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Abstract 
This paper proposes a hierarchical interval constraint 

network and interval propagation techniques for 
automatic tolerance design. The nodes in interval 
constraint networks represent the entities, the attributes, 
and the functional requirements of the mechanical design 
or the constraint functions. The arcs represent the 
relationshp between the entities, the attributes, the 
functional requirements and the constraint functions. We 
developed the forward propagation technique for 
tolerance analysis and the backward propagation 
technique for tolerance synthesis. In tolerance analysis, 
given the entity tolerances, the goal is to ensure that the 
functional requirement tolerances are met. In tolerance 
synthesis, given the functional requirement tolerances, 
the god is to synthesize a new set of entity tolerances. In 
backward propagation, the minimization of the 
manufacturing cost is also considered. During backward 
propagation, the tolerances of entities, which have a 
smaller impact on manufacturing costs, will be tightened 
first. Using this mechanism, we ensure the constraints 
are satisfied and the manufacturing costs are minimized. 

1. Introduction 
Tolerance design plays an important role in the 

relationship between performance and the manufacturing 
costs of a product. Decreasing the tolerance range will 
improve performance but will also increase the 
manufacturing costs. It is desirable to optimize the 
manufacturing costs under the constraints of product 
design, the relationships between tolerances of the 
entities' dimensions and tolerances of the functional 
requirements. In this paper, we develop a c " i n t -  
based reasoning mechanism to analyze a given set of 
design tolerances and synthesize a new set of tolerances 
to satisfy the functional requirements of a product. We 
have also considered the minimization of manufacturing 
cost during the tolerance propagation in interval 
constraint nehvorks. 

List of Svmbols 
V 

V assigned for V 
vup 
qow lower limit of V 
vnom 
V any value in V 

variable (corresponding to entity, attribute, and 
functional requirement) 

upper limit of interval V 

nominal value of the variable 

For a given design of a mechanical part, a 
relationship can be derived for the functional requirement 
in terms of the entities. This relationship can be 
expressed as: Y = f(Xl,X2, ..., Xn) where Y is the 
functional requirement ;and Xi is the i* entity. n is the 
number of entities that are related by the equation to the 
corresponding functional requirement. 

In tolerance anaZyJyis, the entity tolerances, Xl,X2, 
..., Xn, are given. The goal is to ensure that the 
functional requirement tolerance, Y, is met. The 
tolerances Xi and Y, are the range of acceptable values 
for, Xi and Y, respectively. If the assigned functional 
requirement tolerances are not met, the tolerances for the 
entities need to be reassigned by tolerance synthesis in 
order to achieve the functional requirements. 

In tolerance synthesis, the functional requirement 
tolerance, Y, is given. The goal is to determine a set of 
feasible entity tolerances, X1,X2, ..., Xn,' to fulfill the 
functional requirement. The task of tolerance synthesis is 
more diiXcult because ri entity tolerances are determined 
based on one functional requirement tolerance. In 
contrast, in tolerance analysis, one functional requirement 
tolerance is determined based on n entity tolerances. 
Figure 1 gives the concept and relationship of tolerance 
analysis and synthesis. 
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Figure 1. Relationship of tolerance synthesis and 

tolerance analysis. 

1.1 Related Works in Tolerance Design 
The previous works on tolerance design are 

summarized as below. Foster [6] developed techniques 
for tolerance calculation. Turner et al. [19] presented a 
worst-case tolerance analysis. Fortini [5] and Parkinson 
[15] applied statistical analysis techniques. Michael and 
Siddall [12], and Cagan et al. [l] have applied 
optimization techniques for tolerance synthesis. These 
techniques include linear and nonlinear programming, 
and simulated annealing. Lu and Wilhelm [ 101 propsed 
a tolerance synthesis approach, CASCADE-T that used a 
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representation of the condtional tolerance relations that 
exist between features of a part. 

1.2 Related Work in Interval Constraints 
Interval Constraint satisfaction problems (ICSPs) are 

often formulated in AI tasks. A constraint network is a 
declarative structure that consists of nodes and arcs. The 
nodes represent the variables or the constraints. The arcs 
represent the relationshp between the variables and the 
constraints. The variables are labeled by intervals, or sets 
of possible values. The constraints include any type of 
mathematical operation or binary relation. Constraint 
propagation is utilized to perform inferences about 
quantities. For Merent types of variables and definitions 
of satisfaction in constraint satisfaction problems, 
different propagation techniques can be formulated. For 
tolerance design, the variables are labeled by intervals 
and the constraints are n-ary mathematical operations. 

Dechter and Pearl [4], Mackworth and Freduer [ l l ]  
has considered interval constraint networks with the 
domains of the variables as cfiscrete, finite sets. Ladkin 
and Reinefeld [9] has studied the constraints with binary 
relations. Davis and Hyvonen's work is most closely 
related to ours. The constraints in their interval 
constraint satisfaction problems (ICSPs) are n-ary 
mathematical operations and the intervals are real 
intervals. While these methods are able to determine the 
solutions for ICSPs, their definition of consistency and 
satisfaction of the constraint network is not appropriate in 
the problem of tolerance synthesis and analysis of 
mechanical parts. Therefore, these techniques cannot 
solve our problem. The differences of the definitions and 
applications between their work and our work are 
presented in [20,21]. 

1.3 Contributions 
We have approached the problem of tolerance design 

by combining interval constraint network and interval 
propagation techniques. The contributions of our work 
can be summarized as follows: (i) developing herarchical 
interval constraint network to represent the relationships 
between the entities, attributes, and functional 
requirement of a mechanical part, (ii) develop forward 
and backward propagation techniques, and (iii) 
optimizing manufacturing costs in backward propagation. 

2. Interval Constraint Network for Tolerance Design 
2.1. Hierarchical Interval Constraint Network and 

For each mechanical design, the relationship between 
the highest level, functional requirement, and the lowest 
level, entity, can be represented by a hierarchical 
network. The functional requirement describes the 
functions of the design and the requirement to satisfy 
these functions. Each functional requirement can be 
described as a function (constraint) in terms of attributes. 
For example, the functional requirement, volume of a 
sphere, can be described as a function of the attribute, 

Constraint Functions 
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inner radius. An attribute is also described as a function 
in terms of the mechanical part's entities. The inner 
radus can be computed as a function in terms of the outer 
radius and the thickness of the material. These 
relationships are describcd as a hierarchical interval 
constraint network as shown in Figure 2 in our approach. 

Functional 
Entity Attribute Requirement 

C 0 
e . .  

m . .  

O-+o 
9 . .  * . .  

Constraints Constraints 

Figure 2. A hierarchicall interval constraint network 
representing the conistraints between the entities, 
attributes, and functional requirements of the 
mechanical design. 

2.2 Satisfaction of Interval Constraint Networks for 
Tolerance Design 

The definition of satisfaction in the interval 
constraint network always depends on the purpose of 
application. A good understanding of the goal of 
constraint satisfaction for the problem investigated and an 
appropriate definition of the satisfaction of the constraint 
network are the foundations of a successful constraint 
network solution to the problem. 

In ICSP, according to IHyvonen [7], the satisfaction of 
the interval constraint network is defined as follows: 

A variable, Vi, is consistent if and only if 

V(Vi E VilVi =vi), 

3(v, E v, ,..., vi., E vi-1 ,Vi+l E Vi+l, ..., v, E v,l 
VI = V I  )..., vi-1 = Vi.1, Vi+l = Vi+l, ..., v, = v, ) 

such that all constraints are satisfied. 
The constraint network is satisfied if and only if all 

variables are consistent. 

The properties of the consistency of a variable as 
described in ICSP are not appropriate for tolerance 
design. For example, A = f(L, W) = L W, where A is 
area, L is length, and W is width of a rectangle. Given 
the tolerances, L, W, and A, F(L, W) must be a subset of 
A so that the designed tolerances for length and width 
satisfy the expected tolerance of the rectangular. (F() is 
interval constraint functiori based on f().)However, using 
this definition, even though all the variables in the 
network are consistent, the usual definition of satisfylng a 
mechanical tolerance is not satisfied. 

Since the purpose of tolerance design in an interval 
constraint network is different from the purpose of ICSP, 
a new definition of satisfaction is required. The 



satisfaction of the network depends on the consistency of 
the components in the network. In ICSP, the satisfaction 
of the network is defined in terms of the consistency of 
the variables. However, based on the application of 
tolerance design, the definition of consistency should 
focus on constraints. 

In a constraint network for tolerance design, the 
Constraint is multipldsingle inputs and single output 
(MISO or SISO) and is represented as a triple, 
Ci(U,k,f()). U is the set of indexes for the input variables 
and k is the index of the output variable for the constraint 
Ci. f() i s  the constraint function. For example, U = { 1,2} 
and k = 3, if the constraint function of Ci is V3 = 

fWLV2). 
The definitions of consistency of a constraint and 

satisfaction of the interval constraint network for 
tolerance design are as follows: 

Definition 1: 
A constraint, Ci(U,k,f()), is consistent if and only if 

( VVj E vj I vj = Vj ) , ( 3 V k E v k  I Vk = vk ) 
jeU 
such that Ci(U,k) is satisfied. 
where U is the set of indexes for the input variables and 
k is the index of the output variable for the constraint 

Definition 2: 

Ci. 

The interval constraint network for tolerance design is 
satisfied if and only if all of the constraints are 
consistent, 

Based on the definitions of constraint consistency and 
network satisfaction, the tolerances assigned to the 
entities are ensured to satisfy the tolerances of the 
functional requirements. The interval computed from the 
input intervals and the interval constraint function is 
expected to be a subset of the assigned output interval for 
each constraint in the network. 

3. Tolerance Propagation 
With these new definitions of consistency and 

satisfaction for tolerance design, new tolerance 
propagation techniques are needed. With such 
techniques, tolerances can be propagated from variable to 
variable in the constraint network to ensure that the 
constraints are consistent. 

Tolerance propagation is utilized to update the 
intervals in the network to make the interval constraints 
consistent. Tolerance can be propagated from the input 
intervals of a constraint to the single output interval, 
which is known as forward propagation. Tolerance can 
also be propagated from the single output interval of a 
constraint to multiple input intervals, known as backward 
propagation. The forward and backward propagation 
techniques for tolerance design are developed based on 
Definitions 1 and 2. Given a constraint with constraint 
function Xk = f(X1,X2, ..., Xu), with input intervals, 
X1,X2, . . . ,Xn, and output interval, Xk, if the constraint is 

not consistent (F(Xi,X2, ..., X& is not a subset of Xk), 
either Xk must be relaxed (widened) or one or more of the 
input intervals must be tightened (narrowed). Xk is 
relaxed by propagating X1,X2, ..., and Xn forward. 
Xi&?, ..., and x n  are tightened by propagating Xk 
backward 

3.1 Forward Propagation for a Single Constraint 
The forward propagation is based on the constraint 

function such that the intervals of the input variables are 
propagated to the interval of the single output variable. If 
the interval propagated from the input intervals is not a 
subset of the output interval, the output interval is 
updated (relaxed) to the union of the propagated interval 
and the original assigned output interval, otherwise, the 
constraint is consistent and nothing is changed. The 
algorithm for forward propagation is given as: 

Forward Propagafion for constraint, C({ 1,2, ..., n},k,f()), 
m(X1,x2, ..., xn; xk) 
Propagated from Input Tolerance to the Upper Limit 
of the Output Tolerance 

where X i 9  = Xiup 

Xi9 = Xilow 

“.cupl= f( x l p  ..., xn(p 
ifXk is monotonic increasing with 
respect to Xi. 
if x k  1s monotonic decreasing with 
respect to Xi. 

Propagated from Input Tolerance to the Lower Limit 
of the Output Tolerance 

where XiK = Xiup 

%low’ = f( x l K >  ...> xnK 
if x k  is monotonic increasing with 
respect to XI. 
if Xk is monotonic decreasing with 
respect to Xi. 

XiK = xilow 

Relaxing the Output Tolerance 
If %p’ < %ow or %ow’ ’ *up 7 

Otherwise, 
NO SOLUTION 

=up = 

xklow = xklowt 
if “k.p‘ ’ “.cup 
if wow’ < %ow. 

3.2 Backward Propagation for a Single Constraint 
The backward propagation is also based on the 

constraint function such that the interval of the output 
variable is propagated to one or more of the intervals of 
the input variables. If the constraint is not consistent, the 
output interval is propagated to the input intervals by 
tightening each of the input intervals. We integrate the 
manufacturing cost functions with the backward 
propagation in order to minimize the increase of cost 
when we tighten the tolerances. 
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3.2.1 Manufacturing Cost Functions and Sensitivity 
Several researchers [S, 16,17,18] have modeled the 

relationship between tolerance (accuracy of manufactured 
dimensions) and manufacturing cost of achieving that 
accuracy. For examples, Spotts [18] developed a model 
based on the inverse square of tolerance; Speckhart [I71 
developed an exponential model. In this paper, we utilize 
the exponential model, which is the most commonly used. 

Manufacturing Cost Function for the tolerance lower 
limit: 
MCxiJx) = AK + BK E M  CK (Xinom - X) 1 

Figure 3 shows examples of the manufacturing cost 
functions of the upper and lower limits. 

Manufacturing Cost 

I 
9.996 9.998 10.002 10.004 xi 

Figure 3 Manufacturing cost functions of the upper limit 
and lower limits, where Xinom = 10.0, & = AK = 

0.515, Bq = BK = 2.52, Cq = CK = -1473.0. 

The sensitivity of tolerance is the ratio of the change 
in manufacturing cost to the change in dimension. It is 
formulated as follow: 
Sensitivity of xiq: 

Figure 4 shows examples of the sensitivity of the upper 
and lower limits. 

Sensitivity 

20 ,,71 
9.996 9.998 

-loO'l t i 
-200"Y -30011 

Figure 4 Sensitivity of the upper limit and lower limit 
using the manufacturing cost functions in Figure 3. 

3.2.2 Optimization 
To integrate the optimization of manufacturing cost 

with the backward propagation, the optimization problem 
is formulated as follow: 

hip 2 0 

Axi, 2 0 

if x k  is monotonic increasing with respect to Xi 

if xk is monotonicdecreasing with respect to Xi 

forll ; i<n 

Subject to 

Axip < 0 if X, is monotonic increasingwith respect to Xi 

Axip 2 0 if xk is monotonicdecreasing with respect to Xi 
fo r l< i<n  

where MCxicp(x) and MCxiK:(x) are the manufacturing 
cost of Xiq and xiK, respectively. 
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Backward Propagation with Optimization X, : 
1. Compute IS(xiq)l , arrange them in ascending order 

and save the corresponding index in a set Sen. 
2. Initialize k to 1. 
3. Retrieve the first k element of Sen. 

Change all the corresponding Xiq by AXiq such that 
all their corresponding IS(Xiq)l are the same. 

4. If 

f(x1, -h', 3x2, - h 2 + .  ,,.,>xn+. -&U+. ) > xk,, 

If the sensitivities of the first k elements are 
smaller than that of the next element of Sen. 

Repeat 3. 

k = k + l ,  
If k > n, NO SOL WION. 
Repeat 3. 

Else 

Else 
Save the current values of Xiq as solution. 

Backward propagation with optimization from Xilow is 
developed similarly. 

Optimization problem in Backward Propagation: 

Initial settings: 
% = 10.005, dilow = 9.996, cup = 0.007, 
donom = 10.003, dinom = 9.998, Cnom = 0.005 

P 

Manufacturing cost functions of diameters: 
MC@(x) = 0.515 + 2.52 EX& -1473 (X 

MCdi(X) = 1.11 + 3.11 Exp( -1132 (dinom 
&nom) ) 

x)) 

Backward Propagation: 
1. IS(dou$] = 195.06 

IS(dilow)l = 365.90 

Example: Sen = fd0up, dilowl 

constraint function is as follow: 3. AdouD = 0.0004271, 
Figure 5 shows an example of shaft and bearing. The 2. k = 1 

C =  do - di 
10.0045729. 

4. hp - dilow = 0.0085729 > 0.007 = cup 

where c is the clearance, do and di are the dameten. IS(doup>l = 365.92 > IS(dilow)l = 365.90 
k = 2 = n  

3. A h p  = 0.0006834, 
= 10.00389, 

Adilow = -0.00089, , 
dilow = 9.99689, 
IS(&$l= 1000.59, 
IS(dilow)l = 1002.09, 
%p - dilow = 0.007 = cup 4. 

Therefore, the solution is doup = 10.00389, and 
dilow 9.99689, h,., and dilow can be solved similarly 
by propagating clow backward. 

Figure 5 Shaft of Bearing 

The upper limit of clearance is in terms of the lower limit 
of do and upper limit of di, and the lower limit of 
clearance is in terms of the upper limit of do and lower 
limit of d: 

4. Conclusion 
Tolerance design is essential in manufacturing and it 

plays an important role in relating performance to the 
manufacturing cost of a product. A good tolerance design 
method should be able to assign a set of tolerances for the 
dmensioning entities such that the maximum ranges of 
tolerance are obtained while satisfying the functional 
requirement. In this paper, a hierarchical interval 
constraint network is described and the techniques for 

cup = doup - dilow 
c10w = dolow - diup 
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tolerance propagation are developed. The contributions 
are summarized as follows: 
(1) A hierarchical interval constraint network to 

represent the relationships among the functional 
requirements, attributes, and entities is developed. 

(2) The techniques of forward and backward propagation 
for are developed. Optimization of manufacturing 
costs is considered in backward propagation. 
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