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Abstract 

Finding an optimal node ranking and an edge ranking 
of a tree are interesting computational problems. The 
former problem already has a linear time algorithm in 
the literature. For the latter, only recently polynomial 
time algorithms have been revealed, and the best known 
algorithm takes O(n2 logn) time. In this paper, we 
present a new approach for finding an optimal edge 
ranking in O(n) time, showing that the optimal edge 
ranking problem is no more difficult than the node 
counterpart. 

1 Introduction 

Let G be an undirected graph. A node ranking of G 
is a labeling of its nodes with positive integers such 
that every path between two nodes with the same label 
i contains an intermediate node with label j > i. A 
node ranking is optimal if it uses the least number of 
distinct labels among all possible node rankings. An 
edge ranking of G is a labeling of its edges satisfying an 
analogous condition, i.e., every path between two edges 
with the same label i contains an intermediate edge with 
label j > i. Figure 1 illustrates an optimal edge ranking. 
The problems of 
finding an optimal 
node ranking and 
an edge ranking of 
a graph have been 
well studied as they 
find applications 
in different con- 
text [l, 5, 9, lo]. 
Both problems are 
now known to be Figure 1: An optimal edge ranking 
w-hard ill, 8, 61. of a tree. 
Nonetheless, in 
most applications, the graphs in concern are restricted 
to trees only. This initiates the study of node ranking 
and edge ranking of trees. 

With respect to trees, the node ranking problem 
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seems easier than the edge ranking problem. There is 
already a linear time algorithm for finding an optimal 
node ranking of a tree [12]. For edge rank$g, after 
the pioneering work of Iyer, Ratliff, and Vijayan [5], 
de la Torre, Greenlaw and SchXer [3] devised the first 
polynomial time algorithm (more precisely, O(n3 log n) 
time) for finding an optimal edge ranking of a tree. 
Then Zhou and Nishizeki [13] improved their algorithm 
to run in O(n2 log A) time, where n is the number of 
nodes and A is the maximum degree of the tree. 

In this paper, we present an O(n) time algorithm 
for finding an optimal edge ranking of a tree, matching 
the optimal result of the node counterpart. 

An optimal edge ranking of a tree may not be 
unique. In fact, the optimal edge ranking computed by 
our algorithm may not be the same as those by previous 
algorithms [3, 131. From a conceptual viewpoint, the 
improvement achieved by our algorithm is rooted at 
a broader class of optimal edge rankings. Such a 
class leads to a more ambitious approach for labeling 
the edges-the new approach can label a number of 
edges at a time without optimizing for individual edges. 
Previous algorithms are actually based on a “guess-and- 
test” approach, where determining a right label for an 
edge usually requires many guesses, each followed by 
a time-consuming testing. Our approach reduces the 
number of guesses per edge to no more than two on 
average and does not need to perform an explicit testing 
to ensure the optimality of the ranking. 

To make our new approach fully effective, we need 
some novel data structure techniques. As a warm-up, we 
first give an O(nlogn) time algorithm, which is based 
on a compact representation of labels, supplemented by 
a conservative merging process that avoids redundant 
processing of most of the labels. Then we further 
enhance the algorithm to run in O(n) time. The 
improvement stems from a tight analysis of the usage 
of labels. 

The remainder of this paper is organized as follows: 
Section 2 gives the basic definitions. Section 3 presents 
a new approach for finding an edge ranking of a tree, 
and Section 4 proves its correctness. Section 5 shows 
how the new approach can be executed in O(n logn) 
time. The last section shows how to improve the time 
complexity to linear. 
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2 Concepts and notations 

Following previous work [3, 131, we 
tree to be rooted at an arbitrary 

consider the input 
node. Note that 

rooting a tree does not change the definition of edge 
ranking, but it suggests a natural way to decompose 
the computation. 

Let p be an 
edge rank;ing of a 
tree T with root r. 
An edge e of T is 
said to be visible if 
all the labels on the 
path from e to T 
are smaller than or 
equal to the label of 
e. Take an exam- 
ple, all edges inci- 
dent to T are visible. 
It follows from the 
definition of rank- 
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Figure 2: A tree with an edge rank- 
ing. The visible labels are {5,4,3,1}. 

ing that all visible edges must have distinct labels. A 
label e is said to be visible if there is a visible edge la- 
beled with -C Denote by L(cp) the set of visible labels of 
T under ‘p. Figure 2 shows an edge ranking ‘p of a tree 
T, where L(cp) = {5,4,3,1}. 

We determine the lexicographical order of two sets 
of labels by examining the labels in decreasing order. 
For instance, both {5,3,1} and (3) are considered to 
be smaller than {5,3,2}. An edge ranking ‘p of T is 
said to be critical if L(cp) is lexicographically smaller 
than or equal to L(cp’) for any edge ranking ‘p’ of T. 
A critical edge ranking is an optimal edge ranking, but 
the reverse may not be true. All critical edge rankings 
of T have the same set of visible labels. The critical 
set of visible labels of T, denoted by L(T), is the set 
of visible labels of a critical edge ranking of T. The 
algorithm presented in this paper finds a critical edge 
ranking of a tree. The work of Torre, Greenlaw and 
Schaffer [3] has an important implication regarding the 
computation of critical edge rankings. Suppose the root 
of T has d children, numbered from 1 to d. Denote the 
subtree of T rooted at the i-th child of the root and the 
edge between the root and this child as Ti and branch 
i, respectively. 

LEMMA 2.1. (see [3]) A critical edge ranking of T can 
be formed by any critical edge rankings of Tl , T2, . . . , Td 
together with a suitable labeling of the branches. 

In light of Lemma 2.1, we can compute a critical 
edge ranking of T using a bottom-up approach: 
(1) find a critical edge ranking for every subtree Ti ; 

Let f? = (b,Pz,..., @d) be a labeling of the 
branches of T, in which some ,&‘s may be equal to zero. 
f? is said to be a padial labeling if for all branches i with 
Pi > 0, (i) ,& $Z ~2, and (ii) (hU{h})n(& U{Pj}) = 4 
for any branch j # i. A partial labeling in which alE 

(2) compute a label ,Bi for every brunch i so that this branches are assigned positive labels is a valid labeling. 
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Figure 3: (a) L1 = {8,4,3}, Lz = {10,9,4}, and LB = 
(7,l). (b) f3 = (5,6,2) is a valid labeling. The shaded 
labels are no longer visible; 21 = {8}, I?Z = {10,9} and I% 
= (7). 

labeling together with the critical edge rankings 
found in (1) form a critical edge ranking of T. 

2.1 Valid labelings and optimal labelings Sup- 
pose the critical edge rankings of the subtrees 
Tl,Tz,-.., Td and the critical sets of visible labels 
Ll,Lz,‘-., Ld have been computed. Let us focus on 
labeling the branches. Obviously, not any arbitrary la- 
beling B = (pi, p2, . . . ,,&) can form an edge ranking, 
let alone a critical edge ranking. Let Li denote the set 
{!E Li Ie>Pi}. a is said to be a valid labeling if for 
all branches i, 

(i) Pi 6 Li, and 

(ii) (& U {pi}) fl(& U {flj}) = 4 for any branch j # i. 

It is easy to verify that a valid labeling forms an edge 
ranking of T. Figure 3 gives an example. A valid 
labeling that forms a critical edge ranking of T is called 
an optimal labeling. We devote Sections 3 through 6 to 
showing how to find an optimal labeling. This optimal 
labeling may not be the same labeling as found by 
previous algorithms [3, 131; nevertheless, they all use 
the same set of labels. 

2.2 Partial labelings and conflicts To compute a 
labeling of the branches of T, our algorithm initially 
labels every branch of T with zero, then it increases the 
labels stage by stage until they form a valid labeling. We 
require that at the end of every stage those branches 
that have already received positive labels satisfy a 
condition similar to that of a valid labeling. 



438 

a ;’ 22 
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0 1 2 3 ... 11 12 13 14 15 ... 

ii 
- 

PI and 0 4 4 4 4 
P2 and LZ 0 4 4 4 4 
P3 and 23 0 4 4 4 4 
p4 and LJ 0 4 
P5 and es 0 4 4 4 

Figure 4: In this example, there are five branches. /3i = /3s = ps = /35 = 0, and ,& = 13. The content of each k; 
is represented by a number of 4’s on the same row. There is a conflict at (Y = 11. K = { 1,2,3}. The smallest two 
free labels bigger than Q are 12 and 14. Assigning 12 and 14 to branches 1 and 3 (in any order) resolves the conflict, 
while minimizing lexicographically the visible labels left. 

With respect to a partial labeling f?, we say that 
there is a conflict at a label fJ > 0 if there exist two 
visible edges labeled with 1. The definition of partial 
labeling guarantees that a conflict, if present, must be 
due to two (or more) visible edges each residing in a 
,distinct subtree z such that ,& = 0. 

If Z? is a valid labeling, there is no conflict at any 
label e > 0. Thus, to produce a valid labeling eventually, 
our algorithm attempts to resolve all conflicts in the 
current partial labeling. To resolve a conflict at e where 
JJ E & n ,?j for some i # j, we can increase the label on 
one of the branches i and j to some value greater than 
e. The new label assigned to the branch i (or j) should 
be distinct from all the currently visible labels of T; 
otherwise, another conflict is generated. That means, 
we should assign a branch with a free label, which is a 
positive integer not equal to any of the currently visible 
labels. 

3 Algorithmic framework 

Assume that the critical sets of visible labels 
Jh,Lz,-.., Ld have been computed. In this section, we 
describe the framework of a new algorithm for finding 
a valid labeling of the branches of T. The discussion 
focuses on algorithmic aspects only. In Section 4, we 
give a characterization of this labeling and prove that it 
is an optimal labeling. In Sections 5 and 6, we describe 
some novel data structure techniques for executing this 
framework efficiently. 

The algorithm starts off with a partial labeling in 
which every label is zero. The computation is divided 
into a number of iterations. Each iteration increases 
the labels of one or more branches, producing another 
partial labeling. When all branches have been assigned 
positive labels, the partial labeling obtained is a valid 
labeling and the algorithm stops. 

In one iteration, the computation is as follows: We 
figure out the maximum label (Y at which the current 

partial labeling gives rise a conflict. Let K = {i ( a E 
Li}, and let k = II<). Our goal is to identify k - 1 
free labels greater than Q and assign them to any k - 1 
branches in I<, thus resolving the conflict at cr. To 
attain an optimal labeling eventually, the conflict must 
be resolved optimally, that is, the labels to be put on 
the branches and the visible labels left in all subtrees 
are minimized lexicographically. 

When we choose free labels to resolve the conflict, a 
natural attempt is to pick the smallest k - 1 free labels 
starting from cy + 1, say, 21,X2,. f ., zk-1. Assigning 
these labels to some k - 1 branches in Ii can resolve the 
conflict immediately. Yet, in some cases, this does not 
resolve the conflict optimally, and it is actually better 
to assign some zi to branches outside Ii. In Section 3.1, 
we state a condition under which assigning the free 
labels zi,z2, . . . , zk-1 to the branches in Ii is always 
the best move. We show how to handle other cases in 
Sections 3.2 and 3.3. 

3.1 Resolving the conflict immediately Con- 
sider the interval [rw + 1, zk-11. Suppose the labels in 
i&,... , id do not fall into [p+ 1, zk-i]. In this case, 
for any i I$ K, the labels in L; are either bigger than 
xk - 1 or smaller than Q. Thus, assigning xl,. . . , zk-1 
to branches in I< is more beneficial as we can eliminate 
(1~ from & for every i E Ii. More interestingly, a simple 
strategy s&ices to choose which k - 1 branches in K to 
receive the free labels 21, . . . , zk-1. 

Simple Strategy: Define Cover(cY, ki) = (! E 
& 1 e 2 o}. Let ic be a branch in Ii such 
that the set Cover(cr, ii,) is lexicographically 
smallest among all branches in Ii’. The free 
labels xc, ~1, . . . , xk-1 are put, in any order, 
on the branches in Ii excluding ic. 

An example is depicted in Figure 4. Notice that 
permuting the free labels among the k - 1 branches 



439 

chosen has no effect on the visible labels left in the 
corresponding subtrees; thus, we do not need to consider 
these k - 1 branches separately. Assuming all previous 
conflicts have been resolved optimally, we can prove that 
the above strategy minimizes lexicographically both the 
labels put on the branches and the visible labels left in 
the subtrees. The formal proof is given in the Section 4. 

3.2 Freeing better labels Should there be a visible 
label in some ii lying in the range [o+ l,zk - 11, applying 
the simple strategy directly may not resolve the conflict 
optimally. Figure 5 shows an example. 

Intuitively, if there is a visible label ! in some & 
falling in the range [a + 1, xk _ 11, it is more advantageous 
to assign the free label just greater than e to branch 
i instead of a branch in K because this assignment 
eliminates a visible label greater than cr. This motivates 
us to handle such a case as follows: 

Let x 5 xk-1 be the smallest free label bigger 
than cy such that there exists a label in some 
Li lying in the range [o + 1, z]. Let j be the 
branch such that ij contains the biggest label 
smaller than x. We increase the label of branch 
j to I. 

Note that j may or may not be a branch in Ii. After 
labeling branch j, we get at least one additional free 
label less than x. Intuitively, the smallest k - 1 free 
labels move closer to (Y. 

Now we examine the conflict at cr again. If it has not 
been resolved, we recompute the set I< and the smallest 
]I<] - 1 free labels bigger than cr. If the visible labels left 
in the subtrees fall outside the range spanned by these 
]K] - 1 free labels, we can apply the simple strategy 
immediately; otherwise, we repeat the procedure above. 

3.3 Tackling the boundary case Eventually we will 
come to the case where there is no conflict under the 
current labeling but one or more branches still get a 
label zero. In this case, our aim is to identify a free 
label for each of these branches. We set CY = 0 and 
compute K = {i ] ,f3i = 0). If the currently visible 
labels in the subtrees all fall outside the range spanned 
by the ]K] (instead of IK) - 1) smallest free labels, we 
apply the simple strategy to assign the 1111 smallest free 
labels to the branches in K as in Section 3.1, getting a 
valid labeling. Otherwise, we execute the procedure in 
Section 3.2 to label a branch not necessary in K freeing 
more small labels. 

3.4 The Algorithm The computation described in 
previous sections is put together as a procedure, called 
LABELING. 

Procedure LABELING(T) 

Input: L[l],L[2],.-.,L[4 
output: P[l], . . . ,/3[4 (the branch labels) and L, the 
critical set of visible labels of T. 

0 // step I - Initialization 

for i = 1,2,. . .,d do ,B[i] := 0; i[i] := L[i]; 
zero-label-count := d; 

o while zero-label-count > 0 do 
0 // step II - Locating the maximum conflict 

if there is a conflict then 
0 := max{e I !-E L[i] II ~?[j] for some i # j}; 
Ii := {i 1 cr E L[i]}; k := pi-l; 

else 
ff := 0; Ii- := {i ( P[i] = 0); k := /Ii-l; 

l // Step III - Counting free labels 

y := the smallest label in Uf=, k[i] bigger 
than a; 
w := the number of free labels bigger than 
(Y but smaller than y; 
{In case no labels in Uf=, i[i] is bigger 
than CY, set w := k;} 

l if(a>Oandw<k-l)or(o=Oandw<k) 
then // I.e., not enough free labels 

// step IV - Producing more free labels 

x := the smallest free label bigger than y; 
j := the branch such that among all 
branches, i[j] contains the biggest label 
which is smaller than 2; 
if p[j] = 0 then zero-label-count := 

zero-label-count - 1; 
,q] := 2; 

elseifar>Oandw>k-lthen 
// Step Va Resolving the conflict at 01> 0 

compute the branch io E I< such that for 
all i E Ii, Cover(o, L[ic]) 5 Cover(a, E[i]); 
for each i E I< - {ic} do 

,B[i] := the next smallest free label 
bigger than cr; 
zero-label-count := zero-label-count - 1; 

else if (Y = 0 and w > k then 
// Step Vb - Resolving the conflict at 0 

for each i E I< do 
,B[i] := the next smallest free label; 
zero-label-count := zero-label-count - 1; 

l // Step VI - Removing no-longer visible labels 

for each i such that ,B[i] gets a new value do 
delete all the labels in L[i], that are 

smaller than ,B[i]; 
0 // Step VII - Assembling visible labels 

( L := qL,(i[i] u {p[i])j; 
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The main body of the procedure LABELING is a 
while loop. In one iteration of the while loop, we locate 
the maximum conflict; if there are enough suitable free 
labels available, the conflict is resolved immediately; 
otherwise, we attempt to free more free labels. At the 
end of each iteration, the labels /?[l], /$a], . . . , /?[dj define 
a partial labeling. The positive labels in use always 

TT1;2; T 

form a subset of the labels used by an optimal labeling 
(4 (b) Cc) 

(see Section 4). That means, the procedure never uses F. 
“wrong” label. On exit from the while loop, the 

igure 5: (a) A rooted tree T where LI = Ls = LB = 

kbels PPI, PM, . . . j PWI are all positive and form a valid 
LJ = (5) and Lg = {7,8}. A conflict occurs at (Y = 5; 

labeling. In Section 4, we give a characterization of this 
h’ = { 1,2,3,4}. The smallest k - 1 free labels bigger than (Y 

valid labeling and prove that it is actually optimal. 
are {6,9,10}. (b) Applying the simple strategy to resolve 

Based on the procedure LABELING, we can construct 
the co&lict would label the branches 2,3,4 with 6,9,10, 

an algorithm for computing a critical edge ranking of a 
respectively. Such an assignment cannot form a critical edge 

rooted tree R. For each node v in R, let R, denote the 
ranking. (c) A better way to resolve the conflict is to first 
label branch 5 with g 

subtree in R rooted at v. We execute LABELING(R,) for 
each internal node v of R in a bottom-up manner. The 
input to LABELING(R,) consists of the critical sets of labeling. A branch i is said to satisfy the greedy-cover 

visible labels of the subtrees rooted at the children of v. (abbreviated as gc) property if for all branches j such 

This simple algorithm is referred to as EDGE-RANKING. that Pj < I%, (C over(zi, Li), i) + (Cover(zi, Lj),j).l B 
is said to be a gc labeling if every branch satisfies the 

4 Proof of Optimality gc property. 

Let T be a rooted tree. Denote the subtrees rooted at Intuitively, a gc labeling assigns the biggest label to 

the children of T and their critical sets of visible labels a branch so as to cover the lexicographically biggest set 

as Tl,Tz,..., Td and L1, Ls, . . . , Ld, respectively. In 
of labels. The branch indices are used to break tie. The 

this section, we prove that the procedure LABELING(T) labeling shown in Figure 6th) is a gc labeling. Notice 

computes an optimal labeling for the branches of T. 
that, given a fixed set of labels (say, C), a gc labeling 
. . 

In Section 4.1, we define a class of valid labelings, Is unique’ 
Among all labelings using C, a gc labeling 

which characterizes the labeling computed by our pro- 
causes the smallest set of visible labels to be left in the 

cedure. In Section 4.2, we show that all intermediate subtrees, so it is optimal. 

partial labelings, as well as the final valid labeling, com- 
The optimal labeling computed by our algorithm 

puted by our procedure are kept to minimum, thus lead- 
does not follow the rule imposed by a gc labeling. 

ing to an optimal labeling. 
We observe that with respect to a gc labeling 2 = 

The discussion below uses a notation (a) to refer to (‘l’ z2’ ’ f 
. zd), if there are branches i, j such that both 

the set of non-zero labels in a partial or valid labeling 
Li and Lj contain no labels between zi and zj inclusive, 

Z? of the branches of T. 
then zi and zj can be swapped without affecting the 
optimalityof the labeling. See Figure 6(b) and (c) for an 

4.1 The relaxed greedy-cover labeling It is 
example. Below, we relax the definition of a gc labeling 

known that all optimal labelings of the branches of T 
to capture the above observation. 

must use the same set of labels [3]. Let us denote C as 
Definition: Consider any valid labeling a = 

this set. Two optimal labelings differ only in the order u31,/32,..., ,&). A branch i is said to satisfy the re- 

the labels of C are assigned to the branches. The set of 
laxed greedy-cover (abbreviated as rgc) property if for 

labels used by any valid labeling must be lexicograph- 
all branches j such that /3j < ,f3i, (Cover@, Li), i) + 

ically bigger than or equal to C. Figure 6 depicts an (Cove@i, Lj)t.i), or both Li and Lj contain no labels 

example. in the interval [/3j, pi]. a is called a rgc labeling if every 

Not every valid labeling using C is optimal. The 
branch satisfies the rgc property. 

edge ranking algorithm of Torre, Greenlaw and Schaffer 
A gc labeling is also a rgc labeling, but the reverse 

[3] is based on the existence of a greedily-constructed 
is not true. Also, unlike a gc labeling, a rgc labeling 

labeling which is guaranteed to be optimal. The 
using C may not be unique. Given a rgc labeling B, 

greediness of such a labeling is captured by the following 
notion. lFor any two sets of labels C and C’ and any two distinct 

Definition: Let a = {@I, ,&, . . . ,&} be a valid 
integers i and i’, (C, ;) + (C’, i’) if and only if C >- C’ or (C = C’ 
and i , ;#l. 
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Figure 6: (a) A tree of which any optimal labeling must use the labels { 1,6,7,8}. The labelings given in (b) and 
(c) are optimal while the one in (d) is not. 

one can always permute the labels of the branches to 
.produce a unique gc labeling t? which is equivalent to 17 
in the sense that (B) = (f?) and f? causes the same set 
of visible labels left in every subtree T; as f?. Therefore, 
any rgc labeling using C, being equivalent to the gc 
labeling using C, must be optimal. 

Definition: Consider any partial labeling P = 
(&,Pz,... , ,&). (i) P is a gc-partial labeling if for any 
branch i such that ,0i > 0, for any branch j such that 
/3j < ,&, (Cover(/$, Li), i) % (Cover(fli, Lj), j). (ii) P is 
a rgc-padial labeling if for any branch i such that fli > 0, 
branch i satisfies the rgc property. 

Given a rgc-partial labeling P, one can always 
permute the labels on the branches to produce a unique 
gc-partial labeling p which is equivalent to P in the 
sense that (P) = (P) and P and p cause the same set 
of visible labels left in every subtree Ti. We call p the 
gc equivalent of P. 

4.2 Invariant A careful case analysis of the proce- 
dure LABELING can reveal that the partial labeling P 
produced at the end of every iteration of the while loop 
in the procedure is a rgc-partial labeling. Moreover, the 
following invariant is observed. 

l Every positive label used by P is bigger than o(P), 
where a(P) denotes the maximum label at which 
there is a conflict. 

In this section, we focus on a more important invariant 
concerning P. 

l (P) 5 c. 

In other words, when the procedure stops, we obtain 
a valid and rgc labeling B such that (f?) 5 C. Any 
valid labeling admits a set of labels lexicographically no 
smaller than C. Thus, (B) = C and B is an optimal 
labeling. 

The above two invariants seem a bit simple, yet 
we can easily derive from them two stronger properties 

concerning the quality of P (the proof is left in the full 
paper): 

Property 1. (P) C C; and 
Property 2. Let 9 = @I, ,&, . . . , pd) be the gc equiva- 

lent of P. Let 2 = (~1, ~2, . . . , zd) be the gc labeling 
using C. Then ,& 5 zi for every branch i. 

Below we give an inductive proof of the invariant 
that (P) 5 C. Initially, the procedure LABELING 
assigns every branch a label zero, so the invariant holds. 
Suppose that after a number of iterations of the while 
loop, the rgc-partial labeling P produced satisfied the 
invariant. In the next iteration, one or more branches 
will receive bigger labels. Let Q be the new rgc-partial 
labeling. We are going to show that (P) 4 (Q) 5 C. 

Let us have a close look of the iteration that 
produces & at the end. Steps II and III computes the 
values of (Y, K, %, y, and w with respect to P. Then, 
new labels are assigned to the branches in one of the 
Steps IV, Va, and Vb. Lemmas4.1,4.3, and 4.4 consider 
these three steps separately. 

LEMMA 4.1. (for Step Vb) Suppose (Y = 0 and k 5 w. 
Let W be the set of the k smallest free labels. Let Q be 
the labeling formed by assigning the labels in W to the 
k branches in K. Then (&) 5 C. 

Proof. With respect to P, the label of every branch i in 
K is zero. Thus, & has exactly k positive labels more 
than P and (Q) -= (_P) U IV: 

Let P = (pi,&... ,/&) be the gc equivalent of 
P. (&) = (P) U W = (P) U W. We want to show 
that C k (p) U W, then the lemma follows. Let 
2 = (%l,Z&..., zd) be the gc labeling using C. Let 
Ci = {pi 1 ,& > 0). Property 2 of P states that .zi 2 ,& 
for every branch i. Thus, Cr k {pi 1 ,& > 0) = (P). 
Let C2 be the (d- I&l) smallest positive labels distinct 
from Cl. Obviously, C > Cr U Cz. Because Cl k (p), 
we further conclude that Cl U I& k (P) U W. 
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LEMMA 4.2. Suppose cr > 0. Let p = (PI, ,&, . . . ,pd) (I) and (II) together imply that C must contain a label 
be the gc equivalent of P. 
pi=pi=O. 

For any branch i E K, e 1 x such that l! # (p). 
Proof of(I): If a = 0 and k > w, every label in C 

Proof. Recall that with respect to a partial labeling, 
a conflict arises from branches with label zero. Thus, 
,Bi = 0 for all i E K. 

Suppose on the contrary that there exists i E K 
such that ,L& > 0. Since every positive label in P is 
greater than cry, ,& must be greater than o, too. Note 
that cy is a positive label in Li. ,Ji causes the label 
a in Li to become invisible, though /3i = 0 does not. 
This contradicts the second property of a gc equivalent. 
Therefore, ,& = 0 for all i E K. 

LEMMA 4.3. (for Step Va) Suppose o > 0 and k - 1 5 
w. Let W be the set of the k - 1 smallest free labels 
bigger than (Y. Let Q be the partial labeling formed by 
assigning the labels in W to any k - 1 branches in K. 
Then (Q) 5 C. 

Proof. Let P = (Di,p2,... , ,&) be the gc equivalent of 
P. Again, (&) = (P) U W = (P) U W. We are going to 
show that C k (p) U W. 

Let 2 = (zr,z2,..., zd) be the gc labeling using 
C. Let Cr = {.Zi- ] i $! K}. Since z; > pi for every 
branch i, Cr k {,& ] i $ Ii}. Lemma 4.2 implies that 
{pi ] i $ I<} k (P). In short, Ci 2 (p). Let Es be 
the set of k - 1 smallest labels that are bigger than (Y 
and distinct from Ci. Note that 2’ must assign at least 
k - 1 branches in Ir’ with label > (Y (otherwise, 2 is 
not a valid labeling). Therefore, C = (2) k Cr U & 
k (P) u w. 

LEMMA 4.4. (for Step IV) Suppose (o = 0 and k > w) 
or (cy > 0 and k - 1 > w). Let 2 be the smallest free 
label bigger than y. Let j be the branch such that for all 
i = 1,2,... , d, Cover(z, i[j]) t Cover(x, i[i]). Let & be 
the partial labeling formed by relabeling the branch j 
to the value x in ‘P. Then (Q) 5 C. 

Proof Let P= (&,ps,... , ,&) be the gc equivalent of 
P. (Q) = ((P) - (&}) U {x}. Due to Property 1 of 
P, we have C _> (P). Below we further show that C 
contains at least one label e 2 x such that e 6 (p). 
Then C > (P) U {z} h (Q). 

To prove the existence of such an e, we prove the 
following two statements. Let p = I(P)] (i.e., the 
number of positive labels used by P). Recall that 
w denotes the number of free labels in the interval 
[cr + 1, y - l] with respect to P. 

(I) C contains more than p + w labels bigger than o. 
(II) If C and (p) contain the same set of labels 2 I, 

then C contains at most p + w labels bigger than 
cr. 

isgreaterthano=O,and]X]=d=p+k>p+w.It 
remains to consider the case where (Y > 0 and k - 1 > w. 
Let 2 = (zr,..., td) be the gc: labeling using C. For each 
i such that ,& > 0, i is not in K (due to Lemma 4.2), 
and zi 2 ,8i > cy. On the other hand, Z must assign 
at least k - 1 branches in Ii with label bigger than o. 
Thus, 2 uses at least p + k - 1 > p + w labels greater 
than a. 

Proof of (II): Suppose p and C have the same set 
of labels > x. Let 2 = (~1,. . . , zd) be the gc labeling 
using C. Since both p and 2 are gc labelings, for each 
label h E (p) such that h 2 z, h lies on the same 
branch under both p and 2. This can be proved using 
an induction starting with the largest label. 

Furthermore, p and 2 must have the same set of 
labels in the range [y, x - 11. More precisely, for any 
label h E [y, x - 11, if h is used by p then h is also used 
by 2 and h labels the same branch w.r.t. to both p and 
2; otherwise, h is the label of a visible edge residing in 
the same subtree Ti w.r.t. to both p and Z. This can 
be proven again by a backward induction starting with 
h=x-1. 

In summary, p and 2 use the same set of labels 
2 y. With respect to P (or P), let pr be the number 
of labels 2 y, and let p2 be the number of labels in the 
interval [a + 1, y - 11. Note that p = pi + ps. 2 uses 
exactly pi labels 2 y. Recall that w.r.t. P, w denotes 
the number of free labels in the interval [a + 1, y - 11, 
and no visible labels residing in any subtrees fall into 
this interval. Thus, ps + w = y - 1 - o. The number 
of labels that are bigger than a in (2) is no more than 
p1+(y-1-cr)=p1+p:!+w=p+ur. 

In conclusion, based on Lemmas 4.1 - 4.4, we can 
prove inductively that the partial labeling P computed 
in every iteration satisfies the invariant (P) 5 C. 

5 O(n log n) time algorithm 

Given a tree R with n nodes, the algorithm EDGE- 
RANKING invokes the procedure LABELING for every 
subtree R, rooted at an internal node v of R. A 
brute-force implementation of LABELING would enable 
EDGE-RANKING to run in O(n2) time. In this section, 
we give a more efficient implementation of LABELING, 
improving the time complexity of EDGE-RANKING to 
O(n log n). This implementation is based on two novel 
ideas, namely, a compact representation of the critical 
set of visible labels and a conservative merging process 
that avoids redundant processing of most of the labels. 
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5.1 Segments For any integers e 5 T, denote by [e, r] 
the segment of consecutive integers spanning from f? 
to T. Let L be a set of labels. L can be considered 
as a union of segments [li , ri], [es, rs], . . . , [& , T,] where 
ri < &+i - 1 for i = 1,2, ..+, s - 1. The number of 
segments in L may be as many as the number of distinct 
labels in L. Yet, if L is the critical set of visible labels 
of R, there are at most &i disjoint segments. 

LEMMA 5.1. Suppose L(R) = u~=~[&,Q] where ri .< 
e. s+l - 1. Then 4, + Ls + . . . + & < n and s < fi. 

Proof. We will prove that R contains s disjoint subtrees 
having at least !?I, &, . . ., & edges. Thus, ei + e2 f 
. ..+e. < n. Because ri < li+i - 1, xi=1 !i >_ 
1+3+.. . + (2s - 1) = s2. It follows that s < fi. 

Let $ be a critical edge ranking of R such that the 
restriction of II, to every subtree of R is also critical. 
That is, L($) = L(T) = u~=~[!$,T~]. Consider the 
visible edge that is assigned with the label & under +. 
Denote this edge by e, = (u, V) where u is the parent of 
v in R. We first prove that the subtree R, contains at 
least !J, - 1 edges. 

If & = 1, R, obviously contains at least e, - 1 
edges. In the following, we assume that & > 1. Note 
that the label (& - 1) is not visible in R. We consider 
the following two cases: 

l The label (e, -1) is visible in R,: The restriction 
of $ to R, is critical. Since a critical edge ranking 
of R, does not use a label greater than the number 
of edges in R,, there must exist at least (!, - 1) 
edges in R,. 

l The label (4, - 1) is not visible in R,: The 
following argument shows that this case cannot 
happen. The label (& - 1) is not visible in R, and 
every label on the path from u to the root of R is at 
most & - 2. It follows that e, - 1 is also not visible 
in R,. Let us relabel the edge e, with (e, - 1). The 
we obtain an edge ranking of R with a visible set of 
labels that is lexicographically smaller than L($). 
A contradiction occurs. 

In short, the subtree rooted at the edge e, (i.e. R, plus 
the edge e,) contains at least & edges. 

Next, we show that R contains another disjoint 
subtree with !,-I edges. Let T’ be the subtree of R 
formed by deleting all the subtrees rooted at a visible 
edge with label 2 e,. The labels inherited from $ still 
forms a critical ranking of T’, and L(T’) = Ui=: [&, pi]. 
Let e,-1 be the visible edge with the label &-I in T’. 
Again, we can argue that the subtree rooted at the edge 
e,-1 in T’ contains at least &-I edges. 

there are s disjoint subtrees in R having .& , &- 1, . . . , ei 
edges. 

5.2 Data structures To attain a sub-quadratic time 
implementation of EDGE-RANKING(R), we would like to 
manipulate each individual critical set of visible labels 
segment by segment instead of label by label. We 
represent the critical set of visible labels of every subtree 
R, (i.e. L(R,)) as a search tree X. X is composed of 
disjoint segments, which partition the labels from 1 to 
n. Every segment [e, r] in X is associated with a flag 
f E (0, 1,2}; the search key is the ordered pair (f, r). 
Segments in L(R,) are put into X as flag-l segments. 
The free labels (i.e. labels not in L(R,)) form the flag-0 
segments of X.. Flag-2 segments are present only in the 
process of computing L(R,)). 

Operations to be performed on X include: insert 
a segment, delete a segment, search for the existence 
(or the predecessor and successor) of a segment, delete 
the minimum segment, and count the number of free 
labels between two consecutive flag-l segments. We 
require the three operations each to be done in O(log n) 
time, and the delete minimum takes O(1) time only. We 
maintain a count of such free labels explicitly in every 
pair of consecutive flag-l segments. 

5.3 Implementation of LABELING (&,) Consider an 
internal node v of R. Let ~1, ~2, . . . , ud be the children 
of v. Without loss of generality, we assume that the 
subtree R,, contains the largest number of nodes among 
all subtress rooted at the children of v. The input to 
the procedure LABELING(R,) consists of d search trees, 
ml, WI, . . .) X[d, representing L(R,,), L(R,,), --., 
L(R,,). Regarding the output, the procedure produces 
an array p[l..d] p re resenting the branch labels and a 
search tree X representing L(R,). Note that X inherits 
all the labels from X[l],X[2], . . ..X[dl that remain 
visible from the viewpoint of &,. To save time, we do 
not build X starting from scratch. Instead we use X[l] 
as a basis and merge segments from other input search 
trees to X[l]. At the end, we return X[l] as the output 
for R,. 

R U1 is the biggest subtree and possibly contains 
a large number of segments. If we avoid copying the 
content of X[l], we potentially save a lot of time. Our 
goal is to ensure the time for executing LABELJNG(R,) 
does not depend on the total number of segments or 
labels in the input trees. Instead we want the total time 
to be charged to the following number of tree operations. 

l s-the total number of segments in 
L(R,,), . . . , L(R,,); 

” _ 
Repeating the argument-above: we can show that l h-the total number of segments which are 
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in L(&,), L(R,,), . . . , L(&,,) but which are no 
longer visible when LABELING(&) stops. 

l &the number of segments formed by the branch 
labels computed by LABELING(&). 

The following lemma captures the main result of 
our implementation. 

LEMMA 5.2. It takes O(d + (s + h + b) logn) time to 
eXeCUte LABELING(&). 

Proof. See Appendix. 

THEOREM 5.1. It takes O(nlogn) time to execute 
EDGE-RANKING(R), where n is the number of nodes in 
R. 

Proof. To ease our discussion, we add a subscript v to 
the variables d, s, h, b from now on. Lemma 5.2 implies 
that the algorithm EDGE-RANKING on input R runs in 

Kz”ER d,+C,ER(s,+h,+b,)logn) time. Obviously, 
CvER d,, is bounded by n, and b, 5 d,. As regards h,, 
we observe that once an edge becomes not visible in the 
subtree R,, it will remain not visible in any subtree 
rooted at an ancestor of v. Thus, CvER h, is also 
bounded by n. It remains to show that EVER s,, equals 
O(n). Suppose the subtrees rooted at the children 
of a node v contain nl, 712,. . . , nd, nodes. W.L.O.G., 
assume nl = max{nl,n2,.-e,n&}. By Lemma 5.1, 
&I I 6-k ... + a. We can further show that 
C,ER(&+. . +-a) is at most 4n-4,/Z. Therefore, 
c VER SW = Ocn>. 

6 O(n) time algorithm 

In the previous section, we show that the algorithm 
EDGE-RANFING can run in time 

\ 
0 ~~Rdy+C(SV+hu+bv)logn 

L 
. 

UER 
Note that xoER sV, as well as EVER h, and EVER b,, 
is equal to O(n). The main observation that leads to 
a linear time ‘aigorithm is that most of the segments 
dealt with by the algorithm contain only small labels. 
More specifically, a segment [.&r] is said to be small 
if T < log2 n; otherwise [l, r] is said to be big. We 
decompose the value s, into two values, say, s: and sa, 
corresponding to the number of small and big segments. 
Similarly, h, can be decomposed into hl and ht, and b, 
into b: and bt. 

We use data structures other than simple search 
trees so that small segments can be handled more 
efficiently. We devise a hybrid representation that uses 
different data structures for small segments and big 
segments. This hybrid representation is able to support 
search, insert and delete operations in O(1) time for 

small segments, and in O(log n) time for big segments. 
With such a hybrid representation, the time complexity 
of the algorithm EDGE-RANB;ING can be improved to 

/ \ 
0 ~(d.+s;+h:+b;)i-x(sl’+hl’+b:‘)logn . 

L VER VER 1 
Since st, hl, and b: are bounded by sV, h,, and b,, 
respectively, EVER (s: + hl + b:) equals O(n). The 
values of CVERsz and EVER ht have a simple 
relationship with the value of CvER bt. We are 
able to show that zVCRst 5 logn EVER bt, while 
EVER h:’ 5 EVER bf. Moreover, EVER bl’ = 0(&h 
Therefore, C,,,R(st + ht + bt) equals O(G). Thus, 
we can obtain a linear time implementation of the 
algorithm EDGE-RANKING. 

THEOREM 6.1. An optimal edge ranking of a tree with 
n nodes can be computed in O(n) time. 
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Appendix 

This section gives the details of the procedure 
LABELING(&) so as to attain the time complexity 
stated in Lemma 5.2. 

It is worth mentioning that the procedure gradually 
puts some segments of labels from X[2], X[3], . . . , X[4 
into X[l]. More precisely, Just before the current 
conflict, say, LY, is resolved, labels originating from 
JY~,), . . . , L(ad) that are greater than (Y and that 
are still visible from the viewpoint of &, must have been 
inserted into X[l]. Also, X[l] is overloaded to include 
all labels that are currently assigned to the branches; 
these labels are represented by segments with flag 2. 
Procedure LABELING(&) 

Input: X[l], X[2],‘. .-., X[d 
Output: The branch labels /3[1], . . . , p[4 and X 

Step I: Initialization. We obtain a sorted list S of seg- 
ments with flat equal to 1 from X[2], X[3], . . -, X[d in 
descreasing order of the right limits of the segments 
(tie is broken with respect to the branch indices). In 
order to differentiate segments from different search 
trees, segments originating from the the same tree, 
say, X[i], are linked together in S and each store the 
index i. 

Next, we initialize all entries in p[l..d to zero. 

while there exists /3[i] = 0 do 

l Step II: Locating the maximum conflict. 
Case I: S is not empty. Let [e, r] be the segment 
in S with the biggest key. To locate the maximum 
conflict, we examine whether [.&T-I overlaps with 
the next segment in S or a segment in X[l]. If 
so, let Q be the maximum label where the conflict 
occurs, and let K be all the branches i that give 
rise to the conflicts. Note that a 5 r. If cy < r, 
the segment [o + 1, r] is currently visible from the 
viewpoint of R, but not &,. To maintain the 
invariant of X[l], we split [.f, r] into two segments: 
[e, o] remains in S and [a + 1, r] is inserted into 
X[l] as a flag-l segment. 
If [e, r] does not overlap with any segment, the 
maximum conflict occurs at a point less than e. 
We remove [.4!, r] from S, insert it to X[l] as a flag- 
1 segment. Then we repeat Step II again. 
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Case 2: S is empty. Set a = 0, and set K to the 
set of branches i for which p[i] = 0. 
Step III: Counting suitable free labels. If all llag- 
1 segments stored in X[l] have right limits less 
than or equal to a, set w to k. Otherwise, locate 
the smallest flag-l segment [E, y] in X[l] such that 
y 2 o. Let y = max(z, o + 1). If y = (Y + 1, then 
set w to 0; otherwise, compute the number of free 
labels w in the interval [o + 1, y - 11. 

if (rw > 0 and w < k - 1) or (a = 0 and w < k) 
then 

Step IV: Freeing more free labels. Let x be 
the smallest free label in X[l] bigger than y. 
Search X[l] t o 1 ocate the flag-l segment [a, b] with 
the largest right limit smaller than z. If [a, b] 
originates from XL], set ,Bb] to 2. 

else 

Steps Va and Vb: Resolving conflicts. If cr = 0, 
we delete the /c smallest free labels bigger than 
CY from X[l] and assign them to the branches in 
K. If cr > 0, we need to determine the branch 
ic in I( that minimizes the set Cover(cr, &,) 
lexicographically. Here, we use a brute force 
way. We examine S and X[l] to compare, for all 
i E K, the flat-l segment originating from X[i] 
that contain the label o; ic should correspond 
to the segment with the largest left limit. In case 
there is a tie, we further examine the next smaller 
segments until is can be determined. Then we 
delete the k: - 1 smallest free labels bigger than o 
from X[l] and assign them to the k - 1 edges in 
K excluding ic. 

Step VI: Removing labels no longer visible. For 
each i such that ,B[i] has just received a new value 
in Steps IV, Va or Vb, we update X[l] or S to 
delete all flag-l segments [a, b] with labels < p[i] 
and branch index i. 

If i is in K, we delete i from Ii’. If Ii still contains 
two or more indices, the conflict at (Y has not been 
resolved competely and we can jump to Step III 
direct for another attempt. 

o Step VII: Assembling visible labels. Now all labels 
in the critical set of R, are represented by segments 
with a flag equal to 1 or 2 in X[l]. For each flag- 
1 segment originating from X[2], . . . , X[d and are 
currently found in X[l], if it comes in adjacent with 
other flag-l segments in X[l], merge them into one. 
For every flag-2 segment, change its flag to 1 and 
merge the segment with other flag-l segments that 
comes in adjacent, if any. Return X[l]. 


