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Abstract-- This paper presents an approach to estimate the
Critical Clearing Time (CCT) of the multi-machine power
systems based on the quadratic surface which approximates the
boundary of stability region relating to the controlling unstable
equilibrium point. A decomposition method is developed to
obtain the coefficients of the quadratic approximation surface.
The CCT is determined by the crossing point of the quadratic
surface and the continuous faulted trajectory. Simulations in
IEEE 9-bus and New England system show the effectiveness of
the proposed approach.
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I. INTRODUCTION

IN the power system transient stability assessment (TSA),
the concept of stability region (attraction region) and

Controlling Unstable Equilibrium Point (CUEP) has been well
recognized [1-6]. The boundary of the stability region for the
power systems are composed of the stable manifolds of the
unstable equilibrium point on the boundary [7], the CUEP is
the unstable equilibrium point whose stable manifold is
crossed by the continuous faulted trajectory. The CCT is
determined by the crossing point of the stable manifold of the
CUEP and the continuous faulted trajectory. Thus the
description of the stable manifold of the CUEP plays an
important role in TSA, various approximations to the stable
manifold have been proposed. One way is to use the equal
energy surface[8]-[13], which is determined by certain
transient energy function, these approximations may always
give out good results but have limitation for the non-existence
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of transient energy function for general power system models.
Another way is to obtain truncated approximations by
applying the Taylor series expansion or the normal form
method to the partial differential equation describing the
stable manifold of the CUEP. With the idea of Taylor series
expansion, ref. [14] obtained the hyper-plane approximation
using the first order term and ref. [15] derived a hyper-surface
approximation using the second order term. Recent work [16]
also presented a quadratic approximation, but it lacks
theoretical justification and need the energy correction
procedure. Based on the extension of Poincare's classical
result on normal formal theory to approximate the stable
manifold, the early work [17] first proposed an algorithm to
compute relevant coefficient of stable manifold in power
series presentation. The work [18] originally used the normal
form to compute the boundary of stability region, it got the
exact series representation of the stable manifolds
characterizing the stability boundary. This series can be
computed recursively. However, no numerical tests have been
conducted. With the real normal form, ref. [19] obtained the
second order approximation for the stability region boundary,
but this method requires the computation for all the
eigenvectors and eigenvalues of the Jacobian matrix, which
results in burdensome computation. To improve the normal
form computation, ref. [20] presented another method to
calculate the quadratic approximation based on similarity
transformation which avoiding the computation for all the
eigenvectors, unfortunately, this approximation is not correct
[21]. The above normal form approximations are based on the
implicit equation which describing the stable manifold in a
new coordinate. Recently, Cheng and Ma et al. [21,22]
discovered the explicit equation which describing the stable
manifold of type-i equilibrium point in the original coordinate.
Furthermore, they presented a quadratic approximation for the
stable manifold of CUEP, which is the same as the hyper-
surface proposed in [15]. This paper applies the proposed
quadratic approximation to determine the CCT of the multi-
machine power systems with the network-reduced structure.
While obtaining the coefficients of quadratic approximation,
we explore the special structure of the model and develop the
decomposition method to reduce the computation. The
estimated CCT is determined by the crossing point of the
quadratic surface and the continuous faulted trajectory. The
simulations in IEEE 9-bus and New England system show the
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effectiveness of the proposed approach.
The remainder of the paper is organized as following:

Section II presents the quadratic approximation for the stable
manifold of type-I equilibrium point. Section III develops the
decomposition approach to calculate the coefficients of the
quadratic approximation to the stable manifold of CUEP for
the multi-machine power systems which having the network
reduction model and uniform damping. Section IV applies the
proposed approach to different systems. Section V gives out
the conclusions.

II. QUADRATIC APPROXIMATION OF STABILITY REGION

Consider a nonlinear autonomous dynamic system
described by the following differential equation defined on a
manifold M,

x = f(x) (1)

where f,x e Rm, fe C2 . An equilibrium point is a
solution of the equation f(x) = 0. A hyperbolic equilibrium

point is an equilibrium point at which the Jacobian Djf has
no zero real part eigenvalue. A type-k equilibrium point is a
hyperbolic equilibrium point at which k eigenvalues of Dxf
are having positive real parts. A hyperbolic stable equilibrium
point x5 of system (1) is an equilibrium point at which all the

eigenvaules of Dxf (the Jacobian of the vector field) have
negative real parts. The flow (or the solution with an initial
state x ) of system (1) is expressed as:

(Pt (x) = 0)(X, t) (2)
The stable manifold of a hyperbolic equilibrium point

x0 is the set of all those points from each of which the flow

will converge to x0 as time approaches positive infinite, i.e.

Ws(xo) ={x limi(x,t) =xO} (3)
t-*oc

If Xs is a hyperbolic stable equilibrium point for the

systemV I VI, then V(xs ) = Ws (xs ) is the stability region

of the hyperbolic stable equilibrium point xS.
Under certain hyperbolic assumption for the autonomous

system (1), the boundary of the stability region aV(xs) is

composed of the stable manifolds of the unstable equilibrium
points on the boundary of the stability region [5], that is

av(Xs) = UWS(Xe) (4)
Xe FEaV

Furthermore, the stable manifold of a type-i equilibrium
point xe can be described as following set [21,22]

WS(Xe) = {xT ( (5)

where ,u is the unique unstable eigenvalue for the Jacobian

matrix J = Df (x) X=Xe at xe,
Expanding the right side of equation (1) around the point

xe, we obtain

(X-Xe)THI(X-Xe)12
f(x) = f(Xe) + J (x Xe) + .+ .. .

(6)

where Hi is the Hessian matrix of the function fi at the point

Xe i.e. H a= . Then we can obtain the
L xk axI mxm

quadratic approximation for the stable manifold of the type-i
equilibrium point xe as following [22]

hQ (X) = [X-Xe]Iq + [IX-Xe ]T Q[-X-Xe]/2 (7)
where 11 = (7,**, rim )T is the left eigenvector for the
Jocobian matrix, which satisfies

JT 11 = Pui (8)
and the quadratic coefficient Q satisfies the following
Lyapunov matrix equation

CQ +QCT =H (9)
m

where the matrices C = (pInm /2-JT), H=3iiHi1
i=l

Im is them x m identical matrix.
There are a variety of methods for solving the Lyapunov

matrix equation [23]. Two most efficient methods are the
Schur method [24] and Hessenberg-Schur method [25]. The
explicit unique solution of Lyapunov matrix equation (9) is

Q=VC l[(C Irn + Imn &C)-l V,(H)] (10)
where V, is the column stack mapping [26,p.5], which

satisfies VJbB) = (bjjn mm)T

for any the m xm square matrix B = (bij)mxm, and 0 is

the Kronecker tensor product, which satisfies
(a B a1B)

A ® B= for any s x t matrix

\aSIB ..astB,
A = (aij)sxt and kx I matrix B = (by)kXl

III. APPLYING QUADRATIC APPROXIMATION TO MULTI-
MACHINE SYSTEM

We review the classical model for transient stability
analysis. Consider a power system consisting of n generators.
Let the loads be modeled as constant impedances. Using the
#n machine as reference. Then dynamics of the k-th generator
can be written with the usual notation as
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gkn fk OkCo =Co ,kn-
0kn fk+n-I = -dokokn + gk (8l,nn 8n-I,n)

(11)
where gk =(Pk IP k)/2Hk (Pmn Pen )/2Hn
do =Dk / 2Hk (k = 1, , n) is uniform damping. Dk and

Hk are damping ratio and machine inertia of machine #k,

Ek
~~~n

={E/Gkk + Ek (Z EJ (Gkj cos okj + Bkj sin 0k5)) a mk
j#k

are the electrical and mechanical power at machine #k,
respectively. Skj = Sk - j ^, Sk is the rotor angle of machine #k,

Ek is the constant voltage behind direct axis transient

reactance of machine #k. co = 2KsB Y = (Gxj + jBj)nxn iS
the reduced admittance matrix. For an n -generator system,
the number of state variable is 2(n - 1) .

Let x =(I,To )T = ((1I,n. I* n-I,nlCIn . In )T
g = (11...IgnI)T, and J0 =D6g , then the Jacobian

matrix at the equilibrium point (06 ,oT )T of system (11) is

FO(n-1) COIO1 1 (12)

w i th ( n-1) (2n-2)x(2o-2)
where matrix 0(n-1) iS the (n - 1) x (n -1) matrix of zeros.

equation (9), also satisfies the following equations

JoQ2 + Q2Jo -aQ2 +b(JQ2 +J 2Q)
k-I

= -1 ,8,Ni = No
i=1
Q4 =t0 /(2do +jT)(Q2+Q )

Q1 [(d0 + P)Q2 Jo Q41]/ 0

(17)

(18)

(19)

where a = p(do + ,u) / co, b = p(2do + p). The solution
of equation (20) is

= Vc{X[(1 + b)(JOT ITl1)J'V l] + I_ ® J0Q2 (o In-I)W[n-1 + In-I (o JO(20)
- aI(n_1)2 + bJoT ( In- _1] Vc(NO)I

where the matrix Wln-1] is the swap matrix ([26,p.5]), whose

elements are zeros expect the elements at
(i +(j -1)(n-I), j +(i -1)(n -1)) i,j = 1*,n-1
are all taking the value 1.

Thus we obtain the quadratic approximation for the
stability region of multi-machine power system with the
CUEP ((5e)T (W,e)T)T

hQ(6,w) = aT(6 _6e) + flT( e)+

(21)
(6 6e)TQ2( e) +

Assuming A0 is the unique unstable eigenvalue for

matrix J0 , and fl0 is the corresponding left eigenvector,

then the unique unstable eigenvalue ,u of the matrix J
satisfies

u=-do /2+ d /4+>p0 (13)

and its corresponding left eigenvector is

[#]~~~~~d+Vd+)+ ) A)040 (14)

Remark: Equation (13) and (14) implies that the
unstable left eigenvector of the (2n -2) x (2n -2) matrix

J can be derived by the unstable left eigenvector of the

(n -1) x (n -1) matrix J0 .

At the CUEP, the Hessian matrices of fk are

Hk =0(2n-2) k =1, ,n -1 (15)

[+(n 1) (n-1) ](2n-2)x(2n-2)

(16)

Thus the quadratic approximation coefficient

=LQl Q] , which satisfying the Lyapunov matrix

( _e)TQ (wO-we))/ 2
Once obtaining the quadratic approximation for the

stability region of the post fault system we can estimate the
CCT with the continuous fauted trajectory, i.e., identifying the
time satisfying hQ (6(t), co(t)) = 0 , which is the time

corresponds to the continuous trajectory intersecting with the
quadratic approximation for the stable manifold.

IV. SIMULATION RESULTS

This section applies the proposed approach in section III to
estimate the CCTs of faults in SMIB, IEEE 9-bus system and
New England system.

A. Single Machine One Infinite Bus System

jo. 15 jo.5
E Dj0'.93

V2 = 0.90081/0
Fig. 1. Single-Machine-One-Infinite-Bus System (SMIB)

The approximation method proposed above has been
applied to a SMIB system (Fig. 1.) Complete data for this
system can be found in [27, p.844] except that the damping
term with D =0 was added to the generator. The line 2
( XL2 = 0.93 ) experiences a solid three-phase fault at the
sending terminal of the high voltage side. The fault is cleared
by isolating the faulted line.
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Fig.2 Mechanism of CCT Estimation by Stability Region Approximations

With the simulation time step being 0.001s, the time
domain numerical integration method shows that the actual
CCT is 0.086s, the quadratic approximation gives out a

conservative estimation 0.084s, and the linear approximation
gives out an over-estimated estimation 0.128s. Fig.2 shows
the mechanism of estimating CCT with the approximations for
the stability region. In Fig.2, the continuous faulted trajectory
intersects the approximated boundary of stability region at the
estimated CCTs, the quadratic approximation is slightly
conservative at the exit point, thus, its estimation is accurate
while the linear approximation is seriously over-estimated and
its estimation is poor.

B. The 3-Generator 9-Bus System
The simulation results in this subsection are based on a 3-

generator, 9-bus power system, which is an IEEE test system
[28, p.38]. The system is showed in Fig.3. The types of faults
are three-phase faults. The system are modeled by the
network-reduction model with classical generators having the
uniform damping do=0. 1661. The time step adopted in the
simulation is 0.0005s.

{ 9 3

1~~~ ~ ~ ~ ~ ~ ~~~__________ 1

fG G
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Fig.3 IEEE 3-Generator and 9-bus System.

Table I displays the estimated CCTs of six faults using five

different methods: the time-domain numerical integration

method (T-D), the quadratic and linear approximation of

stability region, the BCU method [13] and the PEBS method

[10]. The results from the time-domain numerical integration

method are used as a benchmark. For example, the last row of

table I states that a three phase fault occurs at bus 7 and the
post fault system is the system with the transmission line
between buses 7 and 5 tripped, due to the openings of circuit
breakers at both ends of the line. The CCT estimated by the
time domain simulation is 0.2025s, the CCT estimated by the
quadratic approximation method is 0.1990s and the CCT
estimated by the linear approximation is 0.2595s, and the CCT
estimated by the BCU and PEBS method is 0.2075s and
0.2195s, respectively.

TABLE I
CCTS FOR FAULTS OF IEEE-9 Bus SYSTEM (Do=O. 166 1)

D@ Oundait1c Llna BFEt3 IBS
_4 4_ I

4- iQ_
___ -____ I Lu4 ..I~ 4iS . 3t. 1114 z1. XI4il o.4L

g5 M5__ I

|>6).@2s %1"'| -l lg-3-Xs>'ii
0.215

I_31 __
0

Table I demonstrates that the proposed quadratic
approximation method offers fairly accurate direct analysis of
transient stability for these faults. The quadratic
approximation gives out slightly over-estimated or
conservative results in estimating CCT, which is agree with
the engineer requirements as BCU and PEBS methods, while
the linear approximation gives out over-estimated and
impractical results (which may exceed 28%). This suggests
that the quadratic approximation is also a good alternative to
estimate the CCT.

C. New England System
The simulation results presented in this subsection are

based on a 10-generator, 39-bus New England system [1]. The
types of faults are three-phase faults with fault location both at
generator and load buses. The system is modeled by the
network-reduction model with classical generators having the
uniform damping do=0.2. The time step adopted in the
simulation is 0.001 s.

Table II and Table III display the estimated CCTs of
different faulted system using five different methods: the
time-domain numerical integration method, the quadratic and
linear approximation of stability region, the BCU method [13]
and the PEBS method [10]. The results from the time-domain
method are used as a benchmark.

TABLE II
CCTS FOR GENERATOR BUS FAULTS OF NEW ENGLAND SYSTEM

CC1M B1Xefattoiki bi dftri amrihaih jid D1OviAH1,

1) QEuadritic Ln ~~ B t, FE_BS__
(InM-- tI,3 9a1 I -I D1 611 SE
-(SmS @ Ia. I[6 . 0'L I] -1nE:. I94O'7'mM

...........|

(t3.D-H1)|IZO1_Dm Z I |_A|3_|r|fi! 1|IfiE%|@n 0f[]2P lMU A

1 M 4. 3 E .45 .

CWI d4 IL i 1i d ti'

Table II demonstrates that the proposed quadratic
approximation method offers not quite accurate direct analysis
of transient stability for some faults at the generation buses.
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The deviations of the CCTs obtained by the quadratic
approximation method may be 20% or so, and the deviations
of the CCT obtained by the linear approximation method are
too serious to use. This suggests that the quadratic
approximation may be not a good alternative to estimate the
CCTs of the faults located at generator buses.

TABLE III
CCTS FORNON-GENERATOR Bus FAULTS OF NEW ENGLAND SYSTEM

CCI Etltntl(ii:wod vdffrqtiehd n t i-
..........................................

_1............................

1.314
&09 _A9 18 MP* l

.................................. ...................... .................. . ..................WE0SESuuNiiSESE0SESESuSE0SESESWESESu'00-SE0SEu1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,........................................................................
jigy" O .OV 45, O MP"i 5 cJi=f

Table III demonstrates that the proposed quadratic
approximation method offers fairly accurate direct analysis of
transient stability for faults located at non-generator buses.
The quadratic approximation gives out slightly conservative
or over-estimated results in estimating CCT, the deviations are
about 5%0, while the linear approximation gives out much
more over-estimated results (deviations range form 20% to
80%), and the BCU and PEBS methods may give out results
with great large deviation. This suggests that the quadratic
approximation method is a good alternative to estimate the
CCTs of the faults located at non-generator buses.

V. CONCLUSIONS

This paper applies the quadratic approximation of the
stable manifold to approximate the boundary of stability
region for the multi-machine power systems with network-
reduced model, furthermore calculates the CCT. In obtaining
the coefficients of quadratic approximation, we explore the
special structure of the model and develop the decomposition
method to reduce the computation. The CCT is estimated by
the time corresponds to the continuous trajectory intersecting
with the quadratic surface approximation for the stable
manifold. The simulations in the 9-bus system and New
England system show that the proposed approach could give
out fairly good estimation for the CCT of median-size power
system, while the simulation results in large-scale systems are
still need to be developed.
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