
On the parallel time complexity of undirected
minimum spanning trees

225

connectivity and

Ka Wong Chongt Yijie Hanz Tak Wah Lams

Abstract. We present a new approach to finding min-
imum spanning trees of weighted undirected graphs on
the parallel random access machine (PRAM) without
concurrent-write power. This approach gives an algo-
rithm that runs in O(log n) time using n + m processors
on the EREW PRAM, settling a long-standing open
problem in the literature.

1 Introduction

Given a weighted undirected graph G with n vertices
and m edges, the minimum spanning tree (MST) prob-
lem is to find a spanning tree (or forest) of G such
that the sum of the edge weights of the spanning tree
is minimized. This problem has a long history. Se-
quential MST algorithms running in O(mlogn) time
are well known (see [17] for a survey). A more in-
volved algorithm, developed by Gabow et al. [8], runs
in O(mlog/?(m, n)) time, where P(m, n) = min{i]
logci) n 5 m/n}. Very recently, Chazelle [2] further im-
proved the time complexity to O(ma(m, n) log a(m, n)),
where cr(m, n) is the inverse Ackerman function. On the
other hand, Karger et 01. [13] designed a randomized al-
gorithm running in expected linear time.

In the parallel context, the MST problem is closely
related to the connected component problem (i.e., find-
ing the connected components of an undirected graph).
The connected component problem actually admits a
faster algorithm in the sequential context, yet tech-
niques for solving the two problems in parallel are very
similar. If concurrent write is allowed, it is relatively
simple to solve both problems in O(logn) time using
n + m processors on the CRCW PRAM [l, 61. Using
randomization, Cole et al. [5] were able to improve the
processor bound to (n + m)/ logn, while maintaining
O(logn) expected time.

For the exclusive write models (i.e., CREW and
EREW PRAMS), O(log2 n) time algorithms for the con-
nected component and MST problems were developed

T-Plan&Institut fiir Informatik, 66123 Saarbriicken, Ger-
many. Email: chong@mpi-sb.mpg.de

SElectronic Data Systems, Inc., 750 Tower Drive,
Mail Stop 7121, CPS, ‘IYoy, MI 48098, USA. Email:
yhanOl’Qcps.plnin.gmeds.com

SDepartment of Computer Science, The University of Hong
Kong, Hong Kong. Email: tvlsmlDcs.hku.hk

two decades ago (see [15] for a survey). For a while, it
was believed that exclusive write models cannot over-
come the O(log2 n) time bound. The first breakthrough
is due to Johnson and Metaxas; they devised O(log’.5 n)
time algorithms for the connected component problem
[lo] and the MST problem [ll]. Their results were
later improved by Chong and Lam to O(lognloglogn)
time [4, 31. Randomization can help again. Karger et
al. [14, 121 devised a randomized algorithm running in
O(logn) expected time; more recently, Poon and Ra-
machandran [16] gave the first randomized algorithm
using linear expected work and polylog expected time
(precisely, O(log n . log log n . 21°s’ “)).

Until now, it has been open whether the problems
can be solved deterministically in O(logn) time on the
eclusive write models. Notice that O(logn) is optimal
in view of the lower bound results of Cook et al. [7].

This paper presents a new parallel algorithm for the
MST problem. It runs in O(logn) time using n + m
processors on the EREW PRAM. The algorithm is
deterministically in nature and does not require special
operations on edge weights (other than comparison). To
simplify the discussion, we first focus on the CREW
PRAM, showing how to solve the MST problem in
O(log n) time using (n+m) log n processors. Afterwards
techniques for adapting to the EREW PRAM and
reducing the processor bound are sketched.

The rest of the paper is organized as follows. Sec-
tion 2 provides some basic ideas about finding minimum
spanning trees in parallel. Section 3 gives an overview
of the schedule of the concurrent processes used in the
algorithm. Section 4 lays down the phase-by-phase re-
quirement of each process. Section 5 shows the details of
the algorithm. The proof of correctness of the algorithm
appears in Section 6.

2 Preliminaries

In this section we present a naive approach to finding
MST, based on which we can contrast our algorithm
with existing ones.

Let G be a weighted undirected graph. For every
edge e E G, denote w(e) as its weight. Without loss
of generality, we assume that the edge weights are all
distinct. Thus, G has a unique minimum spanning tree,
which is denoted by T,’ throughout this paper. We also

226

assume that G is connected (otherwise, our algorithm
can find the minimum spanning forest of G).

Let B be a subset of edges in G which contains no
cycle. B induces a set of trees F = {Tl, Tz, . . . , Ti} in
a natural sense: Two vertices in G are in the same tree
if they are connected by edges of B. If B contains no
edge incident on a vertex 21, then v itself forms a tree.
Consider a vertex u in a tree Tj and any edge (u, v) in
G. If v also belongs to Tj, it is called an internal edge;
otherwise, it is an ezternal edge.

Definition: B is said to be a X-forest if each Tj f F
has at least X vertices.

For example, an empty set B of edges is a l-forest
of G and a spanning tree such as TG is an n-forest.
Consider a set B of edges chosen from T,‘. Assume that
B is a X-forest. We can augment B to give a 2X-forest
using a greedy approach: Let F’ be an arbitrary subset
of F such that F’ includes all trees Tj E F with less than
2X vertices (F’ may contain some trees with 2X or more
vertices). For every tree in F’, we pick the minimum
external edge. Denote B’ as this set of edges.

LEMMA 2.1. B u B’ is a 2X-forest and consists of edges
in T,’ only.

Proof. Every tree in F - F’ already contains at least
2X vertices. Consider a tree Tj in F’. Let (~L,v) be
the minimum external edge of Tj. Then v belongs to
another tree Ty E F. With respect to BUB’, all vertices
in Tj and Tf are connected together. Among the trees
induced by B U B’, there is one including Tj and Tj,
containing at least 2X vertices. Therefore, B U B’ is a
2X-forest of G. 0

Based on Lemma 2.1, we can find T,’ in [lognJ
stages as follows:

Notation: Let B[p,q] denote UEzpBk if p 5 q,
otherwise an empty set.

procedure Iterative-MST(G)

PROPOSITION 2.2. Let T be any one of the trees in-
duced by B[l, k], for any 0 5 k 5 [IognJ. Let eT be the
minimum external edge of T. For any subtree (i.e., con-
nected subgraph) S of T, the minimum external edge of
S is either eT or an edge of T.

1. for i= 1 to [IognJ do /* Stage i */ 3 Overview of the algorithm

Our algorithm consists of IlognJ processes running
concurrently. For 1 5 i < LlognJ, Process i is
responsible for finding a set B+ which can be produced
at Stage i of the procedure Iterative-MST. To be precise,
let F be the set of trees induced by B[l,i - 11 and let
F’ be an ‘arbitrary subset of F including all trees with
less than 2i vertices; Bi contains the minimum external
edges of the trees in F’. Process i makes use of the
output of Processes 1, . - -, (i - 1) (i.e., B1,. -. , Bi-I),
but never looks at their computation. We expect that
after Bi-l is found, Process i can compute Bi in time
O(l)-

(a) Let F be the set of trees induced by B[l, i - l]
on G. Let F’ be an arbitrary subset of F such
that F’ includes all trees T E F with less than
2” vertices.

(b) Bi +- {e 1 e is the minimum external edge of
TE F’)

2. return B[l, [IognJ].

Notice that B[l,i], as computed after i stages, is
a subset of T,’ and a 2i-forest. Different strategies
for choosing the set F’ in Step l(a) may lead to
different Bi’s. Nevertheless, at the end B[l, [lognj]

contains exactly all edges of TG. This algorithm is
similar to Bor&vka’s MST algorithm (see e.g., [17]),
which is developed in the sequential context. Using
standard parallel algorithmic techniques, each stage
can be implemented in O(logn) time on the EREW
PR41M using a linear number of processors (see e.g.,
[9]). Therefore, T; can be found in O(log2 n) time. In
fact, many parallel algorithms for finding MST (see e.g.,
115, 9, 10, 11, 4, 31) are based on a similar approach.
These algorithms are uniform in the sense that the
computation for Bi starts only after Bi-1 is available
(see Figure l(a)).

An innovative idea exploited by our algorithm is the
“multi-thread” computation. It uses concurrent pro-
cesses to find the Bi’s. In particular, the computation
for Bi starts long before B;,l is found. After Bi-1
is found, Bi can be computed in O(1) time (see Fig-
ure l(b)). As a result, TG can be found in O(logn)
time.

Our algorithm takes advantage of some naive prop-
erties of the sets B1, B2, - . - , Bil,, no. These properties
actually hold with respect to most of the determinis-
tic algorithms for finding MST, though not having been
mentioned explicitly. Recall that for all 1 5 i 5 [log nJ ,
each edge in Bi is the minimum external edge of one of
the trees induced by B[l, i - 11.

PROPOSITION 2.1. Let T be any one of the trees in-
duced by B[l,k], for any 0 5 k 2 1lognJ. Let (a,p) and
(b, q) be two external edges of T, where a, b E T and are
distinct. Then any edge on the path connecting a and
b in T has weight smaller than max{ur(a,p), w(b, q)}.

Before showing the detailed schedule of Process i,

227

Process

B1

cl

stage log ?I

Rag n

(4

Bir2

Superstep
Phase [log(i- I)J

04

Figure 1: (a) The iterative approach. (b) The multi-thread approach.

we give two examples illustrating some of the main ideas
in our algorithm. In Examples 1 and 2, Bi is computed
in time ci and $5 respectively after Bi-1 is found, where
c is some tied constant.

Process i starts off with a set Qe of adjacency lists,
each list contains the 2i - 1 smallest edges incident
on a vertex in G. Notice that the edges kept in Qo
are already suflicient for computing Bi (consider each
tree with less than 2i vertices induced by B[l,i - 11,
its minimum external edge must be one of the 2i - 1
smallest edges incident on its vertices).

Example 1: This is a straightforward implementa-
tion of Lemma 2.1. Process i starts when B1, - -. , Bi-1
are all available. With respect to B[l, i - 11, the vertices
of G are partitioned into a set F of trees. We merge the
adjacency lists of the vertices in each tree, forming a
combined adjacency list. Notice that if a tree T has less
than 2i vertices, its combined adjacency list contains
at most (2i - 1)2 edges. For each combined list with
at most (2i - 1)2 edges, we remove the internal edges
and then find the minimum external edge. The collec-
tion of such minimum external edges is reported as Bi-
The computation takes time at most ci, where c is some
suitable constant. To see the correctness, we observe
that every tree T E F with more than (2; - 1)2 edges
on its combined adjacency list must contain at least 2i
vertices and, by definition of Biy it is not necessary to
report the minimum external edge of T.

Example 2: This example is slightly more com-
plex, illustrating how Process i works in an “incremen-

tal” manner. Process i starts off as soon as Bi/2 has
been computed. At this point, only B1, - - - , Bij2 are
available and Process i is indeed not ready to compute
Bi. Nevertheless, it can perform some preprocessing
(called Phase I below) SO that when Bi/2+1, -. . , Bi-1
are available, the computation of Bi can be speeded up
to run in time $5 only (Phase II).

Phase I: Let F be the set of trees induced by
B[l, i/2]. Following Example 1, we merge the adjacency
lists in &e for every tree in F, forming another set &
of adjacency lists. For each tree T with less than 2i
vertices, its combined adjacency list contains no more
than (2i - 1)2 edges. We remove the internal edges and
extra multiple external edges to other trees. Afterwards
we only retain the 2i/2 - 1 smallest edges (the rest
are said to be tmncated). These edges are su.f&ient
for finding Bi (the argument is an extension of the
argument in Example 1). The computation takes time
ci only.

Phase II: When Bi/a+l, - - -, Bi-1 are available, we
compute Bi based on Q as follows: Edges in B[i/2 +
1,i - l] further connects the trees in F, forming a set
F of bigger trees. We merge the lists in & for every
tree in F. Notice that if a tree T E F contains less
than 2i vertices, T is composed of at most 2i/2 - 1 trees
in P and its combined adjacency list contains no more
than (2i/2 - 1)2 edges. As a result, we can remove the
internal edges and find the minimum external edge in
time at most $5. Bi is the set of minimum external
edges just found. In conclusion, after Br-1 is computed,

228

Bi is found in time $ci.
Remark: The set Bi found by Examples 1 and 2

may be different. Yet in either cases, BiUB[l, i-l] C T,’
and is a 2i-forest.

The schedule: Our MST algorithm is based on
a generalization of the above ideas. Process i divides
its computation into [logiJ phases, finding Bi in time
O(1) after Process i - 1 has computed Bi-1. (See
Figure l(b)).

Globally speaking, the algorithm runs in [lognj
supersteps, each superstep lasts for time 4c, where c is
the same constant discussed before. The processes are
scheduled according to’a “global clock”. In particular,
Process i delivers Bi at the end of the ith superstep. To
ease our discussion of the schedule of Process i, we first
consider i a power of two. Phase 1 of Process i starts
when B1,..., Bi/* are available. The computation
takes no more than i/4 supersteps (i.e., from the
(i/2 + 1)th to the (i/2 + i/4)th supersteps). Phase 2
starts when Bi/p+l, - - - , Bi/z+i/d are available, using
i/8 supersteps (i.e., from the (i/2 + i/4 + 1)th to
(i/2+i/4+i/8)th supersteps). Every next phase further
reduces the number of supersteps by half. The last
phase (Phase log i) starts and finishes within the ith
superstep.

In general, Process i runs in [log iJ phases. Let
m = 0 and let aj = aj-1 + [(i - oj-i)/2] for any
j 2 1. For example, al = [i/2] and UlrosiJ = i - 1.
Phasej, where 1 < j 5 LlogiJ, starts from the (oj+l)th
superstep, using [(i - aj)/Sl supersteps. It has to
handle the edges in Bajsl+l,-+.,Baj, which are not
available to previous phases.

4 Requirement of a phase

In this section we discuss what Process i is expected to
achieve at the end of each phase.

Initially, Process i constructs a set Qe of adjacency
lists (Phase 0). For each vertex v in G, &e contains
a circular linked list L: including the 2i - 1 smallest
edges incident on v (if v has degree less than 2i - 1,
the list contains all incident edges). In addition, L: is
assigned a threshold, denoted by h(.C). If L contains
all edges of v, h(L) = +m; otherwise, h(t) = w(e,),
where e, is the smallest external edge truncated from &.
Intuitively, the threshold records the smallest edge that
has been truncated so far. In each subsequent phase,
the adjacency lists are further merged in view of the
newly arrived B’s, and truncated if necessary.

Consider Phase j 1 1. Recall that BI, .+ - , Baj axe
all available when Phase j starts. Denote Fj as the set of
trees induced by B[l, oj]. The adjacency lists produced
at the end of Phase j, denoted by Qj, capture some

external edges of the trees in Fj. More precisely, Qj
satisfies the following requirements.

Let L be a list in &j.

Rl (representation): .C uniquely corresponds to a
tree T E Fj. In this case, T is also said to be
represented by .C in &j. Some trees in Fj may
not be represented by any lists in &j; however,
those trees with less than 2i vertices are all
guaranteed.

R2 (external edges): C contains only external edges
of T and for every edge e E fZ, w(e) < h(L).

R3 (length): L: is non-empty and contains at most
2i-aj - 1 edges.

Let us look at the implication to the last phase
(Phase IlogiJ). Notice that aLlogij = i - 1. Rl, R2,
and R3 together imply that every list in &lrogi~ contains
exactly one external edge of a tree in FllOg in. Moreover,
if a tree in FllOgi~ has less than 2i vertices, it must be
represented by a list in Q,r,, iA. Therefore, we could
report the edges in the lists of Qllosi~ as a solution of
Bi. However, these requirements are not sufficient to
enforce that the external edge in each list is indeed the
minimum one.

Below, we describe additional requirements of the
quality of the edges in &j. Consider an external edge
of a tree T E Fj. Suppose e connects T to another
tree T’ E Fj. We say that e is primary if, among all
edges connecting T and T’, e has the smallest weight.
Otherwise, e is is said to be duplicate. If T,’ does
contain an edge between T and T’, it must be a primary
external edge of T (as well as of T’). Therefore, we
focus on retaining primary external edges in Qj- Yet
there are possibly too many primary external edges,
some of them must be truncated in order to satisfy
the length requirement. We need another notion called
base to characterize those primary external edges that
are really “critical”, which would be within the length
requirement.

Definition: Let 7 be any real number. For any two
trees T, T’ E Fj, T is said to be y-accessible to T’ if (i)
T = T’ or (ii) there is another tree T” E Fj such that
T and T” are connected by an edge with weight smaller
than +y and T” is T-accessible to T’.’

Notation: Let e = (‘Lc, v) be an edge in G. When
we refer e as an external edge of a subtree T E Fj, we
use the notation either (‘LL, v) or (v, u) to signify whether
u or v is in T.

Definition: Let e = (u,v) be an external

‘By Proposition 2.1, T is ~-accessible to T’ if and only if there
is a path in G connecting T and T’ using edges with weight < 7.

229

edge of T E Fj. Define Fj -base(u, v) = {T’ 1
T’ E Fj and T is W(U, v)-accessible to T’}. The size of
Fj-buse(U,v), denoted by IFj-base(v,v)l, is the total
number of vertices in the trees involved (instead of the
number of trees).

By definition, Fj-base(u, v) may not be equal to
Fj-buse(v, ‘1~). It is easy to show that (i) for any two
external edges (u, v) and (u’,v’) of T, if (u’,v’) has a
bigger weight, then Fj-base(u, v) C Fj-bae(u’, v’); (ii)
for any k 5 j, Fk-base(u, V) 2 Fj-base(u, v).

Intuitively, it is not necessary to report in Bi any
external edge whose base contains 2i or more vertices;
such edges could be reported in Bit for some i’ > i

(i.e., by Process i’). Within Phase j, we keep track
of external edges whose bases contain less than 2i
vertices; such edges would include those that must be
reported in Bi. In particular, for any tree R E Fllogi~
containing less than 2i vertices, the miniium external
edge (5, y) of R, which must be included in Bi, does
satisfy the condition that] Fllog in -base@, y) 1 < 2” (since
Fllog in -base+, y) is exactly R).

For any tree T E Fj, an external edge (u, v) is said
to be critical if (u, V) is primary and IFj-bae(u, v) 1 <
2i. Denote K(T) as the set of all critical edges of T.
We are ready to state an additional requirement of G?i.

R4 (base) Every list L E Qj contains all edges of
K(T) where T E F+ is represented by L.

R4 does not contradict R3 in any case because K(T)
cannot be too large.

LEMMA 4.1. K(T) contains at most 2i-oj - 1 edges.

R5 (threshold) Let L: be a list in Qj representing
T. For any primary external edge e of T not
included in L, h(L) 5 w(e).

R2 and R5 together implies that if the minimum
external edge of a tree T’ is removed in Phase j, then
T’ is not represented by any (non-empty) list in &j.

It is easy to check that Qs satisfies all the five
requirements. In summary, the requirements Rl to R5
guarantees that at the end of the last phase, for any tree
T E Fllog ij, if T has less than 2i vertices, its minimum
external edge eT is the only edge kept in the adjacency
list representing T; otherwise, eT may not be kept and
the second part of R2 guarantees that no such list would
exist in Qj representing T. Consequently, the remaining
edges in Q[rog il constitutes Bi correctly. Next section
gives a parallel algorithm for implementing Process i.

5 The algorithm

As mentioned before, Phase j inherits the adjacency
lists from Phase j - 1 (i.e., Qj-1) and receives the
edges B[aj-1 + l,oj]. Let Ij = B[aj-l + l,oj]. Denote
Fj-1 and Fj as the set of trees induced by B[l,aj-i]
and B[l, oj] respectively. Notice that a list in Qj-r
represents one of the trees in Fj-1. One of the major
jobs of Phase j is to merge the adjacency lists of the
trees in Fj-1 that are connected together by the edges of
Ij; afterward, some edges or lists are removed in order to
satisfy the requirements. Consider an edge e = (u,v) in
Ij. Denote Wr and IV, as the trees in Fj-1 containing u
and v respectively. Ideally, if e appears in the adjacency
lists of Wi and H’s, we can merge the adjacency lists of
WI and WZ easily; the two copies of e simply exchange

Proof. Let (u,‘u) be the edge in K(T) with the biggest
their successors and the two lists (which are circular)

weight. By definition of K(T), IFj-bae(u, v)j < 2i.
become one [18]. See Figure 2 for an example. However,

The base of (u, v) includes T and at least K(T) - 1 trees
W1 or W2 might already be too large and does not get

adjacent to T. Recall that B[l,aj] is a 2°j-forest and
a representation in Qj-1. Even they are represented,

everv tree in F; contains at least 2cj vertices. We have
the length requirement of the adjacency lists may not

IFj-“bae(u,v)l> ?cj +((IK(T)I-1).2+ 2 IK(T)I*2’j.
Thus, IK(T)I < 2*-“j. 0 f

So far our concern is that at the end of Phase
j, every tree T E Fj with less than 2i vertices must
be represented by a list in &j, which contains K(T)
and hence the minimum external edge of T. However,
for those trees T’ with at least 2i vertices, K(T’) is
empty by definition, and R4 imposes nothing in this
case. Fortunately, it is unnecessary to report (at the
end of Phase [log i]) the minimum external edge of T’ as
part of Bi. The following requirement on the threshold
kept with any list L: E &j enforces that if the minimum
external edge of T’ has been removed in Phase j, we will
not report any edge for T’ at the end of Phase [logij.

f’ s

Figure 2: Merging a pair of adjacency lists with respect to
a common edge e.

allow e to be included. As a result, e may appear in two

230

Figure 3: Each IV, represents a tree in Fj-1. The dotted
and solid lines represent half and full edges in Ij respectively.
T is a tree formed by connecting the trees in Fj-1 with the
edges in Ij. Each 2, (called a cluster) is a subtree of T,
formed by connecting some WI’s with full edges only. The
adjacency lists of the W,‘s within each 2, can be merged
into a single list easily.

separate lists in Qj-1, or in just one, or in even none;
we call e a fill, half, and lost edge, respectively.

We merge the lists in Qj-r with respect to the full
edges in Ij only. The trees in F’-r that are connected
by edges in Ij into a single tree in Fj may have their
adjacency lists merged into several lists instead of a
single one (see Figure 3). The key observation is that
for every tree T E Fj with less than 2i vertices, K(T)
is included in only one of such lists. More interestingly,
all such lists, except the one containing K(T), can be
shown to be “obsolete” in the following sense and thus
get removed easily.

If a list contains more than (2i-aj-1 - 1)2 edges,
then it represents a tree comprising at least 2i-cj-1
trees in Fj-1, i.e., at least 2i vertices. It is not
necessary to consider such a big tree in Process i.
If a list contains a half edge (u, V) that is in Ij, we
will argue that the base of every external edge in the
list is at least 2i. Thus, the list can be discarded.
If all edges in a list have weight greater than the
updated threshold, it means that the minimum
external edge has been lost and the list is useless.

In brief, after merging the lists inherited from
& j-1, we attempt to update the threshold of each
combined list, remove those internal edges and duplicate
external edges, and truncate those heavy edges to satisfy
the length requirement. An interesting idea in our
algorithm is that we do not insist to remove all duplicate
external edges in a list (otherwise, it requires too much
time). We only remove those that are easy to detect.

Definition: Consider any two edges (u,v) and
(u’,v’) in a list .C. We say that (u, v) is a detectable

duplicate external edge if w(u’,u’) < W(U, V) and the
edges (v,u) and (v’,u’) both appear in another list C’.

External edges that are duplicate but not detectable
would possibly remain in Qj; nevertheless, we will show
that removing those detectable ones is already sufficient
to guarantee the correctness of our algorithm.

Process i

Input: G; Bk , where 1 5 k < i - 1, is available at the
end of the kth superstep

output: Bi

0

0

0

/* Phase 0 (Initialization) */
Construct &c from G; a0 t 0

For j = 1 to [log iJ do /* Phase j */

1. Uj t Uj-1 + [(i - oj-r)/21; denote Ij a~
B[Uj-1 + 1, Uj].

2. /* Merging Step */

(a) Edges in Ij that are full in &j-r are
activated to merge the lists in Qj-1. Let
& be the set of combined adjacency lists.

(b) For each list L E Q, if L contains at most

(2 i--aj-1 - 1)2 edges, h(L) t min{h(l’) 1
C’ E &j-i and L’ composes 133; other-
wise, remove L: from Q.

3. /’ Remove obsolete edges and lists from & */
For each list LT E Q,

(a) if L contains an edge in Ij that is a half
edge, remove L from Q;

(b) for each edge (u,v) E L, if (v, u) also
appears in 13, remove both edges from L;

(c) for each (u,v) E .C, if W(U, v) 5 h(t),
remove (u,v) from C;

(d) if L: becomes empty, remove it from Q.

4. For each list L: E Q, detect and remove
duplicate external edges from JZ.

5. /* B-uncate each list if necessary */
For each list t E Q, if .C contains more than
2i-aj - 1 edges, retain the 2i-oj - 1 smallest
ones and update h(L) to w(e,), where e, is
the smallest edge just truncated from JZ.

6. Qj + Q-

Bi t {(u, v) 1 there is a list in Qlios iJ containing
hv) or h4 1.

The correctness of the algorithm is left to Section 6.
Time and processor complexity: The merging

of adjacency lists in Step 2(a) takes O(1) time. In
Step 2(b), testing the length of a list (5 (2i-“j-l)2)
takes O(i - aj-r) time. After that, all adjacency lists

left have length at most (2i--aj-1)2 and the computation
in each subsequent step requires O(i - aj-1) time.
Recall that each superstep lasts for time 4c for some
suitable constant. Therefore, Phase j can complete
its computation in at most (i - uj-i)/4 < (i - Uj)/2
supersteps, satisfying the schedule defined in Section 2.
Process i uses at most n+m processors and (ntm) logn
processors are sufficient for the whole algorithm.

Adaptation to EREW PRAM: Consider
Phase j of Process i. If B[cj-i + l,uj] is given, all
steps can be implemented on the EREW PRAM. The
concurrent read is used only in accessing the edges of
B[uj-r + l,aj], which may also be read by many other
processes at the same time. We remove the concurrent
read as follows: The time in each superstep is doubled
(i.e., each superstep takes 8c time instead of 4~). Each
phase is divided into two parts of equal time. The first
part is to read B[Uj-r + 1, Uj] into its OWII memory, and
the computation starts in the second part using its own
copy of B’s. In the kth superstep of the first part of
Phase j, Process i reads B[uj-r + (4k - 3),a+1 + 4k]
(or B[aj-i + (4k - 3),~j] when aj-1 + 4k > CQ). Note
that each B is accessed by at most four different pro-
cesses in a single superstep and hence concurrent read
can be eliminated.

Linear processors: The computation is divided
into loglogn stages, each stage adopts the multi-thread
strategy using a linear number of processors. In par-
ticular, the kth stage involves 2k concurrent processes
(instead of LlognJ) and takes O(2k) time. The total
time of the algorithm is still O(log n).

6 The correctness

We use an inductive argument to prove that at the end
of Phase j of any Process i, Qj satisfies the requirements
Rl to R5. Therefore, Qlrosi, constitutes & correctly.
To ease the induction, we maintain an invariant for
Phase j. Let us define one more notion. In a particular
phase, an edge (u, V) is said to be removed on a self
basis if it is not in &e or its removal does not trigger
the removal of (v, u); i.e., (u, V) is removed in Step 2(b),
3(a), 3(c), or 5 (see the contrast between (u, V) and the
edges removed in Step 3(b) or 4).

Invariants of Phase j: Consider a tree T E Fj.
Let (21,~) be an external edge of T and (U,ZJ) is
removed on a self basis in some Phase k, where
k 5 j. Then,

Invl: IFj-bme(u,v)/ 2 2i; and
Inv2: if T is represented by a list L: E Qj, h(C) 5
wcu, v‘l.

The following lemma is an immediate application

231

of the invariants. Furthermore, Invl and Inv2 imply
the requirements R4 and R5 of Qj respectively (see
Lemma 6.2).

LEMMA 6.1. For any external edge (p,q) of T, if
(p, q) is primary and does not appear in Qj, then (i)
IFj-base@, q)(2 2i and (ii) if T is represented by a list
LZ E Qj, h(L) 5 W(P,q)-

Proof. Note that edges removed in Step 3(b) or 4 are
either internal or dulpicate external. If @, q) does not
appear in &j, it is removed on a self basis in some
Phase k, where k 5 j. By Invl, IFj-base(p,q)I 2 2i.
If T is represented by a list L E Qj, by Inv2, h(L) 5
424d. 0

LEMMA 6.2. R4 and R5 follow from Invl and Inv2 of
Phase j respectively.

Proof. Invl of Phase j + R4: Consider a list .C E Qj
representing a tree T E Fj. Assume to the contrary
that there is an edge (u,v) in K(T) but not in L.
As (21,~) is a primary external edge, By Lemma 6.1,
IFj-bae(u,v)l > 2i. However, (u,v) E K(T) implies
I Fj-base(u, v) I < 2i. A contradiction occurs. Therefore,
Invl of Phase j implies R4.

Inv2 of Phase j =F- R5: Let (p, q) be a primary
external edge of T but (p,q) $Z’ L. By Lemma 6.1,
h(L) 5 w(p, q) and R5 is implied. 0

The following is the main theorem regarding the
correctness.

THEOREM 6.1. For 0 5 j < [logi], the invariants of
Phase j hold and Qj satisfies the requirements Rl, R.2,
and R.3 at the end of Phase j.

By defmition of 00, the invariants of Phase 0 hold
and &e satisfies all requirements at the end of Phase 0.
Suppose, for k 5 j - 1, the invariants of Phase k hold
and !& satisfies all requirements at the end of Phase k.
It is easy to observe that at the end of Phase j, R3 is
satisfied in an obvious way because in Step 5 every list
is shortened to contain at most 2i-aj - 1 edges. In the
rest of the proof, we concentrate on how to maintain
the invariants and show that the requirements Rl and
R.2 are satisfied.

Below we study in a step-by-step fashion how the
set Q of adjacency lists is modified and the properties
of those edges removed on a self basis. We divide the
proof into four parts, showing the following statements.
Consider a tree T E Fj.

Part I: For any external edges (21,~) of T, if (21,~)
is removed in Step 2(b), 3(a), or 3(c), then
\Fj-base(u,v)\ 2 2i.

232

Part II: At the end of Step 3, & satisfies Rl and R2.

Part III: For any external edge (u,v) of T, if (21,~) is
removed in Step 5, then IFj-base(u, v)l 2 2i.

Part IV: Inv2 of Phase j.

Parts I and III together imply that Invl holds. By
Part II, Q satisfies Rl and R2 at the end of Step 3.
Notice that Steps 4 and 5 may further remove edges
from a list in &, but cannot empty it. Thus, Q still
satisfies Rl and R2 at the end of Step 5. Therefore, at
the end of Phase j, we can conclude that Qj satisfies
Rl, R2, and R.3.

We begin our proofs by looking at the adjacency
lists formed by merging. Let I; be the set of edges
in Ij that are full in Qj-1. Let T be a tree in Fj.
Assume that T is composed of the trees Wi , Wa,. . . , Wt
in Fj-1. The edges in 1; connect Wi , Ws, - . - , Wt into
one or more trees, all included in T. These trees are
called clmters of T below (see Figure 3). In Step 2(a) of
Phase j, we merge the adjacency lists of Wi , Wa, . . . , Wt
in F’-i (if exist in Qj-r) with respect to I;, producing
adjacency lists representing some clusters of T. Denote
eT as the miniium external edge of T and similarly e,
for a cluster Z of T. Let Z* be the cluster of T which
contains eT as an external edge.

6.1 Part I We show that for each external edge
(‘1~, V) of T, if it is removed in Step 2(b), 3(a), and 3(c),
then IFj-ba.se(u,v)l 2 2i (see Lemmas 6.3, 6.4, and 6.5
respectively). Consider a cluster 2 of T and suppose
there is a corresponding adjacency list e(Z) in Q at the
end of Step 2(a).

LEMMA 6.3. If C(Z) is discarded from Q in Step 2(b),
then for any external edge (21,~) of T kept in L(Z),
IFj-buse(u,v)l 1 2i.

Proof. Recall that for every tree W E Fj-1 composing
2, L(W>E Qj-1 contains at most 2i-aj-l - 1 edges. If
,C(2) is discarded in Step 2(b), then 2 is composed of
at least 2i’oj-1 trees from F+1. As each tree in Fj-1
contains at least 2aj-1 vertices, then 2, as well as T,
contains at least 2i vertices. Therefore, any external
edge of T in this case has base of size at least 2i. 0

Suppose L(Z) is not too long and remains in & at
the end of Merging step. Some edges in ,C(Z) (or the
whole list) may be removed in the subsequence steps.
Lemma 6.4 shows that if -C(Z) is discarded from Q in
Step 3(a), every external edge of T kept in 13(Z) must
have base of size at least 2i.

LEMMA 6.4. If L(Z) is discarded from Q in Step 3(a),
then for any external edge (21,~) of T that is kept in
L(Z), IFj-base(u,v)I 2 2i.

Proof. Consider the minimum external edge e, = @, 4)
of 2. By Proposition 2.2, e, is an edge of T or e,. This
also means that e, is a primary external edge of a tree
W E Fj-1 composing 2. If e, is not in C(Z) (i.e., not
in C(W)), by Lemma 6.1, IFj-I-base(p,q)l > 2i and
2, as well as T, contains at least 2i vertices and hence
IFj-bae(tt,v)l 2 2i.

Suppose @, q) appears in L(Z) at the end of Step 2.
Since (p,q) is also a half edge in Qj-1, (q,p) is not in
Qj-i and should be removed on a self basis in some
Phase k, where k 5 j - 1. By Invl of Phase (j - l),
IFj-I-bae(q,p)l 2 2i and SO does IFj-ba&,q)l. AS
~(21,~) > w(q,p), Fj-base(U, V) includes all trees of
F’-buse(q,p) and hence has size at least 2i. 0

Suppose ,C(Z) has not been discarded from Q in
Step 3(a). Then some edges in 13(Z) may further be
removed in Step 3(b) or 3(c). We are interested in
those edges removed on a self basis, i.e., in Step 3(c).
Lemma 6.5 shows that if an edge in C(Z) has weight
2 h(13(2)), its base has size at least 2i. Then any edge
removed in Step 3(c) has base of size at least 2i.

LEMMA 6.5. Consider (2~, V) to be an external edge
of T that is kept in ,C(Z) at the end of Step 2. If
VJ(~L,ZJ) 2 h(,C(Z)), then IFj-b~e(~,v)l 1 2i.

Proof Let (c,d) be the edge such that w(c,d) =
h@(Z)). Then (c,d) is either not in &e or truncated
from L(X) for some X E Fk in (Step 5 of) Phase k,
where k 5 j - 1. By Invl of Phase k, IFk-base(c, d)l 2
2i. Let X’ E Fk be a tree in Fk -base(c, d); i.e., there is
a path in G connecting a vertex in X and a vertex in
X’ using edges smaller than w(c, d). Let T’ E Fj such
that X’ E T’. Observe that the same path connects the
same pair of vertices in T and T’ respectively and every
edge on this path is smaller than w(c, d) 5 w(u, v). By
dei?nition of base, Fj -bme(u, V) contains T’. Therefore,
I$-buse(u,v)l > IFk-base(c,d)l 2 2i. •I

6.2 Part II Using the invariants of Phase (j - l),
we can deduce the following properties of a cluster 2,
which is assumed to be represented by a list L(Z) E Q
at the end of the Merging Step (i.e., Step 2).

LEMMA 6.6. At the end of Step 2, (Pl) for any primary
external edge (u,v) of 2, if (u,v) g ,C(Z), then
l@(Z)) 5 w(u, v); (P2) for any internal edge (u,v)
of 2, if (u,v) E L(Z), then either (21,~) E L(Z) or
WZ)) L w(‘L1, VI.

233

Proof. (Pl): Note that each primary external edge
(u, V) of 2 is that of a subtree W E Fj-1 constituting 2.
As (u,v) not in C(Z), it is not in L(W). By Lemma 6.1,
h(L(W)) < W(U,ZI) and so does h(L(Z)).

(P2): Let (21,~) be an internal edge of Z and
(u,v) E -C(Z). Suppose (21,~) 6 C(Z). Then (v, U)
is an external edge of a subtree W’ E Fj-1 constituting
Z but (TJ,U) $! L(W’). Then (TJ,U) is removed on a self
basis in some Phase k, where k 5 j - 1. By Inv2 of
Phase (j - l), h(L(W’)) 5 w(u, v) and so does l(Z). 0

We show that for any cluster 2 that e, # eT,
L(Z) is either removed in Step 3(a) or is emptied by
Steps 3(b) and 3(c) and afterward removed in Step 3(d).
Therefore, at the end of Step 3, there is at most one
cluster of T whose adjacency list is remained in &.
Thus, each list in Q represents uniquely a tree in Fj.

LEMMA 6.7. For every cluster 2, if e, # eT, the
adjacency list of Z (if exists) must be removed in Step 3.

Proof. As ez # e,, by Proposition 2.2, e, is an edge in
T and hence it belongs to Ij. Note that e, is a half or
lost edge in Qj-1. At the end of Step 2, if e, E -C(Z)
(i.e., a half edge), L(Z) is removed in Step 3(a).

Suppose e, # ,C(Z). By Pl of Lemma 6.6,
h(L(Z)) 5 w(e,). Since every external edge of Z has
weight 2 w(e,), Step 3(c) removes all external edges of
Z left in L(Z). For each internal edge (a, b) of Z, if (a, b)
and (b, a) appears in ,C(Z), both of them are discarded
in Step 3(b). If either one of them appears in L(Z), P2
of Lemma 6.6 guarantees that zu(a,b) 2 h(C(Z)) and
hence it is removed in Step 3(c). Therefore, L(Z) is
empty afterwards and is removed in Step 3(d). D

Next we show that if 2’ contains less than 2i vertices,
there is a cluster of T whose adjacency list survives at
the end of Step 3. Recall that 2’ is the cluster of T
which contains eT as an external edge. By Lemma 6.7,
,C(Z*) is the only possible cluster of T whose adjacency
list can remain at the end of Step 3.

LEMMA 6.8. At the end of Step 3, if T contains less
than 2i vertices, L(Z*) in Q representing T.

Proof. Since T contains less than 2j vertices, K(T) is Assume to the contrary that (q,p) # L’. Then it is
non-empty. Recall that for any edge (u,v) in K(T), removed on a self basis (because (p, q) still exists). If
1 Fj -base(u, V) 1 < 2i. We know that any external edge it is removed in some Phase k, where k 5 j - 1, then
of T removed in Step 2(b), 3(a), or 3(c) has base of size by Invl of Phase j - 1, IFj-1 -base(q,p)l 2 2i and SO do
at least 2i (see Lemmas 6.3, 6.4, and 6.5 respectively). IFj-1 -base@, q) I and IFj-bae(p, q) I. A contradiction
In other words, none of the edges in K(T) has been occurs. If it is removed in Phase j, then it can only be
removed in these steps. Then there is exactly one cluster done in Step 3(a), or 3(c). By Lemmas 6.4 and 6.5,
of T whose adjacency list remains in Q at the end of /Fj-bme(q,p)] 2 2i and SO does IFj-bwe(p,q)l. It

Step 3 for representing T. Since L(Z*) is the only contradicts our assumption. 0

possible list that can survive at the end of Step 3, ,C(Z*)
remains in Q, representing T. 0

Now we argue that at the end of Step 3: Q satisfies
R2 by showing that if L(Z*) is in Q, every edge in 13(Z*)
is an external edge of T (where T may contain 2i or more
vertices).

LEMMA 6.9. At the end of Step 3, every edge in l(Z*)
is an external edge of T.

Proof. Note that at the end of Step 3(c), every remain-
ing edge in L(Z*) has weight smaller than h(L(Z*)).
Let (u, V) be an edge in e(Z*). Assume to the contrary
that (u,v) is an internal edge of T. By Lemma 6.6,
(u,w) is an external edge of 2’ and as ,C(Z*) survives
at the end of Step 3(a), (u,v) is not an edge in Ij. Then
v must belong to another cluster Z of T. Let P be the
path in T connecting u and w. As (u, V) is not in T (i.e.,
not in T,‘), ~u(u,~J) is bigger than every edge on P. In
particular, there is an edge e in P that is an external
edge of 2’ (which must be a half edge in 1j). Since
e # L(Z*) and e is primary external, by Lemma 6.6,
h(e(Z*)) 5 w(e) < w(u, v). A contradiction occurs. CI

6.3 Part III Suppose at the end of Step 3, ,C(Z*)
still survives, representing T. Notice that .C(Z”)
might contain some other edges @,q) # K(T) but
[Fj-base@,q)l < 2i. It is even possible that w(p, q)
is smaller than some edge in K(T). Such an edge must
be duplicate external edges of T. The following lemma
further shows that (p, q) is detectable.

LEMMA 6.10. Consider any edge (p,q> in L(Z*). Sup-
pose (p, q) is a duplicate external edge of T with
IFj-bae(p, q) 1 < 2”. Let T’ be the tree in Fj containing
the vertex q. At the end of Step 3, the edge (q,p) is left
in the adjacency list in Qj representing T’.

Proof. Let (r, s) be the primary external edge of T and
T’, where T E T and s E T’. As (p,q) is a duplicate
external edge of T, w(~,s) < w(p,q). By definition
of base, Fj-base(p, q) = Fj-bae(q,p) > Fj-bae(r, s).
Since IFj-bme(q,p)l < 2i, T’ contains LSS than 2i
vertices. There is a list .C’ E Qj representing T’ at
the end of Step 3.

234

Lemma 6.10 implies that after we have removed
those detectable duplicate external edges from ,C(Z’)
in Step 4, each remaining edge in L(T) that does not
belong to K(T) has base of size at least 2i. In other
words, edges in K(T) are the smallest edges in L(Z).
Moreover, every edge truncated in Step 5 has base of
size at least 2i.

COROLLARY 6.1. Let (u,2r) be an external edge of T.
If (U,ZI) is removed in Step 5, IF’-base(u,v)l > 2i.

6.4 Part IV Finally, we show that Inv2 of Phase j
holds. Suppose 13(2*) of T remains in & at the end
of Step 3. Let (u,z)) be an external edge of T that is
removed on a self basis in some Phase k, where k 5 j.
We consider whether (21,~) belongs to 2’ or other
cluster of T (see Lemmas 6.11 and 6.12 respectively).

LEMMA 6.11. Let {u, v) be an external edge of T that
is also an external edge of 2’. If (u,v) is removed
on a self basis in some Phase k, where k 5 j, then
4% v) 2 W(Z’)).

Proof. Observe that (u,v) can be removed either in
Phase k, where k 5 j - 1, or in Step 3(c) or 5 of Phase j.
In the first case, let W E Fj-1 be the tree of which (u, v)
is an external edge. By Inv2 of Phase j - 1, UJ(U,V) >
h(L(W)), where L(W) E Qj-1. AS 2’ inherits the
threshold of W in Step 2(b), h(L(Z*)) 5 h(L(W)), we
have W(U,V) 2 h(L(Z*)).

If (u, v) is removed in Step 3(c) of Phase j, W(U, v) >
h(C(Z*)) at the end of Step 3. Note that the threshold
of L(Z*) may change in Step 5, but it is no bigger
than in Step 3(c). If (u,v) is removed in Step 5,
w(u,v) 2 w(e,) 2 h(L(Z*)), where e, is. the smallest
edge truncated from LT(Z*). q

LEMMA 6.12. Let 2 be any cluster of T such that
e, # eT. For any external edge (21,~) of T that is also
an external edge of 2, W(U,V) > h(L(Z*)).

Proof. Let P be the shortest path in T connecting a
vertex in 2 to a vertex in 2’. Let (a, b) be an edge
on P such that a E Z* but not b. Note that (a, b)
is a half or lost edge in Ij. As ,C(Z*) has not been
discarded from & in Step 3(a), (a,b) is not in L(Z*)
(otherwise, it is removed in Step 3(a)). By Lemma 6.6,
W(Z*)) I w(a, b)-

Let Tb be the subtree of T including all the vertices
connected to b without using the edge (a, b). Note that
2 is a connected subtree of Tb and eT is not an external
‘edge of Tt,. By Proposition 2.2, (b,a) is the minimum
external edge of Tb. As (u, v) is also an external edge of
Tb, we have w(u,v) > w(a,b) 2 h(L(Z*)). Cl

References

PI

PI

[31

I41

PI

L71

PI

PI

PO1

Pll

WI

1131

P51

P-51

P71

WI

B. Awerbuch and Y. Shiloach, New Connectivity and
MSF Algorithms for Shuffle-exchange Network and
PRAM, IEEE Trans. Comput., 36(1987), pp. 1258
1263.
B. Chazelle, A Faster Deterministic Algorithm for
Minimum Spanning Trees, FOCS’97, pp. 22-31.
K.W. Chong, Finding Minimum Spanning Trees on the
EREW PRAM, Proc. International Computer Sympo-
sium, 1996, pp. 7-14.
K.W. Chong and T.W. Lam, Finding Connected
Components in O(log nloglog n) time on the EREW
PR4M, SODA’93, pp. 11-20.
R. Cole, P.N. Klein, and R.E. Tarjan, Finding mini-
mum spanning forests in logarithmic time and linear
work using random sampling, SPAA’96, pp. 243-250.
R. Cole and U. Vi&kin, Approximate and Exact
Parallel Scheduling with Applications to List, Tree, and
Graph Problems, FOCS’86, pp. 478-491.
S.A. Cook, C. Dwork, and R. Reischuk, Upper and
lower time bounds for parallel random access machines
without simultaneous writes, SIAM J. Cornput., 1986,
15(1):87-97.
H. Gabow, Z. Galil, T. Spencer and R.E. Tarjan,
Efficient algorithms for finding minimum spanning
trees in undirected and directed graphs, Combinatorics
6:2 (1986) 109-122.
3. J&J& An Introduction to Parallel Algorithms,
Addison-Wesley, 1992.
D.B. Johnson and P. Metaxas, Connected Components
in O(lg312 IVl) Parallel Time for the CREW PRAM,
FOCS’91, pp. 688-697.
D.B. Johnson and P. Metaxas, A Parallel Algorithm for
Computing Minimum Spanning Trees, SPAA’92, pp.
363-372.
D.R. Karger, Random sampling in Graph Optimization
Problems, PhD thesis, Department of Computer Sci-
ence, Stanford University, 1995.
D.R. Karger, P.N. Klein, and R.E. Tarjan, A random-
ized linear-time algorithm to find minimum spanning
trees, Journal of the ACM, vol. 42 (1995), pp. 321-328.
D.R. Karger, N. Niian, and M. Parnas, Fast Con-
nected Components Algorithms for the EREW PRAM,
SPAA’92, pp. 373-381.
R.M. Karp and V. Ramachandran, Parallel Algorithms
for Shared-Memory Machines, Handbook of Theoreti-
cal Computer Science, vol A, J. van Leeuwen Ed., MIT
Press, 1990, pp. 869-941.
C.K. Poon and V. Ramachandran, A Randomized Lm-
ear Work EREW PRAM Algorithm to Find a Mini-
mum Spanning Forest, Pwc. 8th Annual International
Symposium on Algorithms and Computation, 1997, pp.
212-222.
R.E. Tarjan, Data Structures and Network Algorithms,
SIAM, Philadelphia, Pa., 1983.
R.E. Tarjan and U. Viihkin, An Efficient Parallel Bi-
connectivity Algorithm, SIAM J. Cornput., 14(1985),
pp. 862-874.

