
On Building Distributed Soft Real-Time Systems

Ben Kao Hector Garcia-Molina Brad Adelberg

Department of Computer Science
Stanford University
Stanford, CA 94305

(kao,hector,adelberg}@cs.stanford.edu

Abstract such as the program trading one above, one approach

When building a distributed real-time system, one
can either build the whole system from scratch, or
from pre-ezisting standard components. Although the
former allows better scheduling design, it may not
economical in terms of the cost and time of devel-
opment. This paper studies the performance of dis-
tributed soft real-time aystems that use standard com-
ponents with various scheduling algorithms and sug-
gests ways to improve them.

Keywords: soft real-time, distributed systems,
deadline assignment, priority assignment, schedul-
ing.

1 Introduction
Consider a distributed system for stock market

analysis and program trading. In this application,
information on stock prices may be gathered from
multiple information sources and piped through a se-
ries of filters for refinement. The refined information
may then be stored in a database server to be queried
by, for example, an expert system that spots trading
opportunities. The expert system may then trigger
certain buy-and-sell actions to realize a profit.

There are two interesting features to observe.
First, the system involves many components of dif-
ferent types: multiple information sources supplying
streams of financial data, a network component, a
database server (probably 1/0 bound), and an ex-
pert system (probably CPU bound). Second, there
are global tasks which consist of multiple stages in-
volving work a t multiple components. These tasks
may have soft deadlines, e.g., a buy-sell action trig-
gered by a stock price update should be implemented
within 2 minutes from the time when the update ar-
rives.

When designing a distributed real-time system,

- - -

is to build it from scratch, coding each component
with algorithms and features that match the appli-
cations’ needs. However, the development and main-
tenance cost of such a system will be extremely high,
and the development cycle will be very long. Al-
ternatively, one can build the system by piecing to-
gether well-tested, easy-to-maintain standard com-
ponents, such as a commercial database server, a to-
ken ring network, etc. The disadvantage of this ap-
proach is that standard components are usually not
designed to handle real-time tasks. As an example,
commercial database systems do not compare the
deadlines of conflicting transactions when granting a
lock request, which may result in priority inversions.
Even if standard real-time components are available
(e.g., commercial real-time operating systems), they
may vary in their ability to meet tasks’ real-time re-
quirements. Also, their schedulers may not provide
any external control. This makes global real-time
scheduling algorithms impossible because they de-
mand cooperation and coordination among the lo-
cal schedulers. Given these “ h i e s , is it possible
to construct a distributed system out of a variety
of conventional non-real-time and real-time compo-
nents and still meet real-time constraints? Even if
we cannot meet all real-time constraints, can we en-
sure that “almost all” are met? In this paper we
address these questions. Although we will not pro-
vide definitive answers, we do present the results of
some simple experiments that provide insight into
those questions. In particular, the results illustrate
the cost (in terms of missed deadlines) of using con-
ventional, heterogeneous components, and suggest
strategies for reducing the cost.

For our experiments we consider a distributed sys-
tem with a number of components. Each component
employs its own scheduling policy (whether real-time

13
0-8186-7099-1/95 $4.00 0 1995 IEEE

mailto:kao,hector,adelberg}@cs.stanford.edu

or non-real-time). We study how the local schedulers
impact the system's ability to meet task deadlines.
We also suggest ways of improving the system per-
formance when some of the components cannot per-
form real-time scheduling. Before we proceed, we
state some premises:

0 We focus on soft real-tame systems. In such sys-
tems, a primary performance goal is to meet as many
deadlines as possible, but unlike hard real-time sys-
tems, there is no absolute guarantee that all dead-
lines will be met. There are two reasons why we look
at soft (instead of hard) real-time systems. First,
the kinds of distributed tasks we are looking at are
quite complex, involving multiple stages of process-
ing. This means that it is generally hard to get the
accurate running time estimates that are required
for hard real-time scheduling. Second, in many ap-
plications it is undesirable or impossible to place an
upper bound on the load. Both problems make hard
real-time scheduling impossible to achieve.

0 Each component's scheduler is independent.
There is no global scheduler that instructs each
scheduler what to do. Each scheduler makes deci-
sions based solely on the subtasks that have been pre-
sented to it for execution, without consulting other
schedulers. We believe that large systems are built
out of preexisting components. Each component will
have its own scheduling policy and will be unable or
unwilling to coordinate or subordinate its scheduling
decisions with (or to) others.

0 We look at on-line scheduling, as opposed to a
priori scheduling when the tasks are defined or first
submitted. On-line scheduling is more appropriate
for the type of systems we study where the tasks'
types or their durations may be unknown in advance.
Also, when the system provides distribution trans-
parency (e.g., whether a data item is available locally
or remotely), the subtasks to be created are unknown
until run-time and thus off-line pre-analysis is not
appropriate.

0 Each system component is unique. If a task is
scheduled to run at a particular component, it must
run there. There is no load balancing, i.e., an over-
loaded component cannot ship tasks to other com-
ponents.

The rest of this paper is organized as follows. Sec-
tion 2 describes the model for our study. Section 3
discusses the case when all system components use
real-time scheduling such as earliest-deadline-first.
In Section 4 we study how the system performance
degrades when some of the components serve tasks in
FCFS order. In Section 5 we discuss the benefits we

can gain when a non-real-time component provides
static priority scheduling. Finally, we conclude our
paper is Section 6.

2 The Model
In this section, we describe the task model, the

system model, and the simulation model we use for
our analysis. We will first define global tasks, and
then describe a model of a distributed system on
which tasks are mapped for execution. As the reader
will notice, our model is quite simple. As mentioned
earlier, our goal is to understand the basic tradeoffs,
not to realistically evaluate a particular system.

2.1 The Task Model
In this paper, we consider serial global tasks that

involve work at multiple components in the system.
As shorthand, we use the notation T = [TlTz Tn] to
represent a global task T that consists of n subtasks,
T I , T2, ..., Tn, to be executed in series. A subtask Ti
(i > 1) cannot execute before subtask Ti-1 finishes.

A task X (whether it is a subtask or a global task)
has the following attributes:

ar(X) = arrival (or submission) time of X,
d l (X) = deadline of X,
d(X) = slack of X.

We also define the stage of a subtask X to be its po-
sition in a global task. For example, if T = [T I T ~ T ~] ,
then stage(T2) = 2 . We say that a subtask X is an
earlier-stage than another subtask Y if they are of
the same global task and stage(X) c stage(Y).

Finally, there is the issue of tardy tasks, or ouer-
load management policy. Suppose a task X has al-
ready missed its deadline, but has not completed exe-
cution. One option is to abort X as soon as it misses
its deadline, under the assumption that whatever it
was doing is now useless. A second option is to con-
tinue to process X, under the assumption Ubetter
late than never." Due to space limitations, in this
paper, we only focus on the no abortion case.

2.2 The System Model
Our model of a distributed real-time system

consists of a number of components (Figure 1).
These components manage different resources like a
database, an expert system, or a compute engine.
Even the communication network is considered a re-
source and is subsumed as one or more components.

14

global task 80mc 0

Figure 1: The System Model.

For example, a direct link between two sites is con-
sidered as one resource, while a LAN is considered
another. Task service order is scheduled by a lo-
cal scheduler residing at each component. These
schedulers are all independent and do not collabo-
rate. The only things that may influence scheduling
decisions are the real-time attributes associated with
each task.

Newly created global tasks are first processed by
the process manager. Figure 1 shows a single pro-
cess manager, but in reality there can be many. Each
manager controls one or more global tasks. We as-
sume that certain control information of a global
task, such as the precedence relationship among the
subtasks, and the end-to-end deadline, is available
to its process manager. The major functions of the
process manager are to submit the subtasks to the
appropriate components for execution and enforce
the precedence constraints among the subtasks of a
global task. In some cases, the process manager has
to generate scheduling information for a subtask be-
fore submitting it. For example, if a component A
accepts tasks with priority (and schedules them ac-
cording to the priorities) and another component B
schedules tasks according to their deadlines, the pro-
cess manager has to make sure that the subtasks sub-
mitted to the components have the right attributes
and the appropriate values for these attributes. Part
of our study concerns how these values are assigned
and what the performance implication of a good as-
signment strategy is. In reality, the process man-
ager consumes system resources (e.g., communica-
tion overhead between the manager and the compo-
nents,) but this consumption can be modeled as ad-
ditional subtasks, and be handled similarly. There-
fore, we do not model the resource requirement of
the process manager explicitly.

2.3 The Simulation Model
In order to study and contrast system behavior

under different local scheduler algorithms, we devel-

oped a simulation model and performed extensive
experiments. Our simulator is written in the simu-
lation language DeNet [SI. Each simulation experi-
ment (generating one data point) consists of two sim-
ulation runs, each lasting one million time units (at
least 100,000 tasks are generated per run, many more
for high load experiments). The 95% confidence in-
terval is f 0.35 percentage point (much smaller for
high load experiments) for the missed deadlines fig-
ures shown in later sections.

The structure of our simulation model follows the
conceptual model described in Sections 2.1 and 2.2
with the following characteristics.

Components: There are k components in the
system. Each component schedules its tasks us-
ing a local scheduler. In this paper, we consider
three types of local schedulers: earliest-deadline-
first, static priority, and FCFS. We assume a no-
preemption scheduler in all cases.

Global Tasks: Global tasks are generated as a
single stream of a Poisson process with mean inter-
arrival time 1 /xg loba l . In order to simplify our dis-
cussion, we hold the simple view that global tasks
are homogeneous. In particular, we assume that all
global tasks consist of m subtasks and the execution
times of the subtasks all follow the same exponen-
tial distribution with mean equal to l / l (,ub tark time
units. The total execution times of global tasks thus
follow an mstage Erlang distribution with mean
m / p , u b t a r k . The rate of work due to global tasks is
therefore mxgl&aI //baubtark. w e assume that nodes
are equally likely to be chosen as the execution node
of a subtask. Slack of global tasks is uniformly dis-
tributed in the range [Sm;,,,Smaz]

System Load: We define the normalized load (or
load for short) to be the ratio of the rate of work gen-
erated to the total processing capacity of the system.
That is,

load = m global
k h u b t a r k '

For a stable system, we have 0 5 load < 1. Table 1
shows the parameter setting of our baseline experi-
ment.

3 Real-Time Scheduler6
For the first scenario, we assume that all com-

ponents are capable of doing earliest-deadline-first
(EDF) scheduling. Before a subtask is submitted
to a component for execution, the process manager
must assign a deadline to the subtask so that the
component knows how to schedule it. One very sim-
ple way of assigning the subtask deadline would be

15

4 FCFS Schedulers
To build a soft real-time system, one may or

may not be able to use specialised real-time com-
ponents, such as a real-time network or a real-time
database system that schedules 1/0 requests accord-
ing to deadlines. Real-time components would obvi-
ously make it easier to meet system deadlines. Unfor-
tunately, they may be much more expensive and may
not be readily available. For instance, standard net-
works such as Ethernet or token ring, and their corre-
sponding drivers do not support real-time traffic, and
they tend to deliver messages in an FCFS order. As
another example, sophisticated disk controllers that
employ algorithms such as the Elevator Algorithm [8]
schedule disk requests according to disk block posi-
tion instead of request deadlines. Conventional real-
time scheduling algorithms like earliest-deadline-first
do not perform well for disk scheduling because they
cause long average seek time and poor throughput
[3, 13. If one cannot afford the use of real-time com-
ponents, how will that hamper the efficacy and per-
formance of the real-time system? Is it crucial that
every single component in the system understands
deadlines? Will a non-real-time component cause a
“deadline bottleneck”? If an urgent task experiences
a long delay at a non-real-time component, can it
catch up while visiting real-time components? In
this section we look at how the performance of a dis-
tributed soft real-time system degrades when some
of the components perform FCFS scheduling instead
of EDF.

We conducted an experiment according to the
model and baseline setting in Section 2 and measured
the fraction of missed deadlines (M D) , or miss rate
for short, of global tasks as the system load changes.
In the experiment, we randomly pick Njcfr compo-
nents to use FCFS local schedulers, while other com-
ponents use EDF. Figure 2 shows the result of the
experiment. Three curves are shown corresponding
to N j c f , = 0 (all local schedulers are EDF), 1, and
6 (all local schedulers are FCFS).

From the figure we see that global task miss rate
increases as the system load increases, as expected.
At low load, the system has enough capacity to han-
dle tasks so whether the local schedulers use FCFS
or EDF is inconsequential. However, as the load in-
creases and the system starts to miss more dead-
lines, the difference between the two schedulers be-
comes more significant. At high load (l d = 0.65),
a system with 6 FCFS local schedulers misses 22.4%
of the deadlines - four tenths more than a system
with 6 EDF schedulers, which misses about 16.1% of

~~~ ~~~ 

h u b t a r k  

I Overload Management Policv I No Abortion fl 
1.0 

, .. I 

m (# of subtasks of a global task) 4 
I d  0.5 

_. [%in, smaz] [5,2ol 

Table 1: Baseline setting 

to let the subtask inherit the (end-to-end) deadline 
of its global task. We call this the Ultimate Deadline 
strategy (UD) .  Previous studies [5,7] show that UD 
works fine if all the global tasks in the system are of 
similar length (in terms of number of subtasks and 
execution time). Otherwise, long global tasks will 
suffer a very high missed-deadline rate. The rea- 
son why UD performs badly in the presence of short 
tasks is that a long global task, with its many stages 
of subtasks, usually has a later deadline than a short 
one does. When an early stage subtask (T i )  adopts 
its global task’s late deadline, the local EDF sched- 
uler will be tricked into believing that Ti has a lot 
of slack to burn. Even the time that should be re- 
served for the execution of the later stage subtasks 
is considered slack to T;. The EDF scheduler will 
thus give a very low priority to T;. This results in an 
exceptionally long delay in Ti’s execution and may 
cause the long global task to miss its deadline. 

The deadline assignment problem is studied in 
various contexts in [5, 7, 41. In particular, in [5], 
several simple strategies for reducing the missed- 
deadline rate of global tasks are discussed. One strat- 
egy called Equal Slack ( E Q S )  estimates the amount 
of slack that a global task has and divides it among 
the remaining subtasks equally. For example, con- 
sider a global task that arrives at time 0 with a dead- 
line of time 12 and that has four subtasks, each of 
which is expected to run for 1 unit of time. This 
global task has, in total, 8 units of slack. EQS 
would allocate 2 units of it to the first subtask (re- 
serving the other 6 units to later stages), and assign 
a sub-deadline of time 3 to the first subtask. It has 
been shown in [5] that E Q S  results in a much lower 
global task missed rate. In this paper, we assume 
that whenever a subtask is submitted to a compo- 
nent that does EDF scheduling, it is assigned a sub- 
deadline according to the E Q S  strategy. 

16 



0.25 

0.2 

0.15 
M D  

0.1 

0.05 

0 

I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 
load 

Figure 2: Fraction of missed deadlines versus system 
load for various values of N f c f r  

the deadlines. We would like to remark that under 
normal condition, a soft real-time system should be 
operating with low load and few deadlines missed. 
However, occasionally the system will be overloaded, 
and it is precisely at those times when we need a 
good scheduler that misses the fewest deadlines. For 
this reason, the big differences in missed deadlines 
under high load in Figure 2 are important. 

While it is not surprising to see that an all-FCFS 
system performs poorly compared with an all-EDF 
system, it is interesting to see that switching one 
component from EDF to FCFS only causes a mild 
performance loss. In fact, in the baseline model, the 
performance of the system appears to degrade lin- 
early with respect to the number of FCFS compo- 
nents. This is shown in Figure 3 which plots M D  
against N f c f ,  for various values of system load. The 
phenomenon that performance degrades gradually in 
an almost linear fashion is somewhat counterintu- 
itive. For instance, one would expect that with a 
single FCFS server, the other 5 could "make up" 
with their good scheduling. For example, if a task is 
delayed at the FCFS server, perhaps its could "make 
up for the lost time" when it visited the remaining 
EDF components. If this argument held, then the 
degradation for adding one FCFS server would be 
less than 1/6th of the total degradation when all 6 
servers are FCFS. Unfortunately, Figure 3 shows that 
this argument does not hold. 

0.25 I I I I I I 1 

load = 0.5 + 
0.1 

0.05 I 

Figure 3: Fraction of missed deadlines versus number 
of FCFS local schedulers 

The almost linear degradation of performance is 
due to the fact that all of the components in the 
baseline model handle a similar amount of load and 
that they work for a similar number of global tasks. 
To see how the system behaves under different load- 
ing condition, we modify our baseline experiment so 
that all the stage 1 subtasks go to component 1 ex- 
clusively while components 2 through 6 handle the 
rest of the subtasks. (For example, every global task 
in a distributed soft real-time system needs to use 
the network component but not all of them query 
the database server.) Since each global task consists 
of four subtasks (Table l), the load is biased with 
component 1 handling 25% of the system load and 
the other 5 components handling 75% of the load 
(or 15% each). In this experiment, we switch the 
local schedulers from EDF to FCFS one by one. In 
one case, we start the switching from component 1; 
In another case, component 1 is the last one to be 
switched. Figure 4 shows the results of the experi- 
ment. 

In Figure 4 two pairs of curves are shown ((+, X }  

and ( 0 ~ 0 ) )  corresponding to two levels of system 
load ( I d  = 0.5 and load = 0.35). For each load, we 
show the M D  for two cases - switching component 
1 first or last. Let us focus our attention on the top 
most curve (line I'+"). We will not discuss the other 
three curves since similar conclusions can be drawn 
from them. From the "+" line we see that switch- 
ing the more heavily loaded component (component 

17 



0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

M D  

-4 

switch comp. 
switch comp. 1 first 11 last 

hd = 0.3 

Figure 4: Fraction of missed deadlines versus number 
of FCFS local schedulers 

1) from EDF to FCFS causes the miss rate to jump 
from 8.2% to about 11.7% (or by 3.5%) while switch- 
ing the other five causes a gradual linear increase in 
M D  to 13.5% (or by 0.36% stepwise). Even though 
components 2 to 6 together are responsible for 75% 
of the total system load, Figure 4 shows that it is 
actually less beneficial to run five EDF schedulers at 
these components than it is to run one EDF sched- 
uler at component 1. 

We have tried other system parameter settings, 
such as changing the slack range, changing the num- 
ber of components in the system, directing all the 
stage 4 subtasks to component 1 instead of stage 
1 subtasks, etc. In all these cases we obtain sim- 
ilar results. This lets us conclude that the perfor- 
mance loss of having a FCFS component instead of 
an EDF one is directly related to the load of that 
component. When all the components in the system 
are loaded similarly and are used by relatively the 
same number of tasks, this performance loss is al- 
most linear with respect to  the the number of FCFS 
components. In this case, it is not absolutely crit- 
ical to have every single component in the system 
use deadline scheduling. It may be more economi- 
cal to use a couple of FCFS components if a mild 
performance loss is tolerable. In case the loading is 
biased, the designer should concentrate his effort in 
the more heavily loaded components. To ensure bet- 
ter performance, these components should use real- 
time schedulers or should be duplicated to increase 

their capacity. In some cases, the performance gain 
obtained by converting a heavily used component to 
EDF scheduling can be more significant than con- 
verting many other less heavily used ones. 

5 Static Priority Schedulers 
In the previous section we discussed how system 

performance degrades when real-time components 
are replaced by FCFS components. Very often, stan- 
dard non-real-time components can do better than 
FCFS by scheduling tasks using static priority (e.g., 
POSIX UNIX and token ring networks). In this sec- 
tion we discuss how we can utilire these static pri- 
ority schedulers in a distributed soft real-time sys- 
tem, and how much performance improvement one 
can achieve over FCFS schedulers. 

One idea is to emulate a real-time scheduling al- 
gorithm using static priority. In [2], different ways of 
mapping the real-time attributes of a task, such as 
its deadline, arrival time, slack, etc., into a priority 
level on a uniprocessor system are studied. Here we 
mention a simple one called Earliest Deadline Rela- 
tive that can be easily adaptable to our distributed 
system. Before a subtask T; is submitted to a com- 
ponent Cj, the process manager first computes Ti's 
sub-deadline dl(T;) using EQS (see Section 3). The 
sub-deadline is then used to compute a priority level 
for according to a linear mapping: 

priority(%) = (dl(%) - a r ( z ) ) / t s j  

where t s j  is a tuning parameter for component C,. 
Due to space limitation, readers are referred to [2] 
for how to determine good t s  values. 

We implemented the mapping function in our pro- 
cess manager and studied performance. Figure 5 
compares the global task miss rate under three sce- 
narios: (1) all-FCFS, (2) all-EDF, and (3) all com- 
ponents use static priority scheduling with 4 priority 
levels, and the process manager uses the real-time 
emulation mapping with the ts 's  set to 4.5 (RTE). 

From the figure, we see that even with only four 
priority levels, static priority scheduling with RTE 
performs comparably to EDF. At higher load, RTE 
actually outperforms EDF slightly. The reason why 
RTE misses slightly fewer deadlines is that first of 
all, RTE compares tasks according to how much time 
they have ( d l ( Z )  - or(%)) instead of their absolute 
deadlines. Second, under high load, EDF tends to 
give preference to tasks that are late. On the other 
hand, because of its coarse priority granularity, in 
overload situations RTE cannot order all tasks prop- 
erly by deadline. Thus, RTE essentially gives non- 

18 



MD 

0.25 I I I I I I 

0.2 

0.15 

0.1 

0.05 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

load 

Figure 5: Performance of RTE 

tardy tasks a chance to finish before their deadlines. 
Further analysis on the performance of RTE in a 
uniprocessor environment can be found in [2]. 

The disadvantage of the RTE approach is that its 
performance is sensitive to the t s  value and the distri- 
bution of the tasks’ slack. In our baseline model, the 
slack distribution is uniform and thus a linear map- 
ping works well. For other slack distributions, dif- 
ferent mappings that can evenly distribute the task 
population into the limited priority levels are needed 
to ensure good performance. This adds to the com- 
plication of the process manager. However, when a 
real-time component is not available, RTE with even 
a simple mapping is an effective and economical way 
of reducing missed deadlines. 

6 Conclusion 
In this paper we have explored a non-traditional 

type of real-time system where one has to use some 
conventional non-real-time components due to cost 
or availability considerations. Of course, in a hard 
real-time system, one cannot use any non-real-time 
components. However, we believe there are many ap- 
plications where deadlines are soft and one does wish 
to consider the various cost vs availability of compo- 
nents vs real-time performance tradeoffs. Through 
simulation studies, we have illustrated how system 
performance might degrade when EDF schedulers 
are replaced by FCFS schedulers. In general, when 
the system components are evenly utilized and their 

loads kept low, using a few non-real-time compo- 
nents does not overly increase the miss rate. It may 
be more cost effective to use a few standard com- 
ponents when specialised real-time ones are expen- 
sive. However, for systems that use one component 
more heavily than the others, it is important that 
the highly loaded components be equipped with real- 
time schedulers. In case real-time schedulers are not 
available, we should either increase the capacity of 
these components (for example, by duplication) to 
minimize the effect of FCFS scheduling, or in case 
static priority schedulers are available, use a real- 
time emulation algorithm that maps deadlines to pri- 
orities. Our results suggest that the latter method 
will perform very similarly to a real EDF scheduler. 

References 
[I] R. Abbott and H. Garcia-Molina. Scheduling 1/0 

requests with deadlines: a performance evalua- 
tion. In Proceedings of IEEE Real-Time Systems 
Symposium, pages 113-124, 1990. 

[2] B. Adelberg, H. Garcia-Molina, and B. Kao. Em- 
ulating soft real-time scheduling using traditional 
operating system schedulers. In IEEE Real- Time 
System Symposium, 1994. 

[3] M. J. Carey, R. Jauhari, and M. Livny. Priority 
in DBMS resource scheduling. In Proceedings of 
the 15th VLDB Conference, pages 397-410,1989. 

[4] B. Purimetla et. al. Priority assignment in real- 
time active databases. In Proceedings of IEEE 
Parallel and Distributed Information Systems, 
pages 176-184, 1994. 

[5] B. Kao and H. Garcia-Molina. Deadline assign- 
ment in a distributed soft real-time system. In 
Proceedings of the 19th International Conference 
on Distributed Computing Systems, pages 428- 
437, 1993. 

[6] M. Livny. DeNet user’s guide. Technical report, 
University of Wisconsin-Madison, 1990. 

[7] H. Pang, M. Livny, and M. J .  Carey. Transac- 
tion scheduling in multiclass real-time database 
systems. In Proceedings of IEEE Real-Time Sys- 
tems Symposiuim, 1992. 

[8] J. L. Peterson and A. Silberschats. Operating 
System concepts. Addison-Wesley, 1985. 

19 

I1 


