
Optimal Edge Ranking of Trees in Linear Time

Tak Wah Lam*

Abstract

Finding an optimal node ranking and an edge ranking
of a tree are interesting computational problems. The
former problem already has a linear time algorithm in
the literature. For the latter, only recently polynomial
time algorithms have been revealed, and the best known
algorithm takes O(n2 logn) time. In this paper, we
present a new approach for finding an optimal edge
ranking in O(n) time, showing that the optimal edge
ranking problem is no more difficult than the node
counterpart.

1 Introduction

Let G be an undirected graph. A node ranking of G
is a labeling of its nodes with positive integers such
that every path between two nodes with the same label
i contains an intermediate node with label j > i. A
node ranking is optimal if it uses the least number of
distinct labels among all possible node rankings. An
edge ranking of G is a labeling of its edges satisfying an
analogous condition, i.e., every path between two edges
with the same label i contains an intermediate edge with
label j > i. Figure 1 illustrates an optimal edge ranking.
The problems of
finding an optimal
node ranking and
an edge ranking of
a graph have been
well studied as they
find applications
in different con-
text [l, 5, 9, lo].
Both problems are
now known to be Figure 1: An optimal edge ranking
w-hard ill, 8, 61. of a tree.
Nonetheless, in
most applications, the graphs in concern are restricted
to trees only. This initiates the study of node ranking
and edge ranking of trees.

With respect to trees, the node ranking problem

martment of Computer Science, University of Hong Kong,

Pokfulam Road, Hong Kong, twlam@cs.hku.hk

‘Management Information Section, City University of Hong

Kong, Kowloon, Hong Kong, opflyue@lcityu.edu.hk

Fung Ling Yuet

seems easier than the edge ranking problem. There is
already a linear time algorithm for finding an optimal
node ranking of a tree [12]. For edge rank$g, after
the pioneering work of Iyer, Ratliff, and Vijayan [5],
de la Torre, Greenlaw and SchXer [3] devised the first
polynomial time algorithm (more precisely, O(n3 log n)
time) for finding an optimal edge ranking of a tree.
Then Zhou and Nishizeki [13] improved their algorithm
to run in O(n2 log A) time, where n is the number of
nodes and A is the maximum degree of the tree.

In this paper, we present an O(n) time algorithm
for finding an optimal edge ranking of a tree, matching
the optimal result of the node counterpart.

An optimal edge ranking of a tree may not be
unique. In fact, the optimal edge ranking computed by
our algorithm may not be the same as those by previous
algorithms [3, 131. From a conceptual viewpoint, the
improvement achieved by our algorithm is rooted at
a broader class of optimal edge rankings. Such a
class leads to a more ambitious approach for labeling
the edges-the new approach can label a number of
edges at a time without optimizing for individual edges.
Previous algorithms are actually based on a “guess-and-
test” approach, where determining a right label for an
edge usually requires many guesses, each followed by
a time-consuming testing. Our approach reduces the
number of guesses per edge to no more than two on
average and does not need to perform an explicit testing
to ensure the optimality of the ranking.

To make our new approach fully effective, we need
some novel data structure techniques. As a warm-up, we
first give an O(nlogn) time algorithm, which is based
on a compact representation of labels, supplemented by
a conservative merging process that avoids redundant
processing of most of the labels. Then we further
enhance the algorithm to run in O(n) time. The
improvement stems from a tight analysis of the usage
of labels.

The remainder of this paper is organized as follows:
Section 2 gives the basic definitions. Section 3 presents
a new approach for finding an edge ranking of a tree,
and Section 4 proves its correctness. Section 5 shows
how the new approach can be executed in O(n logn)
time. The last section shows how to improve the time
complexity to linear.

436

2 Concepts and notations

Following previous work [3, 131, we
tree to be rooted at an arbitrary

consider the input
node. Note that

rooting a tree does not change the definition of edge
ranking, but it suggests a natural way to decompose
the computation.

Let p be an
edge rank;ing of a
tree T with root r.
An edge e of T is
said to be visible if
all the labels on the
path from e to T
are smaller than or
equal to the label of
e. Take an exam-
ple, all edges inci-
dent to T are visible.
It follows from the
definition of rank-

4 5
V* % I v4

A 3 I 3 4
V5 V6 5 v8

I 2 I 2 I2 3

% % V II V 12 vI3 Vlr vl5

Figure 2: A tree with an edge rank-
ing. The visible labels are {5,4,3,1}.

ing that all visible edges must have distinct labels. A
label e is said to be visible if there is a visible edge la-
beled with -C Denote by L(cp) the set of visible labels of
T under ‘p. Figure 2 shows an edge ranking ‘p of a tree
T, where L(cp) = {5,4,3,1}.

We determine the lexicographical order of two sets
of labels by examining the labels in decreasing order.
For instance, both {5,3,1} and (3) are considered to
be smaller than {5,3,2}. An edge ranking ‘p of T is
said to be critical if L(cp) is lexicographically smaller
than or equal to L(cp’) for any edge ranking ‘p’ of T.
A critical edge ranking is an optimal edge ranking, but
the reverse may not be true. All critical edge rankings
of T have the same set of visible labels. The critical
set of visible labels of T, denoted by L(T), is the set
of visible labels of a critical edge ranking of T. The
algorithm presented in this paper finds a critical edge
ranking of a tree. The work of Torre, Greenlaw and
Schaffer [3] has an important implication regarding the
computation of critical edge rankings. Suppose the root
of T has d children, numbered from 1 to d. Denote the
subtree of T rooted at the i-th child of the root and the
edge between the root and this child as Ti and branch
i, respectively.

LEMMA 2.1. (see [3]) A critical edge ranking of T can
be formed by any critical edge rankings of Tl , T2, . . . , Td
together with a suitable labeling of the branches.

In light of Lemma 2.1, we can compute a critical
edge ranking of T using a bottom-up approach:
(1) find a critical edge ranking for every subtree Ti ;

Let f? = (b,Pz,..., @d) be a labeling of the
branches of T, in which some ,&‘s may be equal to zero.
f? is said to be a padial labeling if for all branches i with
Pi > 0, (i) ,& $Z ~2, and (ii) (hU{h})n(& U{Pj}) = 4
for any branch j # i. A partial labeling in which alE

(2) compute a label ,Bi for every brunch i so that this branches are assigned positive labels is a valid labeling.

437

LA-h

3 4 I

4 9 7

8 10

? T2 q TI Tz s

(a) (b)

Figure 3: (a) L1 = {8,4,3}, Lz = {10,9,4}, and LB =
(7,l). (b) f3 = (5,6,2) is a valid labeling. The shaded
labels are no longer visible; 21 = {8}, I?Z = {10,9} and I%
= (7).

labeling together with the critical edge rankings
found in (1) form a critical edge ranking of T.

2.1 Valid labelings and optimal labelings Sup-
pose the critical edge rankings of the subtrees
Tl,Tz,-.., Td and the critical sets of visible labels
Ll,Lz,‘-., Ld have been computed. Let us focus on
labeling the branches. Obviously, not any arbitrary la-
beling B = (pi, p2, . . . ,,&) can form an edge ranking,
let alone a critical edge ranking. Let Li denote the set
{!E Li Ie>Pi}. a is said to be a valid labeling if for
all branches i,

(i) Pi 6 Li, and

(ii) (& U {pi}) fl(& U {flj}) = 4 for any branch j # i.

It is easy to verify that a valid labeling forms an edge
ranking of T. Figure 3 gives an example. A valid
labeling that forms a critical edge ranking of T is called
an optimal labeling. We devote Sections 3 through 6 to
showing how to find an optimal labeling. This optimal
labeling may not be the same labeling as found by
previous algorithms [3, 131; nevertheless, they all use
the same set of labels.

2.2 Partial labelings and conflicts To compute a
labeling of the branches of T, our algorithm initially
labels every branch of T with zero, then it increases the
labels stage by stage until they form a valid labeling. We
require that at the end of every stage those branches
that have already received positive labels satisfy a
condition similar to that of a valid labeling.

438

a ;’ 22

1 1
0 1 2 3 ... 11 12 13 14 15 ...

ii
-

PI and 0 4 4 4 4
P2 and LZ 0 4 4 4 4
P3 and 23 0 4 4 4 4
p4 and LJ 0 4
P5 and es 0 4 4 4

Figure 4: In this example, there are five branches. /3i = /3s = ps = /35 = 0, and ,& = 13. The content of each k;
is represented by a number of 4’s on the same row. There is a conflict at (Y = 11. K = { 1,2,3}. The smallest two
free labels bigger than Q are 12 and 14. Assigning 12 and 14 to branches 1 and 3 (in any order) resolves the conflict,
while minimizing lexicographically the visible labels left.

With respect to a partial labeling f?, we say that
there is a conflict at a label fJ > 0 if there exist two
visible edges labeled with 1. The definition of partial
labeling guarantees that a conflict, if present, must be
due to two (or more) visible edges each residing in a
,distinct subtree z such that ,& = 0.

If Z? is a valid labeling, there is no conflict at any
label e > 0. Thus, to produce a valid labeling eventually,
our algorithm attempts to resolve all conflicts in the
current partial labeling. To resolve a conflict at e where
JJ E & n ,?j for some i # j, we can increase the label on
one of the branches i and j to some value greater than
e. The new label assigned to the branch i (or j) should
be distinct from all the currently visible labels of T;
otherwise, another conflict is generated. That means,
we should assign a branch with a free label, which is a
positive integer not equal to any of the currently visible
labels.

3 Algorithmic framework

Assume that the critical sets of visible labels
Jh,Lz,-.., Ld have been computed. In this section, we
describe the framework of a new algorithm for finding
a valid labeling of the branches of T. The discussion
focuses on algorithmic aspects only. In Section 4, we
give a characterization of this labeling and prove that it
is an optimal labeling. In Sections 5 and 6, we describe
some novel data structure techniques for executing this
framework efficiently.

The algorithm starts off with a partial labeling in
which every label is zero. The computation is divided
into a number of iterations. Each iteration increases
the labels of one or more branches, producing another
partial labeling. When all branches have been assigned
positive labels, the partial labeling obtained is a valid
labeling and the algorithm stops.

In one iteration, the computation is as follows: We
figure out the maximum label (Y at which the current

partial labeling gives rise a conflict. Let K = {i (a E
Li}, and let k = II<). Our goal is to identify k - 1
free labels greater than Q and assign them to any k - 1
branches in I<, thus resolving the conflict at cr. To
attain an optimal labeling eventually, the conflict must
be resolved optimally, that is, the labels to be put on
the branches and the visible labels left in all subtrees
are minimized lexicographically.

When we choose free labels to resolve the conflict, a
natural attempt is to pick the smallest k - 1 free labels
starting from cy + 1, say, 21,X2,. f ., zk-1. Assigning
these labels to some k - 1 branches in Ii can resolve the
conflict immediately. Yet, in some cases, this does not
resolve the conflict optimally, and it is actually better
to assign some zi to branches outside Ii. In Section 3.1,
we state a condition under which assigning the free
labels zi,z2, . . . , zk-1 to the branches in Ii is always
the best move. We show how to handle other cases in
Sections 3.2 and 3.3.

3.1 Resolving the conflict immediately Con-
sider the interval [rw + 1, zk-11. Suppose the labels in
i&,... , id do not fall into [p+ 1, zk-i]. In this case,
for any i I$ K, the labels in L; are either bigger than
xk - 1 or smaller than Q. Thus, assigning xl,. . . , zk-1
to branches in I< is more beneficial as we can eliminate
(1~ from & for every i E Ii. More interestingly, a simple
strategy s&ices to choose which k - 1 branches in K to
receive the free labels 21, . . . , zk-1.

Simple Strategy: Define Cover(cY, ki) = (! E
& 1 e 2 o}. Let ic be a branch in Ii such
that the set Cover(cr, ii,) is lexicographically
smallest among all branches in Ii’. The free
labels xc, ~1, . . . , xk-1 are put, in any order,
on the branches in Ii excluding ic.

An example is depicted in Figure 4. Notice that
permuting the free labels among the k - 1 branches

439

chosen has no effect on the visible labels left in the
corresponding subtrees; thus, we do not need to consider
these k - 1 branches separately. Assuming all previous
conflicts have been resolved optimally, we can prove that
the above strategy minimizes lexicographically both the
labels put on the branches and the visible labels left in
the subtrees. The formal proof is given in the Section 4.

3.2 Freeing better labels Should there be a visible
label in some ii lying in the range [o+ l,zk - 11, applying
the simple strategy directly may not resolve the conflict
optimally. Figure 5 shows an example.

Intuitively, if there is a visible label ! in some &
falling in the range [a + 1, xk _ 11, it is more advantageous
to assign the free label just greater than e to branch
i instead of a branch in K because this assignment
eliminates a visible label greater than cr. This motivates
us to handle such a case as follows:

Let x 5 xk-1 be the smallest free label bigger
than cy such that there exists a label in some
Li lying in the range [o + 1, z]. Let j be the
branch such that ij contains the biggest label
smaller than x. We increase the label of branch
j to I.

Note that j may or may not be a branch in Ii. After
labeling branch j, we get at least one additional free
label less than x. Intuitively, the smallest k - 1 free
labels move closer to (Y.

Now we examine the conflict at cr again. If it has not
been resolved, we recompute the set I< and the smallest
]I<] - 1 free labels bigger than cr. If the visible labels left
in the subtrees fall outside the range spanned by these
]K] - 1 free labels, we can apply the simple strategy
immediately; otherwise, we repeat the procedure above.

3.3 Tackling the boundary case Eventually we will
come to the case where there is no conflict under the
current labeling but one or more branches still get a
label zero. In this case, our aim is to identify a free
label for each of these branches. We set CY = 0 and
compute K = {i] ,f3i = 0). If the currently visible
labels in the subtrees all fall outside the range spanned
by the]K] (instead of IK) - 1) smallest free labels, we
apply the simple strategy to assign the 1111 smallest free
labels to the branches in K as in Section 3.1, getting a
valid labeling. Otherwise, we execute the procedure in
Section 3.2 to label a branch not necessary in K freeing
more small labels.

3.4 The Algorithm The computation described in
previous sections is put together as a procedure, called
LABELING.

Procedure LABELING(T)

Input: L[l],L[2],.-.,L[4
output: P[l], . . . ,/3[4 (the branch labels) and L, the
critical set of visible labels of T.

0 // step I - Initialization

for i = 1,2,. . .,d do ,B[i] := 0; i[i] := L[i];
zero-label-count := d;

o while zero-label-count > 0 do
0 // step II - Locating the maximum conflict

if there is a conflict then
0 := max{e I !-E L[i] II ~?[j] for some i # j};
Ii := {i 1 cr E L[i]}; k := pi-l;

else
ff := 0; Ii- := {i (P[i] = 0); k := /Ii-l;

l // Step III - Counting free labels

y := the smallest label in Uf=, k[i] bigger
than a;
w := the number of free labels bigger than
(Y but smaller than y;
{In case no labels in Uf=, i[i] is bigger
than CY, set w := k;}

l if(a>Oandw<k-l)or(o=Oandw<k)
then // I.e., not enough free labels

// step IV - Producing more free labels

x := the smallest free label bigger than y;
j := the branch such that among all
branches, i[j] contains the biggest label
which is smaller than 2;
if p[j] = 0 then zero-label-count :=

zero-label-count - 1;
,q] := 2;

elseifar>Oandw>k-lthen
// Step Va Resolving the conflict at 01> 0

compute the branch io E I< such that for
all i E Ii, Cover(o, L[ic]) 5 Cover(a, E[i]);
for each i E I< - {ic} do

,B[i] := the next smallest free label
bigger than cr;
zero-label-count := zero-label-count - 1;

else if (Y = 0 and w > k then
// Step Vb - Resolving the conflict at 0

for each i E I< do
,B[i] := the next smallest free label;
zero-label-count := zero-label-count - 1;

l // Step VI - Removing no-longer visible labels

for each i such that ,B[i] gets a new value do
delete all the labels in L[i], that are

smaller than ,B[i];
0 // Step VII - Assembling visible labels

(L := qL,(i[i] u {p[i])j;

440

The main body of the procedure LABELING is a
while loop. In one iteration of the while loop, we locate
the maximum conflict; if there are enough suitable free
labels available, the conflict is resolved immediately;
otherwise, we attempt to free more free labels. At the
end of each iteration, the labels /?[l], /$a], . . . , /?[dj define
a partial labeling. The positive labels in use always

TT1;2; T

form a subset of the labels used by an optimal labeling
(4 (b) Cc)

(see Section 4). That means, the procedure never uses F.
“wrong” label. On exit from the while loop, the

igure 5: (a) A rooted tree T where LI = Ls = LB =

kbels PPI, PM, . . . j PWI are all positive and form a valid
LJ = (5) and Lg = {7,8}. A conflict occurs at (Y = 5;

labeling. In Section 4, we give a characterization of this
h’ = { 1,2,3,4}. The smallest k - 1 free labels bigger than (Y

valid labeling and prove that it is actually optimal.
are {6,9,10}. (b) Applying the simple strategy to resolve

Based on the procedure LABELING, we can construct
the co&lict would label the branches 2,3,4 with 6,9,10,

an algorithm for computing a critical edge ranking of a
respectively. Such an assignment cannot form a critical edge

rooted tree R. For each node v in R, let R, denote the
ranking. (c) A better way to resolve the conflict is to first
label branch 5 with g

subtree in R rooted at v. We execute LABELING(R,) for
each internal node v of R in a bottom-up manner. The
input to LABELING(R,) consists of the critical sets of labeling. A branch i is said to satisfy the greedy-cover

visible labels of the subtrees rooted at the children of v. (abbreviated as gc) property if for all branches j such

This simple algorithm is referred to as EDGE-RANKING. that Pj < I%, (C over(zi, Li), i) + (Cover(zi, Lj),j).l B
is said to be a gc labeling if every branch satisfies the

4 Proof of Optimality gc property.

Let T be a rooted tree. Denote the subtrees rooted at Intuitively, a gc labeling assigns the biggest label to

the children of T and their critical sets of visible labels a branch so as to cover the lexicographically biggest set

as Tl,Tz,..., Td and L1, Ls, . . . , Ld, respectively. In
of labels. The branch indices are used to break tie. The

this section, we prove that the procedure LABELING(T) labeling shown in Figure 6th) is a gc labeling. Notice

computes an optimal labeling for the branches of T.
that, given a fixed set of labels (say, C), a gc labeling
. .

In Section 4.1, we define a class of valid labelings, Is unique’
Among all labelings using C, a gc labeling

which characterizes the labeling computed by our pro-
causes the smallest set of visible labels to be left in the

cedure. In Section 4.2, we show that all intermediate subtrees, so it is optimal.

partial labelings, as well as the final valid labeling, com-
The optimal labeling computed by our algorithm

puted by our procedure are kept to minimum, thus lead-
does not follow the rule imposed by a gc labeling.

ing to an optimal labeling.
We observe that with respect to a gc labeling 2 =

The discussion below uses a notation (a) to refer to (‘l’ z2’ ’ f
. zd), if there are branches i, j such that both

the set of non-zero labels in a partial or valid labeling
Li and Lj contain no labels between zi and zj inclusive,

Z? of the branches of T.
then zi and zj can be swapped without affecting the
optimalityof the labeling. See Figure 6(b) and (c) for an

4.1 The relaxed greedy-cover labeling It is
example. Below, we relax the definition of a gc labeling

known that all optimal labelings of the branches of T
to capture the above observation.

must use the same set of labels [3]. Let us denote C as
Definition: Consider any valid labeling a =

this set. Two optimal labelings differ only in the order u31,/32,..., ,&). A branch i is said to satisfy the re-

the labels of C are assigned to the branches. The set of
laxed greedy-cover (abbreviated as rgc) property if for

labels used by any valid labeling must be lexicograph-
all branches j such that /3j < ,f3i, (Cover@, Li), i) +

ically bigger than or equal to C. Figure 6 depicts an (Cove@i, Lj)t.i), or both Li and Lj contain no labels

example. in the interval [/3j, pi]. a is called a rgc labeling if every

Not every valid labeling using C is optimal. The
branch satisfies the rgc property.

edge ranking algorithm of Torre, Greenlaw and Schaffer
A gc labeling is also a rgc labeling, but the reverse

[3] is based on the existence of a greedily-constructed
is not true. Also, unlike a gc labeling, a rgc labeling

labeling which is guaranteed to be optimal. The
using C may not be unique. Given a rgc labeling B,

greediness of such a labeling is captured by the following
notion. lFor any two sets of labels C and C’ and any two distinct

Definition: Let a = {@I, ,&, . . . ,&} be a valid
integers i and i’, (C, ;) + (C’, i’) if and only if C >- C’ or (C = C’
and i , ;#l.

441

Figure 6: (a) A tree of which any optimal labeling must use the labels { 1,6,7,8}. The labelings given in (b) and
(c) are optimal while the one in (d) is not.

one can always permute the labels of the branches to
.produce a unique gc labeling t? which is equivalent to 17
in the sense that (B) = (f?) and f? causes the same set
of visible labels left in every subtree T; as f?. Therefore,
any rgc labeling using C, being equivalent to the gc
labeling using C, must be optimal.

Definition: Consider any partial labeling P =
(&,Pz,... , ,&). (i) P is a gc-partial labeling if for any
branch i such that ,0i > 0, for any branch j such that
/3j < ,&, (Cover(/$, Li), i) % (Cover(fli, Lj), j). (ii) P is
a rgc-padial labeling if for any branch i such that fli > 0,
branch i satisfies the rgc property.

Given a rgc-partial labeling P, one can always
permute the labels on the branches to produce a unique
gc-partial labeling p which is equivalent to P in the
sense that (P) = (P) and P and p cause the same set
of visible labels left in every subtree Ti. We call p the
gc equivalent of P.

4.2 Invariant A careful case analysis of the proce-
dure LABELING can reveal that the partial labeling P
produced at the end of every iteration of the while loop
in the procedure is a rgc-partial labeling. Moreover, the
following invariant is observed.

l Every positive label used by P is bigger than o(P),
where a(P) denotes the maximum label at which
there is a conflict.

In this section, we focus on a more important invariant
concerning P.

l (P) 5 c.

In other words, when the procedure stops, we obtain
a valid and rgc labeling B such that (f?) 5 C. Any
valid labeling admits a set of labels lexicographically no
smaller than C. Thus, (B) = C and B is an optimal
labeling.

The above two invariants seem a bit simple, yet
we can easily derive from them two stronger properties

concerning the quality of P (the proof is left in the full
paper):

Property 1. (P) C C; and
Property 2. Let 9 = @I, ,&, . . . , pd) be the gc equiva-

lent of P. Let 2 = (~1, ~2, . . . , zd) be the gc labeling
using C. Then ,& 5 zi for every branch i.

Below we give an inductive proof of the invariant
that (P) 5 C. Initially, the procedure LABELING
assigns every branch a label zero, so the invariant holds.
Suppose that after a number of iterations of the while
loop, the rgc-partial labeling P produced satisfied the
invariant. In the next iteration, one or more branches
will receive bigger labels. Let Q be the new rgc-partial
labeling. We are going to show that (P) 4 (Q) 5 C.

Let us have a close look of the iteration that
produces & at the end. Steps II and III computes the
values of (Y, K, %, y, and w with respect to P. Then,
new labels are assigned to the branches in one of the
Steps IV, Va, and Vb. Lemmas4.1,4.3, and 4.4 consider
these three steps separately.

LEMMA 4.1. (for Step Vb) Suppose (Y = 0 and k 5 w.
Let W be the set of the k smallest free labels. Let Q be
the labeling formed by assigning the labels in W to the
k branches in K. Then (&) 5 C.

Proof. With respect to P, the label of every branch i in
K is zero. Thus, & has exactly k positive labels more
than P and (Q) -= (_P) U IV:

Let P = (pi,&... ,/&) be the gc equivalent of
P. (&) = (P) U W = (P) U W. We want to show
that C k (p) U W, then the lemma follows. Let
2 = (%l,Z&..., zd) be the gc labeling using C. Let
Ci = {pi 1 ,& > 0). Property 2 of P states that .zi 2 ,&
for every branch i. Thus, Cr k {pi 1 ,& > 0) = (P).
Let C2 be the (d- I&l) smallest positive labels distinct
from Cl. Obviously, C > Cr U Cz. Because Cl k (p),
we further conclude that Cl U I& k (P) U W.

442

LEMMA 4.2. Suppose cr > 0. Let p = (PI, ,&, . . . ,pd) (I) and (II) together imply that C must contain a label
be the gc equivalent of P.
pi=pi=O.

For any branch i E K, e 1 x such that l! # (p).
Proof of(I): If a = 0 and k > w, every label in C

Proof. Recall that with respect to a partial labeling,
a conflict arises from branches with label zero. Thus,
,Bi = 0 for all i E K.

Suppose on the contrary that there exists i E K
such that ,L& > 0. Since every positive label in P is
greater than cry, ,& must be greater than o, too. Note
that cy is a positive label in Li. ,Ji causes the label
a in Li to become invisible, though /3i = 0 does not.
This contradicts the second property of a gc equivalent.
Therefore, ,& = 0 for all i E K.

LEMMA 4.3. (for Step Va) Suppose o > 0 and k - 1 5
w. Let W be the set of the k - 1 smallest free labels
bigger than (Y. Let Q be the partial labeling formed by
assigning the labels in W to any k - 1 branches in K.
Then (Q) 5 C.

Proof. Let P = (Di,p2,... , ,&) be the gc equivalent of
P. Again, (&) = (P) U W = (P) U W. We are going to
show that C k (p) U W.

Let 2 = (zr,z2,..., zd) be the gc labeling using
C. Let Cr = {.Zi-] i $! K}. Since z; > pi for every
branch i, Cr k {,&] i $ Ii}. Lemma 4.2 implies that
{pi] i $ I<} k (P). In short, Ci 2 (p). Let Es be
the set of k - 1 smallest labels that are bigger than (Y
and distinct from Ci. Note that 2’ must assign at least
k - 1 branches in Ir’ with label > (Y (otherwise, 2 is
not a valid labeling). Therefore, C = (2) k Cr U &
k (P) u w.

LEMMA 4.4. (for Step IV) Suppose (o = 0 and k > w)
or (cy > 0 and k - 1 > w). Let 2 be the smallest free
label bigger than y. Let j be the branch such that for all
i = 1,2,... , d, Cover(z, i[j]) t Cover(x, i[i]). Let & be
the partial labeling formed by relabeling the branch j
to the value x in ‘P. Then (Q) 5 C.

Proof Let P= (&,ps,... , ,&) be the gc equivalent of
P. (Q) = ((P) - (&}) U {x}. Due to Property 1 of
P, we have C _> (P). Below we further show that C
contains at least one label e 2 x such that e 6 (p).
Then C > (P) U {z} h (Q).

To prove the existence of such an e, we prove the
following two statements. Let p = I(P)] (i.e., the
number of positive labels used by P). Recall that
w denotes the number of free labels in the interval
[cr + 1, y - l] with respect to P.

(I) C contains more than p + w labels bigger than o.
(II) If C and (p) contain the same set of labels 2 I,

then C contains at most p + w labels bigger than
cr.

isgreaterthano=O,and]X]=d=p+k>p+w.It
remains to consider the case where (Y > 0 and k - 1 > w.
Let 2 = (zr,..., td) be the gc: labeling using C. For each
i such that ,& > 0, i is not in K (due to Lemma 4.2),
and zi 2 ,8i > cy. On the other hand, Z must assign
at least k - 1 branches in Ii with label bigger than o.
Thus, 2 uses at least p + k - 1 > p + w labels greater
than a.

Proof of (II): Suppose p and C have the same set
of labels > x. Let 2 = (~1,. . . , zd) be the gc labeling
using C. Since both p and 2 are gc labelings, for each
label h E (p) such that h 2 z, h lies on the same
branch under both p and 2. This can be proved using
an induction starting with the largest label.

Furthermore, p and 2 must have the same set of
labels in the range [y, x - 11. More precisely, for any
label h E [y, x - 11, if h is used by p then h is also used
by 2 and h labels the same branch w.r.t. to both p and
2; otherwise, h is the label of a visible edge residing in
the same subtree Ti w.r.t. to both p and Z. This can
be proven again by a backward induction starting with
h=x-1.

In summary, p and 2 use the same set of labels
2 y. With respect to P (or P), let pr be the number
of labels 2 y, and let p2 be the number of labels in the
interval [a + 1, y - 11. Note that p = pi + ps. 2 uses
exactly pi labels 2 y. Recall that w.r.t. P, w denotes
the number of free labels in the interval [a + 1, y - 11,
and no visible labels residing in any subtrees fall into
this interval. Thus, ps + w = y - 1 - o. The number
of labels that are bigger than a in (2) is no more than
p1+(y-1-cr)=p1+p:!+w=p+ur.

In conclusion, based on Lemmas 4.1 - 4.4, we can
prove inductively that the partial labeling P computed
in every iteration satisfies the invariant (P) 5 C.

5 O(n log n) time algorithm

Given a tree R with n nodes, the algorithm EDGE-
RANKING invokes the procedure LABELING for every
subtree R, rooted at an internal node v of R. A
brute-force implementation of LABELING would enable
EDGE-RANKING to run in O(n2) time. In this section,
we give a more efficient implementation of LABELING,
improving the time complexity of EDGE-RANKING to
O(n log n). This implementation is based on two novel
ideas, namely, a compact representation of the critical
set of visible labels and a conservative merging process
that avoids redundant processing of most of the labels.

443

5.1 Segments For any integers e 5 T, denote by [e, r]
the segment of consecutive integers spanning from f?
to T. Let L be a set of labels. L can be considered
as a union of segments [li , ri], [es, rs], . . . , [& , T,] where
ri < &+i - 1 for i = 1,2, ..+, s - 1. The number of
segments in L may be as many as the number of distinct
labels in L. Yet, if L is the critical set of visible labels
of R, there are at most &i disjoint segments.

LEMMA 5.1. Suppose L(R) = u~=~[&,Q] where ri .<
e. s+l - 1. Then 4, + Ls + . . . + & < n and s < fi.

Proof. We will prove that R contains s disjoint subtrees
having at least !?I, &, . . ., & edges. Thus, ei + e2 f
. ..+e. < n. Because ri < li+i - 1, xi=1 !i >_
1+3+.. . + (2s - 1) = s2. It follows that s < fi.

Let $ be a critical edge ranking of R such that the
restriction of II, to every subtree of R is also critical.
That is, L($) = L(T) = u~=~[!$,T~]. Consider the
visible edge that is assigned with the label & under +.
Denote this edge by e, = (u, V) where u is the parent of
v in R. We first prove that the subtree R, contains at
least !J, - 1 edges.

If & = 1, R, obviously contains at least e, - 1
edges. In the following, we assume that & > 1. Note
that the label (& - 1) is not visible in R. We consider
the following two cases:

l The label (e, -1) is visible in R,: The restriction
of $ to R, is critical. Since a critical edge ranking
of R, does not use a label greater than the number
of edges in R,, there must exist at least (!, - 1)
edges in R,.

l The label (4, - 1) is not visible in R,: The
following argument shows that this case cannot
happen. The label (& - 1) is not visible in R, and
every label on the path from u to the root of R is at
most & - 2. It follows that e, - 1 is also not visible
in R,. Let us relabel the edge e, with (e, - 1). The
we obtain an edge ranking of R with a visible set of
labels that is lexicographically smaller than L($).
A contradiction occurs.

In short, the subtree rooted at the edge e, (i.e. R, plus
the edge e,) contains at least & edges.

Next, we show that R contains another disjoint
subtree with !,-I edges. Let T’ be the subtree of R
formed by deleting all the subtrees rooted at a visible
edge with label 2 e,. The labels inherited from $ still
forms a critical ranking of T’, and L(T’) = Ui=: [&, pi].
Let e,-1 be the visible edge with the label &-I in T’.
Again, we can argue that the subtree rooted at the edge
e,-1 in T’ contains at least &-I edges.

there are s disjoint subtrees in R having .& , &- 1, . . . , ei
edges.

5.2 Data structures To attain a sub-quadratic time
implementation of EDGE-RANKING(R), we would like to
manipulate each individual critical set of visible labels
segment by segment instead of label by label. We
represent the critical set of visible labels of every subtree
R, (i.e. L(R,)) as a search tree X. X is composed of
disjoint segments, which partition the labels from 1 to
n. Every segment [e, r] in X is associated with a flag
f E (0, 1,2}; the search key is the ordered pair (f, r).
Segments in L(R,) are put into X as flag-l segments.
The free labels (i.e. labels not in L(R,)) form the flag-0
segments of X.. Flag-2 segments are present only in the
process of computing L(R,)).

Operations to be performed on X include: insert
a segment, delete a segment, search for the existence
(or the predecessor and successor) of a segment, delete
the minimum segment, and count the number of free
labels between two consecutive flag-l segments. We
require the three operations each to be done in O(log n)
time, and the delete minimum takes O(1) time only. We
maintain a count of such free labels explicitly in every
pair of consecutive flag-l segments.

5.3 Implementation of LABELING (&,) Consider an
internal node v of R. Let ~1, ~2, . . . , ud be the children
of v. Without loss of generality, we assume that the
subtree R,, contains the largest number of nodes among
all subtress rooted at the children of v. The input to
the procedure LABELING(R,) consists of d search trees,
ml, WI, . . .) X[d, representing L(R,,), L(R,,), --.,
L(R,,). Regarding the output, the procedure produces
an array p[l..d] p re resenting the branch labels and a
search tree X representing L(R,). Note that X inherits
all the labels from X[l],X[2],X[dl that remain
visible from the viewpoint of &,. To save time, we do
not build X starting from scratch. Instead we use X[l]
as a basis and merge segments from other input search
trees to X[l]. At the end, we return X[l] as the output
for R,.

R U1 is the biggest subtree and possibly contains
a large number of segments. If we avoid copying the
content of X[l], we potentially save a lot of time. Our
goal is to ensure the time for executing LABELJNG(R,)
does not depend on the total number of segments or
labels in the input trees. Instead we want the total time
to be charged to the following number of tree operations.

l s-the total number of segments in
L(R,,), . . . , L(R,,);

” _
Repeating the argument-above: we can show that l h-the total number of segments which are

444

in L(&,), L(R,,), . . . , L(&,,) but which are no
longer visible when LABELING(&) stops.

l &the number of segments formed by the branch
labels computed by LABELING(&).

The following lemma captures the main result of
our implementation.

LEMMA 5.2. It takes O(d + (s + h + b) logn) time to
eXeCUte LABELING(&).

Proof. See Appendix.

THEOREM 5.1. It takes O(nlogn) time to execute
EDGE-RANKING(R), where n is the number of nodes in
R.

Proof. To ease our discussion, we add a subscript v to
the variables d, s, h, b from now on. Lemma 5.2 implies
that the algorithm EDGE-RANKING on input R runs in

Kz”ER d,+C,ER(s,+h,+b,)logn) time. Obviously,
CvER d,, is bounded by n, and b, 5 d,. As regards h,,
we observe that once an edge becomes not visible in the
subtree R,, it will remain not visible in any subtree
rooted at an ancestor of v. Thus, CvER h, is also
bounded by n. It remains to show that EVER s,, equals
O(n). Suppose the subtrees rooted at the children
of a node v contain nl, 712,. . . , nd, nodes. W.L.O.G.,
assume nl = max{nl,n2,.-e,n&}. By Lemma 5.1,
&I I 6-k ... + a. We can further show that
C,ER(&+. . +-a) is at most 4n-4,/Z. Therefore,
c VER SW = Ocn>.

6 O(n) time algorithm

In the previous section, we show that the algorithm
EDGE-RANFING can run in time

\
0 ~~Rdy+C(SV+hu+bv)logn

L
.

UER
Note that xoER sV, as well as EVER h, and EVER b,,
is equal to O(n). The main observation that leads to
a linear time ‘aigorithm is that most of the segments
dealt with by the algorithm contain only small labels.
More specifically, a segment [.&r] is said to be small
if T < log2 n; otherwise [l, r] is said to be big. We
decompose the value s, into two values, say, s: and sa,
corresponding to the number of small and big segments.
Similarly, h, can be decomposed into hl and ht, and b,
into b: and bt.

We use data structures other than simple search
trees so that small segments can be handled more
efficiently. We devise a hybrid representation that uses
different data structures for small segments and big
segments. This hybrid representation is able to support
search, insert and delete operations in O(1) time for

small segments, and in O(log n) time for big segments.
With such a hybrid representation, the time complexity
of the algorithm EDGE-RANB;ING can be improved to

/ \
0 ~(d.+s;+h:+b;)i-x(sl’+hl’+b:‘)logn .

L VER VER 1
Since st, hl, and b: are bounded by sV, h,, and b,,
respectively, EVER (s: + hl + b:) equals O(n). The
values of CVERsz and EVER ht have a simple
relationship with the value of CvER bt. We are
able to show that zVCRst 5 logn EVER bt, while
EVER h:’ 5 EVER bf. Moreover, EVER bl’ = 0(&h
Therefore, C,,,R(st + ht + bt) equals O(G). Thus,
we can obtain a linear time implementation of the
algorithm EDGE-RANKING.

THEOREM 6.1. An optimal edge ranking of a tree with
n nodes can be computed in O(n) time.

References

PI

PI

[31

141

[51

161

PI

PI

PI

PJI

PI

H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D.
Kratsch, H. Miiller, and Zs. Tuza, Rankings of graphs,
SIAM J. Discrete Math. To appear.
H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T.
Kloks, Approximating treewidth, pathwidth, jrontsize,
and shortest elimination tree, J. Algorithms, 18 (1995),
pp. 238-255.
P. de la Terre, R. Greenlaw, and 4. A. Schsffer,
Optimal Edge Ranking of Trees in Polynomial Time,
Algorithmica, 13 (1995), pp. 529-618.
A. V. Iyer, H. D. Ratliff, and G. Vijayan, Optimal node
ranking of trees, Inform. Process. Lett., 28 (1988), pp.
225-229.
A. V. Iyer, H. D. Ratliff, and G. Vijayan, On an edge
ranking problem of trees and graphs, Discrete Appl.
Math., 30 (1991), pp. 43-52.
T. W. Lam and F. L. Yue, The NP-completeness of
Edge Ranking, In Proc. of International Conference
on Algorithms, International Computer Symposium’96,
Taiwan, 1996, pp. 43-50.

M. Katchalski, W. McCuaig, and S. Seager, Ordered
colourings, Discrete Math., 142 (1995), pp. 141-154.
D. C. Llewellyn, C. Tovey, and M. Trick, Local opti-
mization on graphs, Discrete Appl. Math., 23 (1989),

pp. 157-178.
C. E. Leiserson, Area eficient graph layouts for VLSI,
ACM Doctor. Diss. Awards, MIT Press, Cambridge,

Massachusetts, 1983.
J. W. H. Liu, The role of elimination trees in sparse
factorization, SIAM Journal of Matrix Analysis and
Applications, 11 (1990), pages 134-1’72.
A. Pothen, The Complexity of Optimal Elimination
Trees, Technical Report CS-88-13, The Pennsylvania
State University, 1988.

[12] A. A. Schgffer, Optimal node ranking of trees in linear
time, Inform. Process. Lett., 33 (1989/90), pp. 91-96.

[13] X. Zhou and T. Nishiieki, Finding optimal edge-
rankings of trees, in Proc. of the Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, 1995, pp.
122-131. A correct algorithm was given in Advances
in Computing Techniques, Algorithms, Databases and
Parallel Processing, World Scientific, pp. 23-35.

Appendix

This section gives the details of the procedure
LABELING(&) so as to attain the time complexity
stated in Lemma 5.2.

It is worth mentioning that the procedure gradually
puts some segments of labels from X[2], X[3], . . . , X[4
into X[l]. More precisely, Just before the current
conflict, say, LY, is resolved, labels originating from
JY~,), . . . , L(ad) that are greater than (Y and that
are still visible from the viewpoint of &, must have been
inserted into X[l]. Also, X[l] is overloaded to include
all labels that are currently assigned to the branches;
these labels are represented by segments with flag 2.
Procedure LABELING(&)

Input: X[l], X[2],‘. .-., X[d
Output: The branch labels /3[1], . . . , p[4 and X

Step I: Initialization. We obtain a sorted list S of seg-
ments with flat equal to 1 from X[2], X[3], . . -, X[d in
descreasing order of the right limits of the segments
(tie is broken with respect to the branch indices). In
order to differentiate segments from different search
trees, segments originating from the the same tree,
say, X[i], are linked together in S and each store the
index i.

Next, we initialize all entries in p[l..d to zero.

while there exists /3[i] = 0 do

l Step II: Locating the maximum conflict.
Case I: S is not empty. Let [e, r] be the segment
in S with the biggest key. To locate the maximum
conflict, we examine whether [.&T-I overlaps with
the next segment in S or a segment in X[l]. If
so, let Q be the maximum label where the conflict
occurs, and let K be all the branches i that give
rise to the conflicts. Note that a 5 r. If cy < r,
the segment [o + 1, r] is currently visible from the
viewpoint of R, but not &,. To maintain the
invariant of X[l], we split [.f, r] into two segments:
[e, o] remains in S and [a + 1, r] is inserted into
X[l] as a flag-l segment.
If [e, r] does not overlap with any segment, the
maximum conflict occurs at a point less than e.
We remove [.4!, r] from S, insert it to X[l] as a flag-
1 segment. Then we repeat Step II again.

445

Case 2: S is empty. Set a = 0, and set K to the
set of branches i for which p[i] = 0.
Step III: Counting suitable free labels. If all llag-
1 segments stored in X[l] have right limits less
than or equal to a, set w to k. Otherwise, locate
the smallest flag-l segment [E, y] in X[l] such that
y 2 o. Let y = max(z, o + 1). If y = (Y + 1, then
set w to 0; otherwise, compute the number of free
labels w in the interval [o + 1, y - 11.

if (rw > 0 and w < k - 1) or (a = 0 and w < k)
then

Step IV: Freeing more free labels. Let x be
the smallest free label in X[l] bigger than y.
Search X[l] t o 1 ocate the flag-l segment [a, b] with
the largest right limit smaller than z. If [a, b]
originates from XL], set ,Bb] to 2.

else

Steps Va and Vb: Resolving conflicts. If cr = 0,
we delete the /c smallest free labels bigger than
CY from X[l] and assign them to the branches in
K. If cr > 0, we need to determine the branch
ic in I(that minimizes the set Cover(cr, &,)
lexicographically. Here, we use a brute force
way. We examine S and X[l] to compare, for all
i E K, the flat-l segment originating from X[i]
that contain the label o; ic should correspond
to the segment with the largest left limit. In case
there is a tie, we further examine the next smaller
segments until is can be determined. Then we
delete the k: - 1 smallest free labels bigger than o
from X[l] and assign them to the k - 1 edges in
K excluding ic.

Step VI: Removing labels no longer visible. For
each i such that ,B[i] has just received a new value
in Steps IV, Va or Vb, we update X[l] or S to
delete all flag-l segments [a, b] with labels < p[i]
and branch index i.

If i is in K, we delete i from Ii’. If Ii still contains
two or more indices, the conflict at (Y has not been
resolved competely and we can jump to Step III
direct for another attempt.

o Step VII: Assembling visible labels. Now all labels
in the critical set of R, are represented by segments
with a flag equal to 1 or 2 in X[l]. For each flag-
1 segment originating from X[2], . . . , X[d and are
currently found in X[l], if it comes in adjacent with
other flag-l segments in X[l], merge them into one.
For every flag-2 segment, change its flag to 1 and
merge the segment with other flag-l segments that
comes in adjacent, if any. Return X[l].

