacent node (−−−−→n−n+ rotates clockwise);

9. until pair {n−, n+} does not change;

Figure 9. Rotation algorithm

Complexity Analysis Let |F| be the total number of

facing nodes. In every node substitution step of algorithm

RotateLine (Figure 9), the line −−−→n−n+ is rotated in the same

direction. Sameness of rotational direction for −−−→n−n+ does

not translate into sameness of movement direction along the

two convex hulls, as there may be back-and forth move-

ments of re-orientation. Such a case arises in Figure 10.

Line −−−→n−n+ starts out as line 1 in the picture and adjusts

itself clockwise to line 2; after this line is reoriented to po-

sition 3, then a backward movement has to be made along

the minus hull to position 4; thus node n is visited twice.

However, such a repetition cannot occur more than once. In

the above example, the algorithm cannot pass from node n
again. The double-scanning of n implies that the second

visit upon this node was made to rectify a previous erro-

neous substitution. The change of direction of scanning
the − convex hull means that the previous direction was

not leading towards a critical node sought after; hence each

node shall be visited at most twice. It follows that the com-

plexity of RotateLine is O(|F|).
Notice that the computation performed in the distributed

manner outlined above would amount to a convex hull al-

gorithm if executed centrally. The state-of-the-art complex-

ity of such an algorithm is O(|S| log |S|) on the number

of nodes |S| [5]. Thus, apart from alleviating the burden

of transmission to a sink, our distributed computation ap-

proach also lightens the total computation burden which is

shared among individual nodes by exploiting their own geo-

metrical awareness.

1

2

3

4
n

+
-

Figure 10. Worst-case scenario for back-and-
forth movement along the convex hulls

5. Simulation

In this section, we evaluate through simulation experi-

ments the effectiveness of our protocol. We implemented

a simulation in C++ and the experiments were run on a

Pentium 4 2.26GHz machine with 512MB of RAM. We fo-

cus on demonstrating the accuracy of the derived critical

quadruplet in estimating the motion direction of an object.

This accuracy depends in effect on the number of sensors

that participate in the computation. We have formulated two

variables which affect this number: (i) the total number of

sensors in the same field, i.e. the sensor density, assuming a

sensing range that encompasses the whole field for all sen-

sors, and (ii) the sensing range itself, assumed to be equal

for all sensing devices.

In our first experiment we have tuned the number of sen-

sors in the same square-shaped experimental field, i.e., the

uniform density of sensors. We assume that the communi-

cation range satisfies the uniform disk connectivity assump-

tion for each sensor. Specifically, leting |S| be the number

of sensors, we generate a square field of side
√|S| and set

the radio range to 3. For this experiment we have assumed

that the motion sensing range encompasses the whole field

for all sensors, thus all sensors generate + or − values

whenever a moving object is present in the workspace. For

each number of sensors, we averaged the size of the esti-

mated slope intervals for a target object that assumes 10 dif-

ferent directions during its motion, while the network cal-

culates one estimate for each different direction. Figure 11a

depicts the results.

In our second experiment (Figure 11b), we have tuned

the sensing range in the same 2-dimensional experimental

field of 3600 uniformly distributed sensing devices. The

field is square-shaped with each dimension being 60 units

long. The sensing range varies from 4 to 62 units. In effect,

the number of nodes that generate a bit (+ or −), increases

and eventually reaches the total number of nodes (3600). As

before, we set the communication range to 3. For each sens-

ing range, we averaged the size of the estimated slope inter-

vals for a target object that assumes 10 different directions
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Figure 11. Variation of Accuracy depending
on Sensor Density and Sensing Range

during its motion, while the network calculates one estimate

for each different direction. Based on the simulation results,

we conclude that the system achieves a high accuracy of es-

timation (less than 2 degrees of variation) when the number

of participating nodes (sensing range, respectively) exceeds

a reasonable amount of 400 nodes (10 units, respectively),

with So being in the order of few tens.

6. Conclusions

In this paper we have introduced a novel, robust, and

effective model for estimating the direction of motion of

a target moving within the field of a binary sensor net-

work. Our model is based on a minimalist pragmatic ap-

proach about the sensing capacities of the nodes, while it

eschews the drawback of centralized processing which bur-

dened previous approaches [2]. All computations are per-

formed within the network, while the communication re-

quirements between individual nodes are minimal. We have

exploited the geometric characteristics of the network to a

full extent and observe that the resulting error in direction

estimation is low. Besides, in contrast to [2], our model is

capable of estimating the direction of a target’s motion from

single instance of observations; it does not require multiple

successive inputs of the sensors’ readings. Moreover, the

algorithmic burden assigned to individual sensor nodes is

minimal and compatible to their computational capabilities.

A computation that would amount to a convex hull algo-

rithm if executed centrally is shared among different sen-

sor nodes for each detection instance, imposing affordable

computation demands on each. In a series of detections, dif-

ferent nodes participate in every new computation, so that

the long-term power resource burden is equally shared by

all nodes for objects following divergent motion paths. Our

model can handle multiple moving targets if these are dis-

tinguishable based on their signatures. A future challenge

is to develop heuristics that will enable the system to distin-

guish between different moving targets which are distinctly

observed but not identifiable by their signatures.
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