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ABSTRACT 
In this paper, we extend our previously proposed Viterbi 

Bayesian predictive classification (VBPC) algorithm to ac- 
commodate a new class of prior probability density function 
(pdf) for continuous density hidden Markov model (CDHM- 
M) based robust speech recognition. The initial prior pdf of 
CDHMM is assumed to be a finite mixture of natural con- 
jugate prior pdf’s of its complete-data density. With the 
new observation data, the true posterior pdf is approximat- 
ed by the same type of finite mixture pdf’s which retain the 
required most significant terms in the true posterior den- 
sity according to their contribution to the corresponding 
predictive density. Then the updated mixture pdf is used 
to improve the VBPC performance. The experimental re- 
sults on a speaker-independent recognition task of isolated 
Japanese digits confirm the viability and the usefulness of 
the proposed technique. 

1. INTRODUCTION 
In order to deal with the possible modeling/estimation 
errors and/or unknown mismatches between training and 
testing conditions, we have been investigating a Bayesian 
predictive classification (BPC) approach for robust speech 
recognition [2, 3,4, 51. In this approach, we use a quite gen- 
eral prior pdf (probability density function) p(Alp) to char- 
acterize the variability of the model parameter A caused by 
the abovementioned distortions. We try to average out this 
variability while making decision for speech recognition and 
such a BPC rule operates as follows: 

W = argmaxj(W1X) = a rgmFj (XlW) .  &(w) (1) 

where X is the observed feature vector sequence to be rec- 
ognized, Pr(W) is the language model with parameter I?, 

W 

P(XlW) = J f(XlA, W)P(AlV, W)dA (2) 
R 

is called the predictive pdf of the observation X given the 
symbol sequence W, f(XlA, W) is the conventional acoustic 
model with parameters A, and T@ is the recognized symbol 
(usually word) sequence of interest embedded in the obser- 
vation sequence X. For a Gaussian mixture continuous den- 
sity hidden Markov model (CDHMM) based speech recog- 
nition system, we have to use some approximation methods 

to compute the predictive density in Eq. (2) and thus pro- 
pose a Viterbi approximation method in [5] as follows: 

B(XlW> = max J f (X,  8, IlA, W)P(AlV, W)dA (3) 

where s is the unobserved state sequence and I is the associ- 
ated sequence of the unobserved mixture component labels 
corresponding to the observation sequence X. A detailed re- 
cursive search algorithm to implement Eq.(3) can be found 
in [5] .  We observed that an appropriate prior pdf is crucial 
for BPC based robust speech recognition. In [5], a con- 
strained uniform prior distribution was adopted. In spite 
of its simple functional form, it is difficult to estimate it- 
s initial hyperparameters and to update them even when 
new data/knowledge become available. As already shown 
in [2, 3, 41, by adopting a family of natural conjugate prior 
pdf’s of the complete-data density of CDHMM, BPC help- 
s in many types of distortions [2]. If we can access some 
adaptation data, by combining BPC with the data-driven 
on-line Bayesian adaptation techniques [l], the prior pdf 
can be made more appropriate and thus the robustness of 
the speech recognition system can be further enhanced [3]. 
Furthermore, the knowledge and/or experience of the inter- 
action between speech signal and the possible mismatch can 
also be used to guide us to obtain a better prior pdf which 
can improve the BPC performance as shown in [4]. 

Motivated by the works in [l, 2, 3, 41, in this paper, we 
extend our VBPC formulation to accommodate not only the 
abovementioned conjugate prior pdf’s of the complete-data 
density of CDHMM, but also their finite mixtures. It is this 
finite mixture approximation approach that this paper fo- 
cuses on. More specifically, the initial prior pdf of CDHMM 
is assumed to be a finite mixture of natural conjugate prior 
pdf’s of its complete-data density. With the new observa- 
tion data, the true posterior pdf is approximated by the 
same type of finite mixture pdf’s. In the operation, we 
use an N-best search algorithm to retain the required most 
significant terms in the true posterior density according to 
their contribution to the corresponding predictive density. 
In this way, a more accurate prior/posterior pdf of the H- 
MM parameters can be obtained and hopefully the VBPC 
performance is improved. The above Bayesian model adap- 
tation and VBPC decoding strategy is applied to a speaker- 
independent recognition task of isolated Japanese digits to 
deal with two types of mismatch between training and test- 
ing conditions: i) the mismatch caused by additive white 
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Gaussian noise, ii) cross-gender mismatch. In the following 
sections, we will describe the details of the the proposed 
method and the experimental results, and finally conclude 
with a confirmation of the viability and the usefulness of 
the proposed techniques. 

2. SEQUENTIAL BAYESIAN LEARNING OF 
CDHMM BASED ON FINITE MIXTURE 
APPROXIMATION OF POSTERIOR PDF 

For the simplicity of the discussion, we consider the iso- 
lated word recognition where each word is modeled by an 
N-state CDHMM with parameter vector A = ( r ,A ,O) ,  
where 7r is the initial state distribution, A is the transi- 
tion matrix, and 8 is the parameter vector composed of 
mixture parameters 8; = {Wik,mik,Tik}k=1,2, ..., K for each 
state i, with the mixture coefficients W i k ,  the mean vec- 
tors mik , and the precision (inverse covariance) matrices 
rik. Given initial prior pdf p(AlW) and observation sam- 
ples X" = { X I ,  x2 , .  . . , x n } ,  the formal sequential Bayesian 
learning is performed as follows: 

where R denotes an admissible region of the parameter s- 
pace, and f ( x n I A , W )  is the likelihood function. Start- 
ing the calculation from p ( A ( X o , W )  = p ( A [ W ) ,  we can 
obtain a sequence of prior/posterior densities p(AlX', W ) ,  
p(A1X2, W ) ,  and so forth, with gradually increased accura- 
cy [l]. Theoretically speaking, the posterior pdf after ob- 
serving x can be computed as 

p(Alx, W )  P ( V v f ( X l A ,  W )  = CP(nlw).f(x, 44 W )  
L C T  

(5) 
where L, called a path, denotes a combination of a state path 
s and a mixture component label sequence I ,  and the path 
space T consists of all possible L. We further examine the 
predictive density of x 

L C T  

where W ( X ~ L ,  W )  = J p ( A l W ) .  f ( x ,  L [A, W )  dA. a ( x l ~ ,  W )  
denotes the component part of the predictive density cor- 
responding to the path L in T, which can be computed via 
VBPC algorithm in [5 ] .  We notice that the true posteriori 
pdf in Eq. (5) is a finite mixture function, which consists 
of numerous homogeneous terms. Each term in turn cor- 
responds to a path in Y. It is reasonable to pick up the 
M most significant terms among Y, based on their contri- 
bution to the predictive density, i.e. ~ ( x I L ,  W ) ,  to approx- 
imate the true posterior pdf and truncate others in order 
to keep computation and memory under control. That is, 

operation to choose the M largest items, denotes the 
I = argmax!z) a ( x l ~ ) ,  where argmax(M) denotes the 

set of the M most significant terms. Then the approximate 
posterior pdf can be expressed as 

= W L  . p ( A l ~ ,  X ,  W )  (7) 
r e B ( M )  

where wL = w(x'L7w)  and p ( A l ~ ,  x ,  W )  denotes 

natural conjugate prior of the complete-data density given 
L ,  whose form will be explained later. 

Z , , = ( M )  w f x I L 7 w ) '  

3. N-BEST BASED IMPLEMENTATION 
As a first step, we only consider the uncertainty of the mean 
vectors in CDHMM. Assuming that we have observed train- 
ing data X("-') ,  the current prior/posterior pdf follows 
Eq.(7) and can be shown as 

p(AlX("-'), W )  = wL1 .p(AlX("-l), ~ 1 ,  W )  
Ll'Sy)  

where 7:;;) and &$ are hyperparameters. The above equa- 
tion also gives the form of natural conjugate prior pdf of the 
complete-data density given ~1 when only mean vectors of 
CDHMM are random. When a new data x n  becomes avail- 
able, the current likelihood function can be approximately 
calculated by N-best VBPC algorithm and also expressed 
as a summation of M mixtures, i.e. 

where 

T 

J-fififi exp[- - Tikd  

2 i=l k=l d=l 
T 

t=1 
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From Eq.(4), the new posterior pdf p(AlX", W )  includes 
M 2  terms, denoted here as the set E ( M 2 ) .  Each term of 
Z ( M 2 )  corresponds to a combination of each ~1 in 5iM) and 
each ~2 in We denote it as L, i.e. L = ~ 2 .  Then 

i = l  k = l  d = l  

and p(AlX", L, W )  has the same form as p(AIX("-'), ~ 1 ,  W )  
in Eq.(8), with the adapted hyperparameters r:;; and piiL 
given as follows: 

In order to reduce the computational and storage 
overhead, we still choose the M most significant terms 
from based on ~ ( X , ~ X ( " - ~ ) , L , W ) ,  i.e. E ( M )  = 
argmad') 9 ( M 2 )  a(x,lX("-l), L,  W ) ,  and approximate the 
posterior distribution p(AlX", W )  by these M terms: 

- .  . .  - .  , . 
p (  A I p ,W)  to improve 'VBPC's performance. 

4. IMPLEMENTATION ISSUES 
One implementation issue is the hyperparameter estimation 
of the initial prior pdf, i.e., how to design a suitable prior 
pdf from available parameters of the pre-trained CDHMM's. 
Following the ideas in [l, 2, 3, 41, we use the initialization 

gd,where E > 0 is a weighting coefficient, Cik  is a weight 
count accumulated for the k-th mixture component of the 
state i during training CDHMM's parameters, and g d  = 
d2 . pd ( p  > 1.0) is used to avoid over smoothing in higher 
dimension of the mean vector. 

Another issue is related to the choice of top N mixand- 
s in the finite mixture approximation. In practice, if the 
chosen mixands are too similar to each other (it is the case 
especially when the mixands are derived from N-best pathes 
as in the above N-Best implementation), the finite mixture 
approximation of the posterior pdf can not provide more 

method as fOllOWS: piEi = m i k d  and = E . T i k d  . Cik . 

'7 m ,  
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Figure 1 a Performance comparison of noisy speech recog- 
nition at SNR = 20(dB) as a function of amount of adap- 
tation data among methods in which sequential Bayesian 
learning is combined with plug-in MAP decoding or VBPC 
(with mixture number M = 1,3,5) 

information than a unimodal approximation. A heuristic 
solution to mitigate the problem is to merge those similar 
mixands during the N-best approximation process as de- 
scribed below. Let the mixands f(x,, L ~ I A ,  W )  in Eq.(9) be 
indexed by L:), $), .... ~ ! j ~ ) ,  which correspond to the top 
M most sign.ificant mixands in in order. The dissimi- 
larity measure, d(&im), LF)) ,  between two mixands is simply 
defined and computed by directly checking the path differ- 
ence between two pathes of L;") and L?). 

IF d ( ~ $ " ) ,  L?)) 5 E I ,  where we assume m < n and is 
a preset threshold; 

THEN we merge mixand LP) with L;"): (i)to remove 
(m) - mixand LP),  (ii)to update the weight of L:"') as c L 2  - 

~ 2 .  (CLim) + c L 2  ), where ~2 > 0 is another preset constant 
to control the merging. 

By choosing the control parameters ~1 and ~2 appropri- 
ately, we can obtain the needed mixture approximation of 
the posterior pdf. 

(n) 

5. EXPERIMENTAL RESULTS 
To examine the viability of the above algorithm, it was 
applied to a speaker-independent (SI) recognition task of 
isolated Japanese digits where the unknown mismatch ex- 
ists between training and testing conditions. We have s- 
tudied two types of mismatch: i) the mismatch caused by 
additive white Gaussian noise, ii) cross-gender mismatch. 
The speech data is selected from ATR Japanese Speech 
Database. It contains 0-9 Japanese digit utterances from 
60 speakers (half male, half ffemale). Each digit is modeled 
by a left-to-right 4-state CDHMM without state skipping 
and each state has 6 Gaussian mixture components with 
diagonal covariance matrices. Each feature vector consists 
of 16 LPC-derived cepstral coefficients. 

5.1. Noisy Speech Recognition 
One mismatch to be examined is caused by additive 
noise. While SI training is performed on clean speech 
data, computer-generated Gaussian white noise is added 
to the testing and adaptation data with the same lev- 
el of intensity prior to the preprocessing. The exper- 
imental results are shown in Figure 1, where "Plug-in- 
MAP+Adp" denotes that we use plug-in MAP decision rule 
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Figure 2. Performance comparison of cross-gender speech 
recognition as a function of amount of adaptation data 
among methods in which sequential Bayesian learning is 
combined with plug-in MAP decoding or VBPC (with mix- 
ture number M = 1,3) 

in speech recognition and an on-line Bayesian learning al- 
gorithm (see [l] for details) to adapt CDHMMs’ parame- 
ters, and where “VBPC+Adp-Mixl” , “VBPC+AdpMix3”, 
and “VBPC+AdpMix5” denote that VBPC decision rule 
is used in speech recognition and the prior/posterior pdf 
of CDHMM is approximated by one, three, and five mix- 
ture pdf’s respectively in each step of adaptation. It is 
shown that VBPC method surpasses the conventional plug- 
in MAP decision rule when no knowledge about mismatch 
is available at the beginning. The performance of VBPC 
can be further improved via incremental adaptation of the 
prior/posterior pdf continuously with new adaptation da- 
ta. It is observed that VBPC consistently outperforms the 
plug-in MAP decoding in this case. In addition, a bet- 
ter performance of VBPC can be achieved by using three 
mixture components in the prior/posterior pdf than a u- 
nimodal pdf if the pdf mixands are appropriately pruned 
and merged as described above. But only a slight improve- 
ment has been observed when we further increase mixture 
number from three to five. 

5.2. Cross-gender Speech Recognition 
We have also examined a more general mismatch caused 
by gender difference. In the cross-gender experiments, we 
train the CDHMMs with all the female speech data. The 
male speech data are divided into two sets. One is used 
for adaptation and another for testing. The experimental 
results are shown in Figure 2. A similar learning behavior 
is observed here as the one in noisy speech recognition. We 
observe that the initial improvement of VBPC over plug-in 
MAP rule without any adaptation data is minor compar- 
ing to that in noisy speech recognition. However, a larger 
improvement has been observed when we replace unimodal 
pdf with three-mixture pdf. It suggests that mixture ap- 
proximation helps more when dealing with a more complex 
mismatch situation. 

5.3. Convergence Property of VBPC 
The convergence property of the sequential Bayesian learn- 
ing in terms of the recognition accuracy improvement based 
on VBPC and plug-in MAP decoding in noisy speech recog- 
nition is displayed in Figure 3. The results show that the 
on-line Bayesian learning schemes maintain a good asymp- 
tomatic convergence property in both VBPC and plug-in 

Figure 3. Convergence property comparison at S N R  = 
20(dB)  among methods in which sequential Bayesian learn- 
ing is combined with plug-in MAP decoding or VBPC (with 
mixture number M = 1) 

MAP decision rules. 

6. DISCUSSION AND CONCLUSION 
The experimental results show that it is helpful to use a fi- 
nite mixture approximation in both Bayesian learning and 
VBPC calculation. The improvement greatly depends on 
how properly the true pdf is pruned. Furthermore, in the 
current implementation, the new precision information in- 
corporated in Bayesian learning procedure, namely .$,) in 
Eq.(15), is directly derived from pre-trained model’s preci- 
sion as in Eq.(ll). Thus we can not warrant that the up- 
dated posterior pdf’s reflect the mismatch more accurately. 
To take uncertainty of both mean and precision parameters 
simultaneously into account might be helpful. The sequen- 
tial learning of a mixture distribution, which has no suffi- 
cient statistics with a fixed dimension, seems to be a quite 
challenging problem. Although the formal Bayesian learn- 
ing theoretically converges to the optimal solution under 
the condition of unlimited memory and calculation, only 
suboptimal methods can be implemented in practice. The 
N-Best implementation studied here is sensitive to mixands 
pruning, selection, and merging in the sequential adapta- 
tion procedure. More efforts are still needed to look for a 
better prior pdf in BPC approach. 
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