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ABSTRACT

A very fast Smith-method-based Newton algorithm is introduced
for the solution of large-scale continuous-time algebraic Riccati
equations (CARESs). When the CARE contains low-rank matrices,
as is common in the modeling of physical systems, the proposed
algorithm, called the Newton/Smith CARE or NSCARE algorithm,
offers significant computational savings over conventional CARE
solvers. Effectiveness of the algorithm is demonstrated in the con-
text of VLSI model order reduction wherein stochastic balanced
truncation (SBT) is used to reduce large-scale passive circuits. It is
shown that the NSCARE algorithm exhibits guaranteed quadratic
convergence under mild assumptions. Moreover, two large-sized
matrix factorizations and one large-scale singular value decompo-
sition (SVD) necessary for SBT can be omitted by utilizing the
Smith method output in each Newton iteration, thereby signifi-
cantly speeding up the model reduction process.

1. INTRODUCTION

Solution of the continuous-time algebraic Riccati equation (CARE)
has long been an active research topic, perhaps the most promi-
nent applications of it are in Kalman filtering, H..-control, and
the linear quadratic regulator (LQR) problem [1]. Some standard
ways of solving a CARE include the eigenvector and Schur vec-
tor methods, the multishift algorithm, and the matrix sign function
approach (e.g., [1,2]). These methods rely on identifying the sta-
ble invariant subspace of the corresponding Hamiltonian matrix.
Alternatively, the Newton algorithm tackles a CARE by solving a
Lyapunov equation in each iteration step [1,3]. This approach is
characterized by its high numerical accuracy, but due to the lack
of guaranteed convergence, the Newton algorithm is mainly used
to refine an approximate solution from a more robust approach.
These methods, however, are general CARE solvers and do not ex-
ploit the low-rank nature of certain matrices in forming the CARE.
Consequently, the solution of a large-scale CARE is highly con-
strained by its computational complexity. In fact, numerical ex-
amples show that even solving a moderately sized CARE is com-
putationally intensive. Heuristic approaches are presented in [4] to
handle very large CAREs with low-rank and sparse matrices, but
theoretical basis and convergence proof are not available.

Our main contribution is a very fast Smith-method-based New-
ton algorithm, called the Newton/Smith CARE or NSCARE algo-
rithm, for the efficient solution of large-scale CAREs containing
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low-rank matrices. The algorithm is numerically stable via the use
of Krylov subspace method. Moreover, it requires one and only
one step of O(n®) work with all other steps being O(n?), thus
providing considerable savings over conventional solvers.

To demonstrate its effectiveness, the NSCARE algorithm is
applied in the model reduction of large passive' circuits. Specifi-
cally, in the context of VLSI synthesis, interconnect and package
modelings are critical as circuits are designed with ever-increasing
speed and complexity (e.g., [5—10]). Using methods such as sparse
tableau and modified nodal analysis (MNA) [11], the RLC in-
terconnect/package model extracted from a netlist often results
in an order not amenable to simulation or analysis. A class of
control-theoretic techniques, collectively known as the balanced
truncation, provides a way to reduce high-order models. Examples
of these techniques include the optimal Hankel-norm approxima-
tion [12], standard balanced truncation (BT) [7,13], and stochastic
balanced truncation (SBT) [8-10, 14, 15]. Major merits of these
approaches, in contrast to the traditional principle subspace pro-
jection (e.g., [5, 6]), are their superior accuracies and availability
of approximation error bounds [12, 15]. For a stable and passive
original model, balanced truncation automatically preserves stabil-
ity in the reduced-order model. SBT, among other balanced trun-
cation schemes, is of particular interest because it further guaran-
tees passivity which is necessary for correction simulation of the
reduced-order model [5, 16]. Consider a state space model of

= Az + Bu (1a)
y=Czx+ Du (1b)

Where A e %an’ B E §Rn><m, C e %an’ D e %me‘ B,
C are of low ranks, i.e., m < n, and u, y are power-conjugate?.
Using M > 0 (M > 0) to denote a positive definite (positive
semidefinite) matrix M, we assume (D + DT) > 0. For RLC
state space models, we also have A+ AT < 0[16]. By the positive
real lemma [16], a passive system (which is always true for pure
RLC circuits) is equivalent to the existence of a P € R"*", P =
PT > 0, satisfying the linear matrix inequality (LMI)

ATP+PA PB-CT
B'P-C —(D+D7)
Note that when MNA formulation is used for RLC modeling, we

have D = 0 and B = C7T. In this case, the system can be trans-
formed into an equivalent lower-order system satisfying the format

<0 @)

TRoughly, a passive system is one that does not generate energy.
2That is, for every component of u that is a node voltage (branch cur-
rent), the corresponding component of y is a branch current (node voltage).
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and conditions in (2) [9], so (2) will be assumed without loss of
generality. Using Schur complement, (2) is equivalent to

A"P+PA+(PB-CT)(D+D")'B"P-C)<0 (3)

The solution of (3) being zero is a CARE. Taking the matrix root
UUT = (D + DT)™! and defining B = BU, C = UTC, and
A = A — BC, the CARE is expressible as

F(Py=A"P+PA+PBB"P+C"C =0 @

The solution of (4), if it exists, is not unique. Among them there is
a unique stabilizing solution, P, in the sense that (A+ BB TPOO)
is stable [1,3] (i.e., all eigenvalues have negative real parts).

2. PRELIMINARIES

2.1. Stochastic Balanced Truncation

In SBT, the most reachable state with a given input energy, quanti-
fied by [u(t)"y(t)dt, is aligned with the state that delivers maxi-
mum energy to the output, quantified by — [ u(t)”y(t)dt [9]. The
least involved states are then truncated to give the best approximat-
ing low-order system in this energy sense. The alignment process
starts with solving the minimal and maximal solutions, P, and
Ppqz, to the LMI (2) such that equality holds. This is equivalent
to finding the stabilizing solutions to the two dual CAREs

ATPmin + sznA + PminBBTPmin + éTé’ =0 (521)
Ap, + Pl AT + Pl CTCPL, + BB =0 (5b)
Let P,;im = XXT Poin = YYT be any root decompositions
(X and Y can be of low-rank but are assumed to have the same

number of columns &, k < n, otherwise simply pad zero columns
to one of them). Now do the singular value decomposition (SVD)

xTy =uxzv?T (6)

where ¥ > 0 is a k-by-k diagonal matrix with singular values in
descending order. Suppose the singular values of 3 are

012022 20> 0p41 2 " 20 (7

Define I,,, to be the identity matrix of dimension m, O, x, an
m X n zero matrix, and

To=[1 O | 2VIYT (8a)
Tp = XUS "2 [ I ] (8b)
O(k—'r)xr

The system (T ATr, T1, B, CTr, D) represents the stochastically
balanced reduced-order model whose states are aligned in descend-
ing “energy-wise importance”. The best bound to date for the fre-
quency domain approximation error can be found in [15].

2.2. Newton Algorithm and the Smith Method

Advantages of using Newton algorithm in solving CAREs include
its quadratic convergence (once attained) and high numerical ac-
curacy [1,3]. Let P; be the current estimation of the solution, we

define Pjy1 = P; + 0P; where §P; is the search direction or
Newton step. Substituting P;; into (4) we get

F(Pj + 5Pj) = F(Pj) + (A + BBTP]‘)T(SP]'
+0P;(A+ BB P;) + 6 P;BBT 6 P; )

Every Newton iteration is a first-order error correction such that
the sum of the first three terms on the right of (9) is zeroed, i.e.,

(A+BB"P;)"6P; + 6P;(A+ BB"P;)) + F(P;) =0 (10)

This is simply a Lyapunov equation. After each step, (9) is left
with a quadratic residual term. So from the second step onwards,

F(P;)=6P;_1BB"6P;_, (11)

j = 1,2,---. The Smith method (e.g., [7-9]) provides a way to
solve (10) by transforming a continuous-time Lyapunov equation
into a discrete-time version having the same solution. For instance,
the following two equations solve the same W, :

ATW, + WA, +CTC, =0 (12a)
ATW,A, —W,+CIC. =0 (12b)
where A, = (pI + Ao)(pl — Ac)™%, C. = —/2pCe(pl —

AC)_l, p > 0 1is a shift parameter, and the subscripts ¢ and z stand
for continuous and discrete, respectively. Subsequently, W, =
> (ATYiCTC, AL. In practice we want to minimize the norm
of A, so the power terms decay quickly and the infinite summa-
tion can well be represented by finite terms. A good choice of
p to achieve this is p = /| Amaz(Ac)| [Amin(Ac)| [9], where
Amaz (0) and Ay (o) denote the maximum and minimum eigen-
values, respectively. An important observation is that W, is natu-
rally cast as a matrix factorization, namely, when the growth of the
summation decays to machine precision after k terms,

k—1

Woa Y (AD)'CTC.AL = K (AT,CTK(AT,CD)T (13)
i=0

=

where the factor Kx(A,B) = [ B AB AF'B ]is
called kth-order Krylov matrix. Application of the Smith method
in standard BT of VLSI models can be found in [7,9].

3. THE NSCARE ALGORITHM

Defining the Lyapunov operator £ 4 : R"*™ — R"*" as L4 (P) =
AT P + PA, the NSCARE algorithm that solves (4) is given here:

Algorithm 1 : NSCARE: Input ( A, B, C’, Po, max _itr, tol)

1. Find the shift p corresponding to A;

2. Compute ® = (pI + A) and ¥ = (pI — A)™*;

3. Solve for 6Py in L 4, g g p, (6 Po) + F(Po) = 0 with standard
solvers, or when Py = 0, solve L ;(§Po) + CTC = 0 using
Algorithm 2 with input (39T, (—=/2pC¥)T, max_itr; tol);

4. Setj=1;

5. while j < max_itr;

5.1 Set .PJ = I')j_l =+ (5Pj_1,'

528etT = BYP; and © = BT6P;_y;

5.3Set A, = (® + BT)(¥ + VB(I —T¥B)"'T'¥);
54 SetC, = —/2pO(¥ + WB(I —T¥B)"'T¥);
5.5 Solve for 6P; in L 4 5 (6P;) + ©7O = 0 using



Algorithm 2 with input (AZT, CZT, max_itr, tol);
5.6 if the Frobenious norm ||0Pj||p < tol
5.6.1Set Poo = Pj +6P;;
5.6.2 Break while loop and return Pso;
end if
578etj=3+1;
end while

Arnoldi and Lanczos algorithms [17] are numerically well-
conditioned algorithms to obtain the Krylov matrix in the Smith
method. We present only the Arnoldi algorithm due to space limi-
tation. The following codes assume a rank-one input B, but block
versions of the Arnoldi and Lanczos algorithms are readily avail-
able to deal with B, of arbitrary ranks (e.g., [5, 16]). In sum-
mary, the Arnoldi algorithm iteratively computes the k orthogonal
columns of Q; € R™**, an upper triangular matrix R, € R*¥**,
and an accumulation matrix Q € R™*" such that

° QiQr=1I
o Hy = QF A,Qy is a k-by-k upper Hessenberg matrix;

o Ki(Ap, Bp) = [ B, AyBp A';?_l Bp] =
Qr Ry is a QR factorization;

e ()i spans the range of Ky (Ap, Bp);
o Q= Ki(Ap, Bp)Ki(Ap, Bp)" = (QuRi)(QuRr)".

Algorithm 2: SmithLyapunov: Input (A,, By, max_itr, tol)
j=1

q1 = Bp/l|Bpll2; B=1; Q1 = q1; R1 = || Bpl|2;
H1 = [], Ql = BPBZ;;
while j < max_itr {
fori=1:j
hij = qf Apg;;
end .
rit1 = Apgj — i hijqi;
hlj
H]’ = Hj71 :
hj—1,;
[0 - 0 8] hjj
ifj>1
R;_ Rj_1(j—1
wj = Q;R;(:j);

Q; = Qi1 +wjw, ;
if (|lwjll2 < tol) break while loop;
end if
B = llrj+all2
if (B < tol) break while loop;
G+ = Tj+1 /0
Qini=[0Q;
J=Jj+1
end while
k = number of columns in R;;
Return Qk, Qk; Ry, and Hy,.

g1 |;

Several remarks are in order:

1. In practice the tolerance parameter, tol, in both algorithms
are set to a small value (e.g., the machine precision). In the first call
to Algorithm 2 (i.e., finding 6 Py or § P;, depending on the initial
Pp), the number of iterations is usually the highest, and then de-
creases in the following runs as quadratic convergence is acquired;

2. In Step 1 of the NSCARE algorithm, p is approximated
by first applying a Lanczos algorithm for & steps on A to obtain a
tridiagonal matrix T\, € R"***, k < n, whose eigenvalues closely
approximate those extremal eigenvalues of A. Thena simple (in-
verse) power iteration [17] is used to estimate the magnitude of
the maximum (minimum) eigenvalue of 7', so as to form p. The
initial Lanczos process has O(xn?) work and the power iterations
require O(x>) work (in our implementation, x = 50 and each
power iteration consists of 30 iterative steps);

3. In Steps 5.3 and 5.4 of the NSCARE algorithm, the matrix
inversion lemma is used to calculate (pI — (A + BBTP;))~! =
(' —BI)™! = (¥+WB(I-T¥B)"'T'¥). So the actual ma-
trix inversion is bypassed and the work involved is reduced from
O(n?) down to O(mn?);

4. Theoretically, for each P; update, the shift p should be
recalculated regarding the extremal eigenvalues of (A + B’BTPj ).
However, when P; is quadratically converging, the norm of § P; is
small and has little effect on p. Subsequently, the same p can be
used throughout the algorithm so that the matrix inversion lemma
can be utilized for low-rank updating of (¥ ' — BT")~1;

5. The one and only one step in the NSCARE algorithm that
requires O(n>) work is the finding of ¥ (Step 2). In case of sparse
matices wherein the inversion can be done with O(n?) work, the
whole algorithm will further reduce to an O(n?) algorithm;

6. Convergence analysis of the NSCARE algorithm follows
closely from those in [1,3]. To save space, the main results are
given without elaboration: i) for a stabilizing initial guess Py, the
subsequent Lyapunov operators in each Newton iteration are non-
singular and P;, j = 1,2, -, are also stabilizing; ii) 0 < --- <
P; < Pig1 < Poi i) 0 < [|Poo = Pisall < [P — PiI”
where + is a positive constant, i.e., convergence is quadratic once
P; falls into the region of convergence;

7. For a strictly dissipative system such as an RLC circuit
modeled to high fidelity, it can be shown that there exists a repre-
sentation such that strict inequality is satisfied in (2) with P = T
(c.f,, [8,9]). It follows that A is stable and the initial guess of
Py = 0 is stabilizing. Moreover, since 0 < P; < Py < I,
we have |P — Pj|| < 1, j = 0,1,---. In other words, un-
der the mild assumption of a strictly passive (dissipative) system,
quadratic convergence of the NSCARE algorithm is guaranteed;

8. Suppose (5a) is solved with the NSCARE algorithm in N
Newton steps with Py = 0. Let the stabilizing solution be Py,in, =
P, and the number of iterations in each call to Algorithm 2 be k1,
ko, -+, kn,and k7 = k1 + k2 + - - - + kn. Then in terms of the
output of Algorithm 2, Prin = SN ((Qr; R, ) (Qu; Ri;)” =
(Qrr R, )(Qip Re,)" where Qry = [ Qi Qky ]and
Ry, = diag(Rk,, - ,Rry ). Thus referring to (6), a factor of
Py is given by Y = Q. Rip- The factor X of P., is ob-
tained in a similar way. In practice N < 5 and kr < 100 re-
gardless of the CARE size, thus only a moderately sized (< 100)
SVD is needed even for high-order initial models. As a result, the
NSCARE algorithm helps to completely elude two large-sized ma-
trix factorizations and one large-scale SVD in the traditional SBT
implementation.

4. NUMERICAL EXAMPLES

We study randomly generated strictly passive systems, with A +
AT < 0 and rank-one B, C, satisfying the conditions in (1)-(4).
CAREs of various orders are formed and the NSCARE algorithm
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Fig. 1. CPU time measurements of various solvers.

is tested against common solvers of O(n®) complexity. They in-
clude the Newton algorithm with and without line search, and the
MATLARB functions ARE and CARE implementing the Schur vec-
tor and eigenvalue methods, respectively (see [1, 3] and the ref-
erences therein). Numerical experiments were done in MATLAB
on a 1.8GHz 512MB-RAM notebook with other applications run-
ning. The CPU time for solving a single CARE is shown in Fig.
1(a). It is seen that the NSCARE algorithm can easily handle
CARE:s of order as high as 1500, while other solvers face computa-
tional difficulty well below 1000 (at the order of 800, the NSCARE
algorithm is at least 10 times faster). Fig. 1(b) shows the CPU time
for realizing SBT. As outlined in the remarks, significant compu-
tational saving is possible by utilizing intermediate outputs of the
Smith method. For example, at the order of 800, the NSCARE
algorithm is 17 times faster than the next best candidate. These
results confirm the effectiveness of the NSCARE algorithm both
as a CARE solver (when convergence can be sought), and as a
particularly powerful tool for carrying out SBT model reduction
of large-scale passive systems such as the RLC circuits frequently
encountered in VLSI synthesis.

5. CONCLUSION

This paper has introduced a very fast NSCARE algorithm for solv-
ing continuous-time algebraic Riccati equations (CAREs). It ex-
ploits the low-rank nature of the input and output matrices com-
monly found in physical state space models. The algorithm is
generic in nature but guaranteed convergence can be proven, with
mild assumptions, in the context of stochastic balanced truncation
(SBT) of large-scale passive models. We have also demonstrated
how two large-sized matrix factorizations and one large-scale sin-
gular value decomposition (SVD) necessary for SBT can be com-
pletely avoided. This has rendered the NSCARE algorithm highly
efficient both as a CARE solver and as a versatile tool for perform-
ing SBT. Numerical examples have confirmed the effectiveness of
the NSCARE algorithm over conventional CARE solvers.
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