
csuble Action Q-learning for Obstacle Avoidance
ynamically Changing Environment

Daniel C . K. Ngai, and Nelson W. C . Yung, Senior Member, IEEE

Abstract - In this paper, we propose a new method for
sobing the reinforcement learning problem in a dynamically
changing environment, as inivehicle navigatiop, in which the
Markov Decision Process used in traditional reinforcement
learning is modified so that the response of the environment is
taken into consideratiin for determining the agent’s next state.
This i s achieved by changing the action-value function to
handle three parameters at a time, namely, the current state,
action taken by the agent, and action taken by the
environment. As it considers the actions by the agent and
environment, it is termed “Double Action”. Based on the
Q-learning method, the proposed method is implemented and
the update rule is modified to handle all of the three
parameters. Preliminary results show that the proposed
method has the sum of rewards (negative) 89.5% less than
that of the traditional method. Apart form that, our new
method also has the total number of collisions and mean steps
used in one episode 89.5% and 15.5% lower than that of the
traditional method respectively.

Index Tems-Q-learning, reinforcement learning,
temporal differences, obstacle avoidance

I. INTRODUCTION
einforcement Learning (RL) define a class of problem EL olving approaches by which the learner [agent) is not

given the action to take but it must learn through a series of
trial-and-error searches and the receipt of delayed rewards.
[I , 21, The purpose ofthe agent is to maximize not only the
immediate reward, but also the cumulative reward in the
long run [2]. In this way, the agent can leam to approximate
an .optimal behavioral strategy by continuously interacting
with the environment [3]. This allows the agent tP work in a
previousty unknown environment by learning to &apt, to
the rules’ in the new environment griidaally, which ’ is
well-suited to dynamically changing environments.

There are two main strategies for the RL approach [I] .
The first one is to search in the space of behaviors such as
genetic programming in order to determine the behavior
that performs we11 in the environment. The second is to

Manuscript received April 1 , 2005. This work was supported by the
research postgraduate studentship from University of Hong Kong.

D. C. K:Ngai is wi+h the Department of Electrpnic and Electricat
Engineering, University of Hong Kong, Hong Kong,. Pokfulam Road,
Hong Kong SAR, China (e-mail: ckngai@eee.hku.hk).
N. H. C. Yung is with the Department of Elec&nic.atid Electrical

Engineering, University of Hong Kong, Hong Kong. Pokfulam Road,
Hong Kong SAR China (e-mail: nyung@eec.hku.hk).

”

consider the utility of taking actions such as dynamic
programming (DP). In DP, the value functions are used to
organize and structure the search for good policies so that it
can leam to choose the best action in the corresponding
state. In essence, DP is a collection of algorithms working
on the Markov Decision Process (MDP) to give optimal
policies [2]. By assuming that the decisions and values are
functions only on the current state, the RL problem can be
simplified into an MDP problem, which can be solved in a
much easier way. Q-learning by Watkins [4] can be
considered as an incremental method for DP. as it
determines the optimal policy in amway similar to DP but in
a step-by-step manner instead. I t is a simple,model-free RL
approach that allows the agent to learn to kcct optimally in
the Markovian domain, and it is easy to implement and have
a relatively lower computation cost than DP.

However, the ordinary RL approach based on the MDP
model may face .difficulties when handling dynamically
changing . environment. In a dynamically. changing
eniironmen?, the’environment can change regardless of the
agent’s action. This violates the assumption of MDP that
only the action of the agent can change the state of the
environment. Although the learning feature of RI, may
enable it to adapt to the changing environment gradually, it
can only converge to the changed environment but not learn
to act regardless of the change of the environment.
Therefore, more sophisticated approach, is required to solve
the problem. The world that we face every day i s usually a
dynamically changing environment. For instance, we
perform obstacle avoidance when walking through a’
crowded street. In such an environment, the agent is faced
with both moving and static objects and the agent should
have the ability to deal with both of them. For this reason,
we have decided ro explore the possibility of improving the
ordinary RL approach by considering not only the action of
the agent but also the predicted action taken by the
environment (or objects in the environment). By
considering the action that may be taken by the
environment, the agent can leam to react with the most
appropriate action whatever the environment may change.

In this paper, a new method is proposed to solve the RL
problem in a dynamically changing environment. The new
method has taken into consideration the action taken by
both the agent and the environment. The Q-learning
technique is used to implement a new RL method called the
double action Q-learning based on the new method.
Simulation results show that the new method works better
than the Q-Ieaming method employed in the traditional

,

-211.

MDP model, which makes it highly suitable for vehicle
navigation where the environment consists of dynamically
changing vehicles, and each one of them can take actions
that may affect the agent's decisions.

The rest of this paper is organized as follow. Problem
analysis is detaiIed in Section 2. Following that, the
proposed method is presented in Section 3. Simulation
results and discussion are depicted in Section 4.
Suggestions for future development are given in Section 5,
and the conclusion can be found in Section 6.

11. PROBLEM ANALYSIS
MDP is a model for sequential decision making under
uncertainty. The term Markov stands for the fact that the
transition probability and the reward function depend on
the current state and the action selected by the agent only
[5] . To describe the model, we first consider a specific
instant of the system that consists of an agent and the
environment. At this instant, the agent observes the state of
the system. It then chooses an action based on the observed
state , and the policy used, which is
implementation-dependent. The action taken by the agent
causes the environment to change to a new state according
to the transition probability. At the same time, the
environment returns some feedback (reward or cost) to the
agent according to a reward function. The agent then needs
to face a similar problem again in the next time instant [5].

In order to determine the optimal policy in MDP, a value
function is introduced to describe the value of a state. That
is, the expected infinite discounted sum of reward that the
agent will gain. The value function is given below [2]: '

(1) Yfl(s)=E,{R, Is, = s } = E , Cyk'l+t+l Is, = s] KO
where E r {] represents the expected value when policy n
is followed and R, is the discounted sum of future rewards;
y is the discounting factor and F, is the reward (or penalty)
received at time t . The optimal value function can be
expressed as follow [2]:
~ * (s) = max E ~ . (R, I s, = s, a, = a }

where e, and Rs:, are the transition probability from
state s to s' and the expected reward.for the transition
respectively. The corresponding action-value fiinction and
the optimal action-value function are (3) and (4)
respectively [2]:

In Q-learning [4], the agent tries to take an action
according to the policy used and the Q-value in the
particular state. In the next time step, it evaluates the action
by the reward or penalty it received and the expected value
of the current state. The Q-learning method has been
proven to converge to the optimal action-value with
probability 1 as each action is executed in each state an
infinite number of times f 1] [5]. The Q-learning update rule
is defined as below:
a., ,a,) '+!a, 1 4 1 -t ++, +vya4+, ,U)-!& .4)] (5)

When handling a dynamically changing environment,
the ordinary Q-leaming method may not be able to
converge probably as the next state is not solely affected by
the agent but can also be affected by the change of the
environment. In this case, the update rule may cause the
Q-value to fluctuate and the agent may fail to response
appropriately. This effect could be visualized in the
simulation results in Section 4. Thus, a new method which
is able to handle the dynamics of the environment is
proposed to solve the convergence problem.

III. PROPOSED METHODOLOGY
A . Philosophy and Concept
Traditional MDP states that when an agent takes an action
according to the present observed state, the environment
will change to a new state and the agent will receive a
reward (ar penalty). This has assumed implicitly that the
environment is static and will change only according to the
action taken by the agent. Although the transition
probability function can in some way express changes in
the environment, this factor is not considered in the
Q-learning equation. Therefore, our proposal is to consider
both the actions taken by the agent and the environment as
factors that cause the change in state. We argue that the
environment as a whole can be considered as the action
taker. Multiple action takers can also exist if we assume that
the environment contains objects that some of them can
take avoidance action.

In this paper, the proposed method is implemented using
the technique similar to Q-leaming. The new method,
called the double action Q-leaming, has two fundamental
differences compared with MDP. First of all, a state defines
the relationship between two objects in the environment. A
state has no meaning when there is no observer. That is, a
state only exists when there is an observer standing on Some
point observing the environment. Besides, for two
observers standing on different points observing the same
environment, the observed states'would be different. The

- 212 -

state information is only valid within the observer itself and
so state should be interpreted as observer-dependent. As
such, the environment can be considered as having different
objects with each object having its own properties and its
own state with respect to the agent. The states of all objects
added rogether form the environment. Secondly, the
environment can change by itself. It changes whether the
agent acts or not. In the new method, both the observer and
the environment can take actions and cause the change in
state. As both parties are changing, what an observer
observes is the net change after both parties have acted.

The new method can be described in more detail as
depicted in Fig. I b. It consists of 6 major parameters. They
are: sampling time (T), the current state (s,), the action
selected by the observer (a'), the action selected by the
environment (d), the transition probability ($ 2) and the
reward function (&J). The state will change when either
(or both) the observer or the environmental object has taken
its action. In the case of obstacle avoidance, one of the
objects is the agent and.the other one can be considered as
the obstacle. The traditional MDP model is also shown in
Fig.la for reference. As it anly considers the action U taken
by the agent, all the parameters are related to a only.

T P T

(d (b\

Fig. 1 State Diagrams: a) MDP model. b) new method

B. The new Value Function
In the new method, similar to the traditional MDP model,
the value function is introduced to estimate the expected
future rewards of a particular state.
Vii(s)= E,,CB Is, 4

where E,.,. { } represents the expected vahe when policy
n is followed by the agent and policy n ' is followed by
the environment. The optimal lalue hnction will then be:
~ ' (s) = m a x ~ ~ . , ~ , . { ~ , ~s, =s,o: =ut,.: =oz)

0'"'

The corresponding optimal action-value function would
then be:
Q'(s ,o l , o ')=E { +ymaxQ'(s,,,,a''.a2')IJ, .".al. =s,o: =o',u; =a'] (8)

= TP$:"'[":?' + y r I p x Q y $, + , , d h ? q . C

It can be seen in equations (7) and (8) that the action ,'is
involved in determining the value hnction and the
action-value function. However, as d is the action taken by
the environment, i t is uncontrollable by the agent and
therefore maximize the equations on a' is not meaningful.
In this case, we may consider obtaining a more realistic
version of the optimal value hnction by maximizing a'
instead.
~ * l (s > = maxER.Kr {R, is, = s,u; =a'> .'

= max E,. t;+] + y ~ *

= max c x~(s, .'>E c:,laz [R ~ Y ' + y~ (SI)]

s, = s, 0: = 0')
0'

0'
9 2

The corresponding optimal action-value function would
then be the ex ected value of Q* over the action 0':

Q'? (s, a' =.E$,+' + rmfxe*(s,,, , u'l) I s, = s, a: =a' I P * (101
= ~ d (s , a ') ~ P $ " ' b2' +ymaxQ'(s,+, d I ,a1')]

2
This is the action-value function for the agent to

maximize its rewards regardless of the action taken by the
environment. When comparing equations (2) and (4) with
equations (9) and (IO) respectively, we can find that the old
model is in fact a special case of the new one where the old
model simply assume that the environment does not act.

Fortunately, in the real world, it is possible to predict the
motion o f the environment through sensory inputs from
which we can take appropriate action to maximize our
reward. If we can predict the action that will be taken by the
environment accurately, the function Q'(s,a',az) will be
very useful to determine our best action in the next time
step.

By using the same technique as Q-leaming, the function
Q'(s,a'.aV can be updated continuously that fulfills the
purpose of RL. The Q-learning type update rule for the new
MDP model is given beiow:
Qka', . ') + Q (X , Q ' , ~ ~)

1 (I 1)
r +yma"'(s ' ,a ' ' ,uz ') -Q(~,u' ,uZ)

d',d

However, using max~*(s-,ali,a2v) to update the Q-value is

not appropriate as the maximum Q-value ford, may not be
the actual action that is taken by the environment. Instead,
the predicted 0'' should be used to update the Q-values. If

0' .,a- '

- 213 -

the agent knows the probability distribution of the u2, the
expected value can also be used as an alternative.

This update rule may be used only if we can predict the
action taken by the environment accurately. If the
prediction is not accurate, ,the Q-value may not converge
and thus the agent may fail to act appropriately. One less
aggressive approach is to use the mean value of
m v ~ (s l , n i) over all U''. Thatis:

Q(s,a1,a2) +Q(s,o',a2)

L

where counf(u'3 is the number of '2' available in the
system. The term mean value of mapec3,,al, over all a'' is

used instead of m a x ~ (s l , o l , a ') because it is difficult at this
0' .

stage for the agent to know exactly what action the
environment will take in the next time step. As a result, it
would be more appropriate for the agent to choose the mean
value of the Q value as the discounted future state-action
value in the update ruie.

C. The Double Action Q-learning Algorithm
As depicted in Fig. 2, there are two importantly points to be

ated in the new method.
Initialize Q(s,a',.') arbitrarily
Repeat (for each episode)

Initialize s
Repeat (for each step of episode):

Get U' by predicting the action that will be taken by the
environment
Choose a fmm s using policy derived f" Q
Take action a
Observe the new state S' and r
Determine the action a' that have been taken by the environment
!&,O',Q') +- p(S7C11,a')

L
5 4 - s '

until s is terminal

Fig. 2 The double action Q-learning algorithm
First of..all, in the new method, thc agent needs to

consider two actions (one from itself and the other from rhe
environment) beforc it can choose thc action with thc
highest expected future rewards. To know the action that is
taken by the environment in the next time step, the agent
must have thc ability to prcdict. The prediction module can
bc. realizcd indcpendcntly o f the R L process. That is, the
prediction module can learn to predict disregarding the
MDP model and predict b) using historical informotion of
the cnvironment.

During thc learning cyclc, thc agent needs to be aware ot'
what actions have been taken by the environment before the

Q-values can be updated. This is performed by the action
determination module. After knowing the action that has
been taken by the environment, the agent can update it's
Q-value according to (12).

D. Obstacle Avoidance by using the new method

In the obstacle avoidance case, we need to plan and control
the agent's motion to ensure that it can avoid collisions with
moving obstacles simultaneously. In this paper, obstacles
are objects or vehicles and the environment contains
multiple numbers of obstacles. It is highly suitable for
vehicle navigation in which there are a multiple number of
moving vehicles and each is capable to avoid collision.
Moreover, the interpretation of states as the relationship
between one object and the agent allows us to implement
the Q-learning algorithm in a more efficient way.

By treating each obstacle as an independent object,
Q-learning can be applied on each pair of object-agent
relationship. Laurent and Piat [6,7] have proposed a similar
approach called the parallel Q-learning to solve the
block-pushing problem. They have tried different methods
to combine Q-vatue from different blocks. The first one is
to take the maximum Q-value over all blocks. The second
one is to take the sum of all Q-values &om all blocks. In our
case, the second approach is used in combining the
Q-values from different object-agent relationships. That is:

Q(d) = zqi(s, ,a' ,a:)

where &(s,u) is the resultant Q-value for the. entire
environment and qi(sia',u~) is the Q-value of the particular
type.of object when the agent face that object along. The
action d is degmined through the prediction module.
mom~(s,o) is then chosen as the final decision of the

obstacle avoidance (OA) module. For the same type of
objects, the agent uses the same set of Q-value to represent
them. Therefore, when there are multiple objects which are
of the same type in the environment, the Q-value belonging
to that h e of objects is updated multiple times in each time
step. As such, this technique has greatly enhanced the
efficiency of Q-learning.

~-..

-._......... " -~+-JJJ--~ RaJEU, *%.*'a: I lil
t u , .'I

U\ .- - .."""l----~-~ I

I
Fig. 3 Architecture of the obstacle avoidance system

in our case, a goal is established for the agent so that it
must reach the goal even if it has to pass through a crowd of
obstacles but not staying away from the obstacles. This
ability i s called the Goal Seeking (GS) ability. In this paper,

- 214 -

we assumed that the agent knows the position of the goal so
that the GS module is able to provide indications on which
action can get closer to the goal. Other actions have their
Q-value gradually decreasing according to the distance that
they can minimize. The Q-values from the GA and the OA
modules are summed to form the final Q-value. The action
with the maximum final Q-value is selected as the final
decision. For evaluation purpose, we focus on the double
action Q-leaming method and thus assume that the
prediction and action determination were accurately.

IV. SIMULATION RESULTS AND DISCUSSION

The objective of the test is to compare the performance of
the new method with that of the ordinary Q-learning
method. T h e testing environment consists of large numbers
of obstacles and the agent itself. The state indicating the
agent-object relationship is represented by the x and y
coordinates ofthe object with the agent placing in the origin.
The agent and the obstacles can choose one of 5 actions: up,
down, left, right, rest. In our test, all the obstaeles are of the
same type and thus all of them use only one set of Q-values.
A goal is given to the agent and obstacles are randomly
placed in between so that the agent needs to handle the
problem of obstacle avoidance in its navigation. If collision
occurs, both the obstacle and the agent are brought back to
their last position before collision and a punishment of -IO
is given to the agent. We have tested the system for 2000
episodes (origin to goal) in the two different methods.

Fig. 4 depicts a screen capture of the simulator when
the agent (grey circle) was moving among 50 obstacles
(black circles) in between the starting point (upper left hand
comer) and goal (square at the lower right hand comer).
The grey line shows the path that the agent has traveled. In
the episode shown, there was no collision recorded. The
obstacles lied on the grey lines only shows that they have
moved to the area after the agent has moved away. The
branched grey line shows that the agent has in some time
applied an action that can avoid collision but contradicted
with the GS module.

LL Fig. 4 Screen capture of the simulator

In Pig. 5 , sum of rewards versus episode of both
methods are shown. It is the cumulated sum of all the
rewards over the total number of episodes. Larger negative
value means more collisions have occurred. After 2000
episodes, the sum of reward (negative) of the new method is
89.5% less than that of the traditional method. -_

Fig. 7 Collisions for the traditional Q-leaming Method

- 215 -

The number of collisions in an episode (NoC) represents
how well collision avoidance is performed. A good learning
algorithm should have the number of collision decreased as
the number of episode increases. In Fig. 6 and 7, we can see
that the total number of collisions for the new method is 37
compared with 351 collisions in the traditional method, The
new method has its total number of collisions 89.5% less
than that of the traditional method. In addition, the mean
time between collisions (MTBC) for the new method is
678.6% longer than the traditional method after 2000
episodes.

According to Fig. 5 , we can see that the sum of rewards
(SR) for the new method is close to the traditional method
in first 50 episodes. However, from episode 50 to 200, the
sum of rewards for the new method slowed substantially.
When considering Fig. 6, we can see that the number of
collisions also starts to decrease at episode 50 and there are
only a few collisions after episode 200. The reason is that
the agent is leaming in the first 200 episodes and it has
nearly learned all the Q-values for all the cases that would
cause~collision after episode 200. Therefore, the number of
collisions decreases naturally.

Fig. 8 shows the number of steps used (S E) in one
episode (from origin to goal) for the last 500 episodes. A
smaller value means that the agent has chosen a shorter path.
In this test, the minimum number of steps heeded to reach
the goal from the origin is 80 steps (shortest path). With
reference to this figure, the new method requires only an
average of 82 steps, or 15.5% less steps to c6mplete the
course than the traditional method. This showed that the
new method can keep its route very near to the shortest path
(80 steps), in most episode, On the contrary, the traditional
Q-learning method requires a much larger number of steps
for the agent to accomplish the collision avoidance task.
This can be explained by the fact that the new method
contains the prediction ability so that it can avoid collisions
with obstacles properly according to the predicted action of
the obstacles. In the traditional method, it is very likely that
the agent needs to take actions to avoid obstacles more
frequently although collision may not occur necessarily in
the next step. As a result, the agent engages in avoidance
action regardless ofwhat action the obstacles may take. The
results are summarized in Fig. 9.

I
I

__--__ -~___-__ __

- 1% t

Double actxon - l e a “ %chan e
-3510

678 6% more
15 5 % less

Fig. 9 Summary of Simulation results

V.SUGGESTIONS FOR FUTURE DEVELOPMENT
If the agent wants to maximize its hture rewards from
objects that may give rewards or punishments, It would
need to compromise. In this paper, the summation method
is used to simplify the problem. In the long run, weighted
average according to their level of importance would have
to be considered. Furthermore, more. realistic prediction
and action determination would need to be considered. At
this stage, it can be seen that the prediction can work
independently From the inference process. One possible
direction is to integrate the two to form a complete solution.

MTBC 4259

VI. CONCLUSION

This paper has presented the double kction reinforcement ’

learning method. The Q-learning algorithm is used to
implement the method and to solve the problem of dynamic
obstacle avoidance. The new method has taken into account
of the actions that are taken by the environment so that the
system is now enabled. to handle the dynamics of the
environment. The concept of parallel Q-learning is also
adopted so that the system can handle multiple numbers of
obstacles at the same time. The test results show that the
new method is better than the ordinary Q-learning method
in handling the obstacle avoidance problem. From our
simulation results, the new method has the sum of rewards
(negative) 89.5% ,less than that of the traditional method.
Apart form that, our new method also has the total number
of collisions and mean steps used in one episode 89.5% and
15.5% lower than that of the traditional method
respectiveiy. .

. .

REFERENCES
L. P. Kaelbling, M. L. Littman & A. W. Moore, “Reinforcement
Learning: A Survey“, Journal ofAr/ficial Intelligence Research,
vol. 4 pp237-285, 1996
R. S . Suiton and A. G. Bano, Reinforcement Learning-An
Introduction. The MIT Press, Cambridge, 1998
A. F. Ban0 and S. Mahadevan, “Recent advances in hierarchical
reinforcement”, Discrete Even! @nomic Systems; Theory and
Application, Vol. 13, pp 41-77, 2003
C. I. C. H. Watkins and P. Dayan, “Technical Note: Q-leaming”,
Machine Learning, Vol. 8. pp279-292,1992
M. L. Puthian. Markov Decision Processes: discrete slochastic
a)momicprogrumming, John Wiley & Sons, New York, 1994
G. Laurent, E. Piat, “Parallel Q-Learning for a block-pushing
problem”. Proceedings of the 2001 IEEE/RSI Inlernational
Conference on Intelligenl Robots andSystems, Maui, USA, 2001
G. Laurent, E. Piat, “Learning Mixed Behaviours with Parallel
Q-learning”, Proceedings of /he 2052 I€EURSJ International
Conference on hfelligent Robots and System, Lausanne,
Switzerland, 2002

- 2 1 6 -

