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Abstract - In this paper, we propose a new method for 
sobing the reinforcement learning problem in a dynamically 
changing environment, as inivehicle navigatiop, in which the 
Markov Decision Process used in traditional reinforcement 
learning is modified so that the response of the environment is 
taken into consideratiin for determining the agent’s next state. 
This i s  achieved by changing the action-value function to 
handle three parameters at a time, namely, the current state, 
action taken by the agent, and action taken by the 
environment. As it considers the actions by the agent and 
environment, it is termed “Double Action”. Based on the 
Q-learning method, the proposed method is implemented and 
the update rule is modified to handle all of the three 
parameters. Preliminary results show that the proposed 
method has the sum of rewards (negative) 89.5% less than 
that of the traditional method. Apart form that, our  new 
method also has the total number of collisions and mean steps 
used in one episode 89.5% and 15.5% lower than that of the 
traditional method respectively. 

Index Tems-Q-learning, reinforcement learning, 
temporal differences, obstacle avoidance 

I. INTRODUCTION 
einforcement Learning (RL) define a class of problem EL olving approaches by which the learner [agent) is not 

given the action to take but it must learn through a series of 
trial-and-error searches and the receipt of delayed rewards. 
[ I ,  21, The purpose ofthe agent is to maximize not only the 
immediate reward, but also the cumulative reward in the 
long run [2]. In this way, the agent can leam to approximate 
an .optimal behavioral strategy by continuously interacting 
with the environment [3]. This allows the agent tP work in a 
previousty unknown environment by learning to &apt, to 
the rules’ in the new environment griidaally, which ’ is 
well-suited to dynamically changing environments. 

There are two main strategies for the RL approach [ I ] .  
The first one is to search in the space of behaviors such as 
genetic programming in order to determine the behavior 
that performs we11 in the environment. The second is to 
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consider the utility of taking actions such as dynamic 
programming (DP). In DP, the value functions are used to 
organize and structure the search for good policies so that it 
can leam to choose the best action in the corresponding 
state. In essence, DP is a collection of algorithms working 
on the Markov Decision Process (MDP) to give optimal 
policies [2]. By assuming that the decisions and values are 
functions only on the current state, the RL problem can be 
simplified into an MDP problem, which can be solved in a 
much easier way. Q-learning by Watkins [4] can be 
considered as an incremental method for DP. as it 
determines the optimal policy in amway similar to DP but in 
a step-by-step manner instead. I t is  a simple,model-free RL 
approach that allows the agent to learn to kcct optimally in 
the Markovian domain, and it is easy to implement and have 
a relatively lower computation cost than DP. 

However, the ordinary RL approach based on the MDP 
model may face .difficulties when handling dynamically 
changing . environment. In a dynamically. changing 
eniironmen?, the’environment can change regardless of the 
agent’s action. This violates the assumption of MDP that 
only the action of the agent can change the state of the 
environment. Although the learning feature of RI, may 
enable it to adapt to the changing environment gradually, it 
can only converge to the changed environment but not learn 
to act regardless of the change of the environment. 
Therefore, more sophisticated approach, is required to solve 
the problem. The world that we face every day i s  usually a 
dynamically changing environment. For instance, we 
perform obstacle avoidance when walking through a’ 
crowded street. In such an environment, the agent is faced 
with both moving and static objects and the agent should 
have the ability to deal with both of them. For this reason, 
we have decided ro explore the possibility of improving the 
ordinary RL approach by considering not only the action of 
the agent but also the predicted action taken by the 
environment (or objects in the environment). By 
considering the action that may be taken by the 
environment, the agent can leam to react with the most 
appropriate action whatever the environment may change. 

In this paper, a new method is proposed to solve the RL 
problem in a dynamically changing environment. The new 
method has taken into consideration the action taken by 
both the agent and the environment. The Q-learning 
technique is used to implement a new RL method called the 
double action Q-learning based on the new method. 
Simulation results show that the new method works better 
than the Q-Ieaming method employed in the traditional 
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MDP model, which makes it highly suitable for vehicle 
navigation where the environment consists of dynamically 
changing vehicles, and each one of them can take actions 
that may affect the agent's decisions. 

The rest of this paper is organized as follow. Problem 
analysis is detaiIed in Section 2. Following that, the 
proposed method is presented in Section 3. Simulation 
results and discussion are depicted in Section 4. 
Suggestions for future development are given in Section 5,  
and the conclusion can be found in Section 6. 

11. PROBLEM ANALYSIS 
MDP is a model for sequential decision making under 
uncertainty. The term Markov stands for the fact that the 
transition probability and the reward function depend on 
the current state and the action selected by the agent only 
[ 5 ] .  To describe the model, we first consider a specific 
instant of the system that consists of an agent and the 
environment. At this instant, the agent observes the state of 
the system. It then chooses an action based on the observed 
state , and the policy used, which is 
implementation-dependent. The action taken by the agent 
causes the environment to change to a new state according 
to the transition probability. At the same time, the 
environment returns some feedback (reward or cost) to the 
agent according to a reward function. The agent then needs 
to face a similar problem again in the next time instant [5].  

In order to determine the optimal policy in MDP, a value 
function is introduced to describe the value of a state. That 
is, the expected infinite discounted sum of reward that the 
agent will gain. The value function is given below [2]: ' 

(1) Yfl(s)=E,{R,  Is,  = s } = E ,  Cyk'l+t+l  Is, = s  ] KO 
where E r {  ] represents the expected value when policy n 
is followed and R, is the discounted sum of future rewards; 
y is the discounting factor and F, is the reward (or penalty) 
received at time t . The optimal value function can be 
expressed as follow [2]: 
~ * ( s )  = max E ~ .  (R, I s, = s, a, = a }  

where e, and Rs:, are the transition probability from 
state s to s' and the expected reward.for the transition 
respectively. The corresponding action-value fiinction and 
the optimal action-value function are (3) and (4) 
respectively [2]: 

In Q-learning [4], the agent tries to take an action 
according to the policy used and the Q-value in the 
particular state. In the next time step, it evaluates the action 
by the reward or penalty it received and the expected value 
of the current state. The Q-learning method has been 
proven to converge to the optimal action-value with 
probability 1 as each action is executed in each state an 
infinite number of times f 1 ] [5].  The Q-learning update rule 
is defined as below: 
a., ,a,) '+!a, 1 4  1 -t ++, +vya4+, ,U)-!& .4)] ( 5 )  

When handling a dynamically changing environment, 
the ordinary Q-leaming method may not be able to 
converge probably as the next state is not solely affected by 
the agent but can also be affected by the change of the 
environment. In this case, the update rule may cause the 
Q-value to fluctuate and the agent may fail to response 
appropriately. This effect could be visualized in the 
simulation results in Section 4. Thus, a new method which 
is able to handle the dynamics of the environment is 
proposed to solve the convergence problem. 

III. PROPOSED METHODOLOGY 
A .  Philosophy and Concept 
Traditional MDP states that when an agent takes an action 
according to the present observed state, the environment 
will change to a new state and the agent will receive a 
reward (ar penalty). This has assumed implicitly that the 
environment is static and will change only according to the 
action taken by the agent. Although the transition 
probability function can in some way express changes in 
the environment, this factor is not considered in the 
Q-learning equation. Therefore, our proposal is to consider 
both the actions taken by the agent and the environment as 
factors that cause the change in state. We argue that the 
environment as a whole can be considered as the action 
taker. Multiple action takers can also exist if we assume that 
the environment contains objects that some of them can 
take avoidance action. 

In this paper, the proposed method is implemented using 
the technique similar to Q-leaming. The new method, 
called the double action Q-leaming, has two fundamental 
differences compared with MDP. First of all, a state defines 
the relationship between two objects in the environment. A 
state has no meaning when there is no observer. That is, a 
state only exists when there is an observer standing on Some 
point observing the environment. Besides, for two 
observers standing on different points observing the same 
environment, the observed states'would be different. The 
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state information is only valid within the observer itself and 
so state should be interpreted as observer-dependent. As 
such, the environment can be considered as having different 
objects with each object having its own properties and its 
own state with respect to the agent. The states of all objects 
added rogether form the environment. Secondly, the 
environment can change by itself. It changes whether the 
agent acts or not. In the new method, both the observer and 
the environment can take actions and cause the change in 
state. As both parties are changing, what an observer 
observes is the net change after both parties have acted. 

The new method can be described in more detail as 
depicted in Fig. I b. It consists of 6 major parameters. They 
are: sampling time (T), the current state (s,), the action 
selected by the observer (a'), the action selected by the 
environment (d), the transition probability ( $ 2 )  and the 
reward function (&J). The state will change when either 
(or both) the observer or the environmental object has taken 
its action. In the case of obstacle avoidance, one of the 
objects is the agent and.the other one can be considered as 
the obstacle. The traditional MDP model is also shown in 
Fig.la for reference. As it anly considers the action U taken 
by the agent, all the parameters are related to a only. 

T P T 

(d (b\ 

Fig. 1 State Diagrams: a) MDP model. b) new method 

B. The new Value Function 
In the new method, similar to the traditional MDP model, 
the value function is introduced to estimate the expected 
future rewards of a particular state. 
Vii(s)= E,,CB Is, 4 

where E,.,.  { }  represents the expected vahe when policy 
n is followed by the agent and policy n ' is followed by 
the environment. The optimal lalue hnction will then be: 
~ ' ( s ) = m a x ~ ~ . , ~ , . { ~ ,  ~s, =s,o: =ut,.: =oz) 

0'"' 

The corresponding optimal action-value function would 
then be: 
Q'(s ,o l , o ' )=E { +ymaxQ'(s,,,,a''.a2')IJ, .".al. =s,o:  =o',u; =a'] (8 )  

= TP$:"'[":?' + y r I p x Q y $ , + , , d h ? q  . C  

It can be seen in equations (7) and (8) that the action ,'is 
involved in determining the value hnction and the 
action-value function. However, as d is the action taken by 
the environment, i t  is uncontrollable by the agent and 
therefore maximize the equations on a' is not meaningful. 
In this case, we may consider obtaining a more realistic 
version of the optimal value hnction by maximizing a' 
instead. 
~ * l ( s >  = maxER.Kr {R, is, = s,u; =a'>  .' 

= max E,. t;+] + y ~ *  

= max c x~(s, .'>E c:,laz [ R ~ Y '  + y~ (SI)] 

s, = s, 0: = 0') 
0' 

0' 
9 2  

The corresponding optimal action-value function would 
then be the ex ected value of Q* over the action 0': 

Q'? (s, a' =.E$ ,+' + rmfxe*(s,,, , u'l) I s, = s, a: =a' I P *  (101 
= ~ d ( s , a ' ) ~ P $ " '  b2' +ymaxQ'(s,+, d I ,a1')] 

2 
This is the action-value function for the agent to 

maximize its rewards regardless of the action taken by the 
environment. When comparing equations (2) and (4) with 
equations (9) and (IO) respectively, we can find that the old 
model is in fact a special case of the new one where the old 
model simply assume that the environment does not act. 

Fortunately, in the real world, it is possible to predict the 
motion o f  the environment through sensory inputs from 
which we can take appropriate action to maximize our 
reward. If we can predict the action that will be taken by the 
environment accurately, the function Q'(s,a',az) will be 
very useful to determine our best action in the next time 
step. 

By using the same technique as Q-leaming, the function 
Q'(s,a'.aV can be updated continuously that fulfills the 
purpose of RL. The Q-learning type update rule for the new 
MDP model is given beiow: 
Qka', . ' )  + Q ( X , Q ' , ~ ~ )  

1 ( I 1 )  
r +yma"'(s ' ,a ' ' ,uz ' ) -Q(~,u' ,uZ)  

d',d 

However, using max~*(s-,ali,a2v) to update the Q-value is 

not appropriate as the maximum Q-value ford,  may not be 
the actual action that is taken by the environment. Instead, 
the predicted 0'' should be used to update the Q-values. If 

0' .,a- ' 
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the agent knows the probability distribution of the u2, the 
expected value can also be used as an alternative. 

This update rule may be used only if we can predict the 
action taken by the environment accurately. If the 
prediction is not accurate, ,the Q-value may not converge 
and thus the agent may fail to act appropriately. One less 
aggressive approach is to use the mean value of 
m v ~ ( s l , n i )  over all U''. Thatis: 

Q(s,a1,a2) +Q(s,o',a2) 

L 

where counf(u'3 is the number of '2' available in the 
system. The term mean value of mapec3,,al, over all a'' is 

used instead of m a x ~ ( s l , o l , a ' )  because it is difficult at this 
0' .  

stage for the agent to know exactly what action the 
environment will take in the next time step. As a result, it 
would be more appropriate for the agent to choose the mean 
value of the Q value as the discounted future state-action 
value in the update ruie. 

C. The Double Action Q-learning Algorithm 
As depicted in Fig. 2, there are two importantly points to be 

ated in the new method. 
Initialize Q(s,a',.') arbitrarily 
Repeat (for each episode) 

Initialize s 
Repeat (for each step of episode): 

Get U' by predicting the action that will be taken by the 
environment 
Choose a fmm s using policy derived f" Q 
Take action a 
Observe the new state S' and r 
Determine the action a' that have been taken by the environment 
!&,O',Q') +- p(S7C11,a') 

L 
5 4 - s '  

until s is terminal 

Fig. 2 The double action Q-learning algorithm 
First of..all, in the new method, thc agent needs to 

consider two actions (one from itself and the other from rhe 
environment) beforc it can choose thc action with thc 
highest expected future rewards. To know the action that is 
taken by the environment in the next time step, the agent 
must have thc ability to prcdict. The prediction module can 
bc. realizcd indcpendcntly o f  the R L  process. That is, the 
prediction module can learn to predict disregarding the 
MDP model and predict b) using historical informotion of 
the cnvironment. 

During thc learning cyclc, thc agent needs to be aware ot' 
what actions have been taken by the environment before the 

Q-values can be updated. This is performed by the action 
determination module. After knowing the action that has 
been taken by the environment, the agent can update it's 
Q-value according to (12). 

D. Obstacle Avoidance by using the new method 

In the obstacle avoidance case, we need to plan and control 
the agent's motion to ensure that it can avoid collisions with 
moving obstacles simultaneously. In this paper, obstacles 
are objects or vehicles and the environment contains 
multiple numbers of obstacles. It is highly suitable for 
vehicle navigation in which there are a multiple number of 
moving vehicles and each is capable to avoid collision. 
Moreover, the interpretation of states as the relationship 
between one object and the agent allows us to implement 
the Q-learning algorithm in a more efficient way. 

By treating each obstacle as an independent object, 
Q-learning can be applied on each pair of object-agent 
relationship. Laurent and Piat [6,7] have proposed a similar 
approach called the parallel Q-learning to solve the 
block-pushing problem. They have tried different methods 
to combine Q-vatue from different blocks. The first one is 
to take the maximum Q-value over all blocks. The second 
one is to take the sum of all Q-values &om all blocks. In our 
case, the second approach is used in combining the 
Q-values from different object-agent relationships. That is: 

Q(d) = zqi(s, ,a' ,a:)  

where &(s,u) is the resultant Q-value for the. entire 
environment and qi(sia',u~) is the Q-value of the particular 
type.of object when the agent face that object along. The 
action d is degmined through the prediction module. 
mom~(s,o) is then chosen as the final decision of the 

obstacle avoidance (OA) module. For the same type of 
objects, the agent uses the same set of Q-value to represent 
them. Therefore, when there are multiple objects which are 
of the same type in the environment, the Q-value belonging 
to that h e  of objects is updated multiple times in each time 
step. As such, this technique has greatly enhanced the 
efficiency of Q-learning. 

~-.. ... ... 

-._......... " -~+-JJJ--~ RaJEU, *%.*'a: I lil 
t u ,  .'I 

U\ .- - .."""l----~-~ I 

I 
Fig. 3 Architecture of the obstacle avoidance system 

in our case, a goal is established for the agent so that it 
must reach the goal even if it has to pass through a crowd of 
obstacles but not staying away from the obstacles. This 
ability i s  called the Goal Seeking (GS) ability. In this paper, 
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we assumed that the agent knows the position of the goal so 
that the GS module is able to provide indications on which 
action can get closer to the goal. Other actions have their 
Q-value gradually decreasing according to the distance that 
they can minimize. The Q-values from the GA and the OA 
modules are summed to form the final Q-value. The action 
with the maximum final Q-value is selected as the final 
decision. For evaluation purpose, we focus on the double 
action Q-leaming method and thus assume that the 
prediction and action determination were accurately. 

IV. SIMULATION RESULTS AND DISCUSSION 

The objective of the test is to compare the performance of 
the new method with that of the ordinary Q-learning 
method. T h e  testing environment consists of large numbers 
of obstacles and the agent itself. The state indicating the 
agent-object relationship is represented by the x and y 
coordinates ofthe object with the agent placing in the origin. 
The agent and the obstacles can choose one of 5 actions: up, 
down, left, right, rest. In our test, all the obstaeles are of the 
same type and thus all of them use only one set of Q-values. 
A goal is given to the agent and obstacles are randomly 
placed in between so that the agent needs to handle the 
problem of obstacle avoidance in its navigation. If collision 
occurs, both the obstacle and the agent are brought back to 
their last position before collision and a punishment of  -IO 
is given to the agent. We have tested the system for 2000 
episodes (origin to goal) in the two different methods. 

Fig. 4 depicts a screen capture of the simulator when 
the agent (grey circle) was moving among 50 obstacles 
(black circles) in between the starting point (upper left hand 
comer) and goal (square at the lower right hand comer). 
The grey line shows the path that the agent has traveled. In 
the episode shown, there was no collision recorded. The 
obstacles lied on the grey lines only shows that they have 
moved to the area after the agent has moved away. The 
branched grey line shows that the agent has in some time 
applied an action that can avoid collision but contradicted 
with the GS module. 

LL Fig. 4 Screen capture of the simulator 

In Pig. 5 ,  sum of rewards versus episode of both 
methods are shown. It is the cumulated sum of all the 
rewards over the total number of episodes. Larger negative 
value means more collisions have occurred. After 2000 
episodes, the sum of reward (negative) of the new method is 
89.5% less than that of the traditional method. -_ 

Fig. 7 Collisions for the traditional Q-leaming Method 
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The number of collisions in an episode (NoC) represents 
how well collision avoidance is performed. A good learning 
algorithm should have the number of collision decreased as 
the number of episode increases. In Fig. 6 and 7, we can see 
that the total number of collisions for the new method is 37 
compared with 351 collisions in the traditional method, The 
new method has its total number of collisions 89.5% less 
than that of the traditional method. In addition, the mean 
time between collisions (MTBC) for the new method is 
678.6% longer than the traditional method after 2000 
episodes. 

According to Fig. 5 ,  we can see that the sum of rewards 
(SR) for the new method is close to the traditional method 
in first 50 episodes. However, from episode 50 to 200, the 
sum of rewards for the new method slowed substantially. 
When considering Fig. 6, we can see that the number of 
collisions also starts to decrease at episode 50 and there are 
only a few collisions after episode 200. The reason is that 
the agent is leaming in the first 200 episodes and it has 
nearly learned all the Q-values for all the cases that would 
cause~collision after episode 200. Therefore, the number of 
collisions decreases naturally. 

Fig. 8 shows the number of steps used ( S E )  in one 
episode (from origin to goal) for the last 500 episodes. A 
smaller value means that the agent has chosen a shorter path. 
In this test, the minimum number of steps heeded to reach 
the goal from the origin is 80 steps (shortest path). With 
reference to this figure, the new method requires only an 
average of 82 steps, or 15.5% less steps to c6mplete the 
course than the traditional method. This showed that the 
new method can keep its route very near to the shortest path 
(80 steps), in most episode, On the contrary, the traditional 
Q-learning method requires a much larger number of steps 
for the agent to accomplish the collision avoidance task. 
This can be explained by the fact that the new method 
contains the prediction ability so that it can avoid collisions 
with obstacles properly according to the predicted action of 
the obstacles. In the traditional method, it is very likely that 
the agent needs to take actions to avoid obstacles more 
frequently although collision may not occur necessarily in 
the next step. As a result, the agent engages in avoidance 
action regardless ofwhat action the obstacles may take. The 
results are summarized in Fig. 9. 

I 
I 

__--__ -~___-__ __ 

- 1% t 

Double actxon - l e a “  %chan e 
-3510 

678 6% more 
15 5 %  less 

Fig. 9 Summary of Simulation results 

V.SUGGESTIONS FOR FUTURE DEVELOPMENT 
If the agent wants to maximize its hture rewards from 
objects that may give rewards or punishments, It would 
need to compromise. In this paper, the summation method 
is used to simplify the problem. In the long run, weighted 
average according to their level of importance would have 
to be considered. Furthermore, more. realistic prediction 
and action determination would need to be considered. At 
this stage, it can be seen that the prediction can work 
independently From the inference process. One possible 
direction is to integrate the two to form a complete solution. 

MTBC 4259 

VI. CONCLUSION 

This paper has presented the double kction reinforcement ’ 

learning method. The Q-learning algorithm is used to 
implement the method and to solve the problem of dynamic 
obstacle avoidance. The new method has taken into account 
of the actions that are taken by the environment so that the 
system is now enabled. to handle the dynamics of the 
environment. The concept of parallel Q-learning is also 
adopted so that the system can handle multiple numbers of 
obstacles at the same time. The test results show that the 
new method is better than the ordinary Q-learning method 
in handling the obstacle avoidance problem. From our 
simulation results, the new method has the sum of rewards 
(negative) 89.5% ,less than that of the traditional method. 
Apart form that, our new method also has the total number 
of collisions and mean steps used in one episode 89.5% and 
15.5% lower than that of the traditional method 
respectiveiy. . 

. .  
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