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Abstract— Based on the maximum-likelihood principle and
the preamble structure of IEEE 802.11a WLAN standard, this
paper proposes a new symbol synchronization algorithm for
IEEE 802.11a WLANs over frequency-selective fading channels.
In addition to the physical channel, the effects of filtering
and unknown sampling phase offset are also considered. Loss
in system performance due to synchronization error is used
as a performance criterion. Computer simulations show that
the proposed algorithm has comparable performances to the
algorithm based on the generalized Akaike information criterion
(GAIC), but the proposed algorithm exhibits reduced complexity.

I. INTRODUCTION

IEEE 802.11a wireless local area networks (WLANs),

which support high-speed data transmissions up to 54Mbps

[1], employ burst-mode transmission and orthogonal frequency

division multiplexing (OFDM) as the transmission technique.

Although OFDM is well known for its ability to combat

the intersymbol interference (ISI) introduced by multipath

channels [2], [3], incorrect positioning of the FFT window

within an OFDM symbol reintroduces ISI during data de-

modulation, causing serious performance degradation [4], [5].

Symbol synchronization is therefore one of important tasks

performed at receivers in IEEE 802.11a WLANs.
A number of methods for OFDM symbol synchronization

have been proposed in the literature (e.g., methods exploit the

periodic structure of cyclic prefixes in OFDM symbols [5]-

[7] and algorithms based on the use of repeated preambles

[8]-[12]). Although the techniques of [4]-[12], which were

originally developed for general OFDM systems, may be

applied to IEEE 802.11a WLANs, a higher synchronization

accuracy can be obtained by using optimized algorithms that

take advantage of the known preamble structure located at the

beginning of a data packet.
Recently, symbol synchronization techniques that are specif-

ically designed for IEEE 802.11a WLANs have been reported

in [13] and [14]. In [13], the received signal is correlated

with a known training-symbol sequence and the absence of the

expected correlation peak is detected. Despite the advantage

that a simple correlator can be easily implemented at the

receiver, its performance is poor in dispersive channels [13],

indicating that more sophisticated synchronization algorithms

are required. In [14], the generalized Akaike information

criterion (GAIC) is used to jointly estimate the channel

and establish timing synchronization. Although the reported

performance is good, its complexity is extremely high.

In this paper we develop a maximum-likelihood (ML)

symbol synchronizer for IEEE 802.11a WLANs on frequency-

selective fading channels. A realistic channel, which includes

the effects of filtering and sampling time offset in addition

to the physical channel with random path delays, is con-

sidered. Furthermore, the loss in system performance due to

synchronization error is used as the performance criterion [5],

[19], as opposed to the requirement that the estimated symbol

timing has to be within certain limits with respect to a fixed

reference point. Simulation results indicate that the proposed

algorithm has comparable performances to the algorithm based

on GAIC [14], but the complexity of the proposed algorithm is

much smaller than that of GAIC algorithm due to the smaller

observation length.

II. RECEIVED-SIGNAL MODEL

A. Signal and Channel Models

Fig. 1 depicts the packet structure used in IEEE 802.11a

WLANs. In each packet, the data carrying OFDM symbols are

preceded by a preamble, which is used for start of packet de-

tection, automatic gain control, symbol timing and frequency

synchronization, and channel estimation. The preamble itself

consists of two parts. The first part comprises 10 short training

symbols, b(t), each of length Tb = 800ns. In the second part,

a cyclic prefix, g(t), of length Tg = 1.6µs is followed by two

long training symbols, c(t), each of length Tc = 3.2µs.

Let the baseband-equivalent signal of the preamble be s(t)
(the equations for b(t), g(t) and c(t) can be found in the

standard [1] and are not detailed here). The signal s(t) is

passed through the transmission filter, up-converted to high

frequency and transmitted through a multipath frequency-

selective fading channel. At the receiver, the signal is down-

converted into baseband signal and then passed through re-

ceiving filter. Assuming the channel is static over the duration

of a packet, the complex envelope of the received and filtered

signal is given by

r(t) =
∫ ∞

−∞
s(t − u)

[
Lo−1∑
n=0

γnf(u − τn)

]
du + w(t). (1)

3390-7803-8622-1/04/$20.00 ©2004 IEEE



where γn is the complex valued channel coefficients for the

nth path with τn as the path delay, Lo is the total number of

physical path of the multipath channel, f(t) is the combined

response of the transmit and receiving filter, and w(t) is the

filtered complex-Gaussian noise. It is assumed that the channel

gain is unity (i.e.,
∑Lo−1

n=0 E[|γn|2] = 1, where E[.] stands

for expectation). Furthermore, without loss of generality, it

is assumed that τ0 = 0 since the delay of first path can be

translated to a delay in sampling.

Now, the received signal is sampled at t = kTsam+εoTsam,

where 1/Tsam = 20MHz, which is the suggested sampling

rate in the standard [1], and εo ∈ [0, 1) is the unknown time

offset induced by the combination of the delay of the first path

of the channel and the sampling phase offset. It follows that

the sampled signal is given by

rk =
1

Tsam

∫ ∞

−∞
s(kTsam − u′)h(u′)du′ + wk (2)

where rk � r(kTsam + εoTsam), wk � w(kTsam + εoTsam),
u′ = u − εoTsam and h(t) is the equivalent channel which

includes the effects of the transmission filter, physical channel,

receiving filter, the timing delay induced by the delay of the

first path of the channel and the sampling phase offset, and is

defined as

h(t) � Tsam

Lo−1∑
n=0

γnf(t − τn + εoTsam). (3)

Notice that the bandwidth (one-sided baseband) of s(t)
is BWs ≈ 8.44MHz [1], meaning that BWs < 1/2Tsam.

According to [18], if the bandwidth of the equivalent channel

h(t) (which is equal to the bandwidth of f(t)) satisfies

BWh < 1/Tsam−BWs, then by the equivalence of digital and

analog filtering for band-limited signals, the sampled received

signal can be expressed as

rk =
∞∑

i=−∞
s(kTsam − iTsam)h(iTsam) + wk. (4)

A simple example of f(t) that makes the above bandwidth

requirement satisfied is the raised cosine filter with β < 0.156
since it is required that BWh = (1 + β)/2Tsam < 1/Tsam −
BWs. Without loss of generality, we employ square root raised

cosine filters with roll-off factor β = 0.1 for both transmit

filter and receiving filter for the rest of the paper. Because the

receiving filter is a square root cosine filter, the filtered noise

samples are uncorrelated with variance σ2
w = E[|w(t)|2].

Remark 1. For the special case that if 1) the path delays are

sample spaced (i.e., τn = nTsam), 2) the timing delay εo = 0
and 3) f(t) is a raised cosine pulse (normalized with Tsam)

with β < 0.156, then

h(iTsam) =
Lo−1∑
n=0

γnδ(i − n), (5)

since the values of the raised cosine pulse are zero at integer

multiples of Tsam. This is the system model used in [14],

where the physical channel is represented by the commonly

used tapped delay line model with equal tap spacing [15,

p.795]. Therefore, the channel model considered in this paper

is more general than that in [14].

B. Matrix Algebraic Formulations

From (4), it is apparent that the received samples depend on

h(iTsam) for −∞ ≤ i ≤ ∞. However, in practice, h(iTsam)
will have significant values only for a finite range of i since

1) the path delays occur in a finite interval and 2) the value

of f(t) becomes very small when |t| is large. An example

of |h(iTsam)|2 is shown in Fig. 2 for Lo = 6, the first tap

of the physical channel has zero delay, other five taps have

delay uniformly distributed over the interval 0 − 300ns, γn

are independent and identically distributed (i.i.d.), zero-mean,

complex Gaussian random variable with variances following

the multipath intensity profile φ(τ) ∼ e−τ/τrms , where τrms =
100ns, εo is a random variable uniformly distributed in [0, 1)
and f(t) is given by raised cosine filter (normalized with

Tsam) with β = 0.1. It can be seen that h(iTsam) can be

well represented by a sequence with finite length. Therefore,

(4) can be approximated by

rk
∼=

Le−L1−1∑
i=−L1

s(kTsam − iTsam)h(iTsam) + wk (6)

where Le and L1 are the total number of taps and the number

of taps for t < 0 in the approximated equivalent channel,

respectively. Note that the above approximation can be made

arbitrarily accurate by using large enough values of Le and

L1.

Let rn be a received-signal vector with N received samples1

rn = [rn rn+1 ... rn+N−1]T , (7)

where N = Tb/Tsam = 16 is the number of samples over

the span of a short training symbol b(t). Let bn = b(nTsam)
and gn = g(nTsam) be the nth samples of the short training

symbol and of the cyclic prefix, respectively. For Le − L1 ≤
n ≤ 9N − L1, rn is given by

rn = B(Le)
n+L1

ho + wn , (8)

where

B(L)
n �

⎡⎢⎢⎢⎣
bmod(n,16) bmod(n−1,16) . . . bmod(n−L+1,16)

bmod(n+1,16) bmod(n,16) . . . bmod(n−L+2,16)

...
...

. . .
...

bmod(n+15,16) bmod(n+14,16) . . . bmod(n−L+16,16)

⎤⎥⎥⎥⎦(9)

ho � [h(−L1Tsam) h((−L1 + 1)Tsam) . . .

h((Le − L1 + 1)Tsam)]T , (10)

and wn is a vector containing the noise samples with a

covariance matrix σ2
wIN (IN being the N×N identity matrix).

Similarly, the first received-signal vector for the cyclic prefix

is given by

rn = G(Le)
0 ho + wn for n = 10N − L1 (11)

1Throughout this paper, the notations (.)∗, (.)T , (.)H and ‖.‖ stand for
conjugate, transpose, conjugate transpose and Euclidean norm, respectively.
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where

G(L)
0 �

⎡⎢⎢⎢⎢⎢⎣
g0 b15 b14 . . . b16−L+1

g1 g0 b15 . . . b16−L+2

g2 g1 g0 . . . b16−L+3

...
...

...
. . .

...

g15 g14 g13 . . . g16−L

⎤⎥⎥⎥⎥⎥⎦ . (12)

For notational simplicity, we write B(L)
n and G(L)

0 as Bn and

G0, respectively, in the subsequent derivations.

III. SYMBOL SYNCHRONIZATION PERFORMANCE

CRITERION

Having established the system model, the next question

is how to define the “beginning” of an OFDM symbol.

For frequency flat fading channels, the starting position is

obvious and well defined. For Rician fading channel, it is

reasonable to define the symbol boundary with respect to the

first path. However, in a Rayleigh multipath fading channel

(e.g., the one shown in Fig. 2), the channel contains some

small taps at the beginning and the starting position of the

channel is not clear. It can be defined as the first non-zero

tap of the channel, as the first tap with energy larger than

a certain threshold, as the position of the strongest path or

any other definition. Because of this, the symbol boundary

of a received OFDM symbol is not well defined. Even if we

choose one of the above definitions as the reference position,

there is no guarantee that a certain synchronization algorithm

giving estimates close to the reference position would provide

good performance in OFDM systems. Moreover, in OFDM

systems, due to the existence of cyclic prefix, some timing

offset can be tolerated as long as the samples within the

FFT window are influenced by only one transmitted OFDM

symbol. Therefore, the criterion that the synchronization error

has to be within certain limits of a fixed reference point is

not an appropriate performance measure for OFDM systems

in frequency selective fading channels.

A more general and meaningful performance measure is the

loss in system performance due to the synchronization error.

With reference to Fig. 3, if the fast Fourier transform (FFT)

window starts at position nε, the signal at the sub-carrier k
after the FFT operation, zk, can be described as [19]

zk = ej2π(k/NF F T )nεα(nε)akHk + Ik + ηk , (13)

where ak, Hk and ηk are the data, channel transfer function

and noise sample at sub-carrier k, respectively, NFFT is the

number of FFT points in the OFDM system, which is 64

in IEEE 802.11a, α(nε) is the attenuation caused by the

synchronization error, which can be well approximated by [19]

α(nε) =
∑

i

|h(iTsam)|2 NFFT − ∆εi

NFFT
(14)

where

∆εi �

⎧⎪⎨⎪⎩
nε − i nε > i

i − N − nε nε < −(N − i)
0 otherwise

, (15)

and Ik is the ISI plus inter-carrier interference (ICI) term at

sub-carrier k caused by the timing offset, which can be well

approximated by Gaussian noise with power [19]

σ2
ε(nε) =

∑
i

|h(iTsam)|2
(

2
∆εi

NFFT
−

(
∆εi

NFFT

)2
)

. (16)

For a particular channel realization, the signal-to-interference-

plus-noise ratio (SINR) is given by

SINR(nε) =
α2(nε)E[|akHk|2]

σ2
ε(nε) + σ2

w

. (17)

Notice that for the special case that the equivalent channel

length is smaller than the length of cyclic prefix (i.e., Le < N )

and Le −N ≤ nε ≤ 0, then σ2
ε = 0, implying there is no ISI

and ICI. On the other hand, if the length of the equivalent

channel is larger than the length of the cyclic prefix, then

σ2
ε > 0, therefore some ISI and ICI occur. In this case, the

best we can do is to find a value of nε which maximize the

SINR. Noting that, due to (13), the SINR expression can be

rewritten as

SINR(nε) =
E[|zk|2] − σ2

ε(nε) − σ2
w

σ2
ε(nε) + σ2

w

. (18)

Since E[|zk|2] is a constant, maximizing SINR is equivalent

to minimizing σ2
ε(nε). Therefore, the “ideal” symbol synchro-

nizer should select nε such that σ2
ε(nε) in (16) is minimized.

In practice, the ideal symbol synchronizer is not realizable

since it requires the perfect knowledge of the channel real-

ization. However, the ideal symbol synchronizer can serve

as a reference to other practical synchronization algorithms.

For a particular realization of channel, let nε be the start of

FFT window estimated by a particular symbol synchronization

algorithm and nid be that from the ideal symbol synchronizer.

Then the loss of SINR, defined as the ratio of SINR obtained

from the ideal symbol synchronizer to that from the non-ideal

symbol synchronizer is given by

SINRloss(nε) � SINRid

SINR(nε)
=

α2(nid)[σ2
ε(nε) + σ2

w]
α2(nε)[σ2

ε(nid) + σ2
w]

. (19)

For a good symbol synchronization algorithm, the loss in

SINR with respect to the ideal synchronizer should be very

small. Similar to [5], we define a synchronization failure as

the event that the loss in SINR is greater than a tolerable

system degradation. That is,

Pf (∆γ) � P (10 log10(SINRloss) > ∆γ) , (20)

where Pf (∆γ) is the probability of synchronization failure

given that the tolerable system degradation (in dB) is ∆γ, and

P (.) denotes the probability of an event.

IV. PROPOSED SYMBOL SYNCHRONIZATION ALGORITHM

For the packet structure shown in Fig. 1, determining the

FFT window position for the OFDM data symbols actually

involves two major steps. The first one is to identify a reference

position (e.g., the transition form the short training symbol to

the cyclic prefix of the long training symbol in the middle
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of the preamble) such that all the subsequent transitions can

be predicted. We refer this step as frame synchronization.

The second step is to locate the FFT window position within

an OFDM symbol such that the ISI plus ICI introduced

is minimized, which we refer it as symbol synchronization.

Notice that in some cases, frame synchronization and symbol

synchronization are the same process. For example, if the

channel is frequency flat or the multipath channel is causal and

with total length smaller than the cyclic prefix of the OFDM

symbols, then the optimum position for the FFT window is at

nε = 0 [20] and symbol synchronization follows naturally

and immediately once frame synchronization is achieved.

However, for the channel shown in Fig. 2, which is non-causal

and the total length may be larger than the cyclic prefix of the

OFDM symbols, symbol synchronization is essential.

A. Frame synchronization

Suppose that the arrival of the preamble can be identified by

detecting the received-signal energy (e.g., using the methods in

[8] or [12]), the problem of detecting the transition between the

short training symbols and the cyclic prefix of the long training

symbols can be decomposed into two sub-problems. Let rn1

be a received-signal vector within the short training interval.

Since rn1 may not align with the beginning of a short training

symbol, the first sub-problem is to determine the current time

offset with respect to the last short training symbol and hence

predict the starting time of the next (expected) short training

symbol. Suppose this starting time is denoted by the time

index n2. After n2 is obtained, the second sub-problem is

to examine the incoming vectors rn2+qN , q = 0, 1, 2, ..., 10,

and to determine if they belong to a short training symbol or a

cyclic prefix of the long training symbol. The transition point

is declared at the time instant that the first rn2+qN belongs to

the cyclic prefix.

1) First stage: Assume that the received-signal vector rn1

is io samples (io ∈ {0, 1, ..., 15}) offset from the beginning

of the current short training symbol. The probability density

function (PDF) of the received-signal vector rn1 is

p(rn1 ;θ, i, L) =
1

πNσ2N
exp

{
− 1

σ2
‖rn1 − Bih‖2

}
, (21)

where2 θ � [�(hT ), �(hT ), σ2]T with h, σ2 and L being the

trial values of ho, σ2
w and Le, respectively. Note that Bi de-

pends on i and L (see (9)). It is not possible to jointly estimate

ho, σ2
w, io and Le by directly maximizing p(rn1 ;θ, i, L) since

(apart from the fact that the implementation complexity would

be extremely high) the largest possible L is always chosen

[17, p.223]. One criterion that gets around this problem is the

generalized ML rule [17, p.223], in which we maximize

Ψ(rn1 ; i, L) = ln p(rn1 ; θ̂, i, L) − 1
2

ln det(I(θ̂|i, L)) , (22)

where the second term is a penalty term that becomes more

negative as L increases. In the above expression, θ̂ is the ML

2Notations �(.) and �(.) denote the real part and imaginary part, respec-
tively.

estimate of θ [16, p.186] [17, p.222] (given i and L) and

I(θ|i, L) is the Fisher information matrix [16, p.525] of θ
(given i and L).

It can be proved that [21], the generalized ML rule (22) can

be simplified to

Ψ1(rn1 ; i, L) =

(−N + L + 1) ln ‖rn1 − Bi(BH
0 B0)−1BH

i rn1‖2 − ξ(L)
(23)

where ξ(L) � L ln 2 + ln
(
det(BH

0 B0)
)

is a function of L
only and can be pre-computed and stored in a look-up table

to reduce the real-time computational complexity. The first-

stage synchronization algorithm, which jointly estimates the

effective channel order Le and the delay io from the received-

signal vector rn1 , becomes

î, L̂ = arg max
i∈{0,1,...,15},

L∈{1,2,...,Lmax}
Ψ1(rn1 ; i, L) (24)

where Lmax is the maximum possible value of the channel

order. The starting position of the next expected short training

symbol is then given by n2 = n1 + 16 − î.
As discussed in Section III, since the starting position of

a frame is not well defined in multipath Rayleigh fading

channels, it is necessary to clarify what is the meaning of

estimated offset by maximizing (22). Let {î, L̂} be the set

of values that maximize (22), then î is the number of offset

samples from the beginning of the current short training

symbol conditioned that the number of paths of the channel

is L̂ and the offset is with respect to the first estimated

path. Notice that the generalized ML criterion (22) tends to

ignore the channel paths of small energy, therefore, L̂ < Le.

For example, in the channel shown in Fig. 2, the estimated

channel length from the generalized ML criterion is L̂ = 8
(−2 ≤ i ≤ 5) at SNR = 30dB.

2) Second stage: The second step is to determine the

smallest value of q such that rn2+qN belongs to the cyclic

prefix. This problem can be handled by Neyman-Pearson

(NP) detection approach [17, ch.3]. Let Hg and Hb be the

hypotheses that rn2+qN belongs to the cyclic prefix and the

short training symbol, respectively. In each test, the probability

that the received-signal vector belongs to the short training

symbol is the same as the probability that it belongs to the

cyclic prefix. It follows that n2 + qN is the point of transition

if the condition

p(rn2+qN |Hg) > p(rn2+qN |Hb) (25)

occurs for the first time, where

p(rn|Hg) =
1

πNσ2N
exp

{
− 1

σ2
‖rn − G0h‖2

}]
L=L̂

(26)

p(rn|Hb) =
1

πNσ2N
exp

{
− 1

σ2
‖rn − B0h‖2

}]
L=L̂

.(27)

Taking logarithm on both sides of (25), putting

ĥ = (GH
0 G0)−1GH

0 rn2+qN into (26) and ĥ =
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(BH
0 B0)−1BH

0 rn2+qN into (27), we find that n2 + qN
is the point of transition if

Ψ2(rn2+qN |Hg) > Ψ2(rn2+qN |Hb) (28)

where

Ψ2(rn|Hg) = rH
n G0(GH

0 G0)−1GH
0 rn

]
L=L̂

(29)

Ψ2(rn|Hb) = rH
n B0(BH

0 B0)−1BH
0 rn

]
L=L̂

. (30)

B. Position of FFT window

After the transition between short training symbols and the

cyclic prefix of the long training symbols is detected, we can

predict that the beginning of the first data carrying OFDM

symbol (the OFDM symbol for the signal field) is n3 � n2 +
q̂N +(32+2×64), where 32+2×64 is the number of samples

for the long training symbols. If the equivalent channel has

exactly L̂ paths, then the allowable range for the starting point

of the FFT window is {n3 + L̂, ..., n3 + N}. However, in

reality, it is expected that there are some channel taps with

small energy preceding and following the L̂ paths. With the

observation that the “head” and “tail” of the equivalent channel

have energy die down more or less at the same rate, it is

reasonable to set the start of the FFT window at

n4 � n3 + L̂ + 	(N − L̂)/2
. (31)

For subsequent OFDM symbols, the starting points of the FFT

window are then n4 + �(N + NFFT ) where � is a positive

integer.

Remark 2. It is interesting to note that the form of the

generalized ML rule in (23) is similar to the GAIC used

in [14]. However, there are several differences between the

algorithm proposed here and the one in [14]. First, our

proposed algorithm uses the short training symbols and the

cyclic prefix of the long training symbol to achieve frame

synchronization whereas the algorithm in [14] uses only the

long training symbol. Second, the observation-vector length

used in the proposed algorithm is 16 whereas it is 64 for

the one in [14]. Third, our proposed algorithm is developed

based on a time-domain approach while a frequency-domain

analysis is employed in [14]. Lastly, our proposed algorithm

considers a more general channel model than the algorithm

in [14] (see Remark 1 of Section II-A). Performance and

complexity comparisons between the proposed algorithm and

the technique of [14] are provided in the next section.

V. SIMULATION RESULTS AND DISCUSSIONS

Simulations are run in order to investigate the synchroniza-

tion performance of the proposed algorithm. Due to space

limitation, only limited results are presented in this paper.

More results can be found in [21]. The received samples are

generated according to (6) with L1 = 15 and Le = 36 so

that the range of index i in (6) is {−15, ..., 20}. This enables

the equivalent channel to be accurately represented (see Fig.

2). The channels are generated using the same parameters as

that of Fig. 2. The channel is fixed during each packet but

independent from one packet to another. Lmax is assumed

to be 12. n1 was treated as a uniform random variable over

[5N + 1, 6N ] in the simulation, and a value of n1 was

randomly generated in each run. For each simulation run, the

loss of SINR is calculated using (19), where the ideal symbol

synchronizer selects a starting point for the FFT window such

that (16) is minimized. The noise samples are i.i.d., zero mean

complex Gaussian random variable. Each point of result is

obtained by averaging over 104 Monte-Carlo runs.

The algorithm based on GAIC [14] is designed to detect

the transition between g(t) and c(t) in the preamble. Due to

the fact that the GAIC algorithm provides also an estimate of

the channel length, the FFT window starting position for the

first OFDM data symbol can be calculated in a similar way to

the proposed algorithm (see (31)). That is, the FFT window

starts at n̂GAIC +2×64+ L̂GAIC +	(N − L̂GAIC)/2
 where

n̂GAIC and L̂GAIC are the timing estimate and channel length

estimate from the GAIC algorithm, respectively.

Fig. 4 shows the probability of synchronization failure

Pf (0.5dB) as a function of SNR for the proposed algorithm

and the algorithm based on GAIC. It is obvious that both algo-

rithms have similar performances. Furthermore, the probability

of failures for both algorithms are very small. Notice that the

curves of Pf in general show an “U shape”. This is because at

low SNRs, the estimation is not accurate due to the high level

of noise, while at high SNRs, although the estimated positions

can be quite accurate, a small amount of shift with respect to

the ideal position leads to a large amount of loss in SINR (see

(19)).

Finally, we want to mention that although the performances

of the proposed algorithm is comparable to that of GAIC

algorithm, the complexity of the proposed algorithm is much

smaller. This can be explained as follows. Both algorithms

involve a least-squares fitting in the form of ‖r−Φr‖2, where r
is an observation vector in the time domain for the proposed

algorithm and is an observation vector transformed into the

frequency domain using FFT for the algorithm based on GAIC,

Φ is some square matrix depending on the parameters to

be estimated (compare (23) of this paper with (4) in [14]).

Since the observation length is only 16 for the proposed

algorithm while it is 64 for the GAIC algorithm, the number of

multiplications for the proposed algorithm in each hypothesis

test is 16 times less than that of GAIC algorithm. Taking into

account the fact that, for the proposed algorithm, the number

of hypothesis tests is smaller than that of the GAIC algorithm,

and there is no need to transform the observation vector into

frequency domain before least-squares fitting, the proposed

algorithm is at least 16 times less complex than the GAIC

algorithm.

VI. CONCLUSIONS

In this paper, based on the maximum-likelihood principle

and the preamble structure of IEEE 802.11a standard, a new

symbol synchronization algorithm for IEEE 802.11a WLANs
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over frequency-selective fading channels is proposed. A real-

istic channel model was employed, which includes the effects

of the physical channel, filtering and unknown sampling phase

offset. Loss in system performance due to synchronization

error was used as a performance criterion. Computer simula-

tions showed that the proposed algorithm exhibits comparable

performance to the algorithm based on GAIC, but the proposed

algorithm requires significantly reduced complexity.
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