
Abstract — In this paper, we propose an architecture for
providing distributed Certificate Authority (CA) service
in Mobile Ad Hoc Networks (MANET), based on
threshold cryptography. We have two major
contributions: 1) we make use of the cluster structure to
provide CA service, and design a scheme for locating
CA server nodes in MANET; 2) we provide a proactive
secret share update protocol, which periodically updates
CA secret shares with low system overhead. Compared
with existing approaches, our CA architecture provides
faster CA services to user nodes at reduced system
overhead.

Index Terms —Mobile ad hoc network, PKI,
threshold secret sharing, cluster-based architecture,
proactive update, distributed CA services.

1. INTRODUCTION

MOBILE Ad Hoc Network (MANET) is a self-
organized wireless network without

infrastructure. With the increasing popularity of
MANET, its security issue has drawn greater
attention.

Public Key Infrastructure (PKI) [8] is a widely
used security mechanism in communication networks.
In PKI, each entity has a public and private key pair.
There is a trusted-by-all centralized authority, called
Certificate Authority (CA), for key management. The
CA has a public and private key pair, and signs public
key certificate (PKC) for each user’s public key using
its private key. The PKC signed by the CA can then
be used as a validity proof for the public key of the
user. The CA is also responsible for PKC update or
renewal, and revocation.

PKI has been considered as the foundation of
security services in MANET, since it is efficient in
key management and distribution, and is convenient to

achieve authentication and no-repudiation. However,
there are challenges to implement PKI in MANET.
The conventional single-CA architecture in PKI will
obviously suffer the single point of failure problem.
Further, in the mobile environment of MANET, how
to locate the CA is a non-trial issue, which may
involve much communication overhead.

In [1], a decentralized CA method is proposed to
solve the single point of failure problem, which
distributes the functionality of a single CA to a set of
nodes by secret sharing and threshold cryptography.
Then any CA service has to be performed jointly by t
CA nodes, where t is called the threshold of the
secret sharing. In this way, even if an attacker has
discovered the secret shares of more than one but less
than t CA nodes, the attacker still cannot recover
CA’s secret key. However, the above threshold secret
sharing scheme still fails when the shares of more than
t CA nodes have been discovered by the intruders
over a sufficiently long period. To enhance security,
schemes using proactive share update [2], [9]-[11] has
been proposed [1], in which a new set of shares are
computed after a certain time interval. Therefore, an
attacker has to complete the attack within this interval;
otherwise all efforts are in vain after the shares
change.

There are still unsolved issues with this distributed
CA and proactive update scheme. First, the CA
locating problem becomes aggravated, since a user
node has to find t CA server nodes, much more
difficult than finding one. Schemes such as flooding
[7] are not viable since it will consume too much
network resource. Second, efficient update of the
secret shares in all CA nodes is not trivial. Although a
scalable update scheme has been proposed in [5], it
assumes every node is a CA and each node has at least
t neighbors, which are unrealistic in MANET.

Providing Distributed Certificate Authority Service in
 Mobile Ad Hoc Networks

Y. Dong1, H. W. Go2, A. F. Sui2, Victor O. K. Li1, Lucas C. K. Hui2, S. M. Yiu2

1Department of Electrical and Electronic Engineering
The University of Hong Kong, Hong Kong, China

{ydong, vli}@eee.hku.hk
2Department of Computer Science

The University of Hong Kong, Hong Kong, China
{hwgo, afsui, hui, smyiu}@cs.hku.hk

A

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

Although the CA location problem is solved by this
approach, attackers are also alleviated with the
concerns on which node to attack: they can attack any
more than t nodes since every node is a CA.

In this paper, we have two contributions in
resolving the above issues. First, we propose a
clustering architecture for the organization of
MANET, in which nodes are grouped into clusters.
Each cluster has a cluster head (CH), through which
CA server can be quickly located. Second, we devise a
distributed secret share update scheme utilizing the
sequential share update scheme proposed in [5]. By
utilizing the information at CHs, secret shares can be
quickly updated. From analysis and simulation, we
show that our approach is able to achieve good service
availability and quick CA response time, at reasonable
communication overhead. Further, since the CAs in
our scheme is confined to a subset of the total node
population, the system security is enhanced compared
to the case when all nodes have a secrete share [5].

The rest of the paper is organized as follows. In
Section 2, we describe the system architecture.
Section 3 presents the PKC scheme. Section 4 shows
the details of the CA share update process. Analysis
and discussions are presented in Section 5. Simulation
results are provided in Section 6. Conclusion is given
in Section 7.

2. SYSTEM ARCHITECTURE

We consider a mobile ad hoc network with N nodes,
structured into clusters. In this paper, we do not
specify any rules for cluster formation, since it is a
separate issue and has been treated in work such as
[6]. At the inception of the network, we assume that n
CA nodes have been selected.

We select a cluster head (CH) for each cluster,
based on the following rules: 1) when there is at least
one CA node in the cluster, the CH has to be a CA; 2)
when there is more than one CA in the cluster, the CA
node with the smallest ID is chosen as CH; 3) when
there is no CA in the cluster, an arbitrary node can be
CH. Specifically, for a CH satisfying rule 3), the CH
is only delegated to managing and distributing CA
information, but will not participate in the CA share
update stage. Therefore, in later discussions on share
update, the participating CHs have to be selected
based on rules 1) and 2).

When a user first joins the network, we assume it
has been authenticated [4]. With this authentication,

the user will approach the CA server nodes for issuing
a digital PKC.

We assume an attacker can only obtain the secret
share possessed by a CA node by observing the
signatures signed by the CA. However, the attacker
cannot hack into any CA node. Thus, if the secret
share is changed, the attacker will not automatically
obtain the new share. We also assume the information
exchange between CAs is secured by the CA
signatures.

3. SCHEME FOR PROVIDING PKC SERVICE

In this paper, we consider the problem of how a user
can obtain the PKC after joining the network. We
adopt the (,)t n threshold scheme for the issuing and
renewal of the PKC. In such a scheme, t out of n CA
nodes are selected for the joint signing of the PKC.
Therefore, for a user to obtain a PKC, it is equivalent
to finding at least t CA servers for the certificate
service.

A.CH-Assisted CA Locating Scheme
We devise a cluster-based scheme for locating CAs.
The notations used in our scheme are summarized in
Table 1.

t Threshold
iCH cluster head of cluster i

iU user in cluster i

iN the number of CA nodes in cluster i

(,)B i j the number of CA nodes in 'si
neighboring cluster j

 Table 1: Notation of CH-assisted CA locating scheme

In our scheme, each CH maintains a CA
information table (CIT), which contains a list of the
CA nodes in its local cluster, and probably the CA
information in other clusters. The procedure of
locating CAs is as follows.
1. When iU wants to locate at least t CAs, it sends

a request to iCH CA Information (CI).
2. iCH collects CA distribution information, and

passes it to iU (to be explained below).
3. iU selects t CA server nodes according to CI

provided by iCH , and sends renew request
RENEW_REQ or new certificate request
NEW_REQ messages to CAs. iU either specifies
the set of signer by passing the selected CA server

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

list to each one, or does not specify the set by
using dynamic coalescing scheme proposed in [5].

4. iCH combines the responding t partial
signatures to generate the complete signature.
In Step 2, there are several possibilities when

iCH collects CI.
1) When iN t≥ , there are enough CA in cluster i

for CA service. Therefore, the CI sent to iU contains
the IDs of the CA nodes in the cluster.

2) When iN t< , there are not enough CA in
cluster i . In this case, CA in other clusters will have
to be used. We require iCH should periodically
request its neighboring CHs to provide the number of
CA in their own clusters. The interval of such a
request is directly determined by the topology
dynamics in a neighboring cluster. We further
consider two sub-cases.
Case a) (,)i

j

N B i j t+ ≥ , i.e., there are enough

CAs in cluster i plus its direct neighboring clusters.
Then iCH records in the CIT both the CA ID in
cluster i and (,)B i j . It is up to the user to contact the
CH of a direct neighboring cluster for CA ID.
Case b) (,)i

j

N B i j t+ < , i.e., the number of CAs in

both cluster i and its direct neighbors is not enough
for the CA service. Upon receiving a user request,

iCH will send a request message to all other CHs, and
each CH receiving the request message responds with
a message indicating the number of CA in its cluster.
This can be viewed as flooding within the CHs. It is
obvious that the overhead is constrained when
compared to the conventional flooding method.

Since the CA information could be piggybacked
with the cluster management information (such as
routing packets, cluster membership exchange, etc.),
communication overhead can be correspondingly
reduced, as discussed in Section 5.

4. CA SHARED SECRET UPDATE

A.Scheme Overview
In our scheme, the CA services need to be performed
by at least t server nodes. This alleviates the problem
of single point of failure. To further enhance security,
we require the shared secrets are updated periodically,
as proposed in [5].

In this paper, we make use of the idea of
sequential update proposed in [5]. However, this

scheme is designed for share updates within one-hop
neighborhood. For our cluster-based system, the
scheme in [5] cannot be directly applied without
modification. In this section, we propose a secret
share update scheme for our cluster-based system. The
process is composed of three phases: 1) update
initialization; 2) update procedure; 3) update
propagation. In the following we describe the details
of the three phases.

B.Share Update Scheme
1)Phase One

We assume the MANET is coarsely synchronized
among all the CAs. By “coarsely”, we mean the CA
clocks are within the accuracy of seconds (or even
sub-seconds) relative to the “true” time. This
assumption is reasonable in MANET [13]. All CAs
maintain an update schedule, which specifies the time
at which a share update should start.

At the inception of the update, at least t CAs
should participate in the derivation of new secret
shares, which is called new share initialization. It is
after the initialization that the shares on other CAs can
be updated based on this initial group of shares.
Obviously, it is necessary to have one and only one
initialization; otherwise the system will have multiple
initial share groups, which will eventually lead to
conflicts during the update process.

Thus, the goal of phase one (update initialization)
is to ensure that there is indeed one initialization node
group within the whole system. It is equivalent to
finding one CA node, which will form a group with
(no less than) t CA server nodes. To achieve the
above design goal, we adopt the following measures.

A) We require that only a CA-CH node (a CA
node that is also a CH) should be eligible as an
initiator, in order to narrow the field of competition.
To initialize the update, a CA-CH node will broadcast
an initialization message to all other CA-CHs. This
message contains the update request, and the ID of the
sending CA-CH.

B) We adopt a random backoff scheme to further
reduce the probability of multiple initializations. More
specifically, a CA-CH will only broadcast the
initialization message after a random backoff period.

The length of random backoff period is
determined as follows. For a CA-CH node iCH , it
will choose in a uniform manner an integer iW from
the range []0, iCW , where iCW is the contention
window size. Then the node enters the backoff state,
and waits for i dW T× seconds before broadcasting the

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

initialization message, where dT is the time slot size
common to all CA-CHs.

During the backoff period, iCH will monitor the
received messages. If it receives any initialization
messages from other CA-CHs, the backoff state is
aborted, and the node prepares for share update. After
the completion of the backoff period, if the node
receives no initialization messages, the node sends an
initialization message, which is to be flooded among
all CA-CHs. Since the flooding is only confined in
CA-CHs, the involved overhead is constrained, even
for large MANETs. Since different CA-CHs may
choose different iW values, it is likely that such a
difference in backoff period will prevent many CA-
CH nodes from transmitting initialization message.

The backoff period is determined by two
parameters, dT and iCW . The selection of an
appropriate dT should be related to the largest
propagation delay among CA-CHs within the
MANET. For example, dT can be chosen as the
longest propagation delay between any two CA-CHs.
In this way, any two CA-CHs node who choose iW
differing by 1 can avoid collision of initialization
messages.

The selection of iCW is dictated by the number of
CA-CHs. A small iCW increases the chance of
collision, but a large iCW prolongs the backoff time.
An appropriate choice for iCW is the number of CA-
CH nodes. Since we require that at least t CA server
nodes participate in the derivation of the new shares, it
is desirable to prioritize the CA-CH nodes that have
enough CA in its cluster, or at least in neighboring
clusters. Generally, we can divide the contention
window (CW) size into three categories. The first
category, corresponding to CA-CH nodes having more
than t CA nodes in the cluster, is assigned a small
CW value, denoted as CW_1; for CA-CH nodes that
have less than t CA nodes in the cluster, but more
than t CA nodes plus the CA nodes in direct
neighboring cluster, we assign a larger CW valued,
denoted as CW_2; for the remaining CA-CH nodes
(less than t CA nodes after counting direct
neighboring clusters), we assign the largest CW value,
CW_3. In this way, CA-CHs with more CA nodes in
the vicinity have a higher chance of winning the
competition.

C) Although the probability of collision can be
lowered after the above two measures, it is still

possible for multiple initializations to happen. Here
we present the collision resolution method.

After a CA-CH node receives the initialization
message, it sends an acknowledgement (ACK) to the
sender. It is possible that a node (including a node that
has sent an initialization message) will receive another
initialization message afterwards. In this case, the
node will compare the ID contained in the two
messages. If the newer one has a smaller ID, the node
will send an ACK to the new sender, and a negative
acknowledgement (NACK) to the previous sender; if
the newer one has a larger ID, the node will only
transmit a NACK to the new sender. We require an
initializing CA-CH node to collect ACKs from all
CA-CHs before it can claim itself as the winner of the
competition. Here we assume that each CA-CH has a
complete list of CA-CHs in the network. Whenever
there are multiple initializing nodes, the conflict will
eventually be resolved, since only the initializing node
with the smallest ID can be the sole winner.

2)Phase Two
After phase one, the winning CA-CH node,

denoted as CA-CHW , is to find (at least) t CA nodes
to derive the new shares. This CA locating procedure
is identical to the scheme described in Section 3, and
will not be repeated here.

3)Phase Three
After phase two, at least t servers have updated

their shares. Then the t updated servers will update
the remaining CA nodes in the network. The goal of
phase three is to propagate the share update to all the
CA. When a CA finishes the share update process, it
will inform its CH about update completion. The
CH(s) collect update completion information from its
local cluster, and inform the neighboring CHs that has
not updated about the completion of the update. Then
the informed CHs request the CA nodes in its cluster
to update. The CAs will then contact the CHs to locate
t CAs with new shares, which can be based on the
locating method described previously.

5. ANALYSIS AND DISCUSSIONS

In this section, we analyze the performance of the CA
locating scheme and discuss the share update scheme.

A.Analysis on CH-assisted CA Locating Scheme
1)System Response Time

We define the system response time as the interval
from the moment when a user starts seeking CA

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

service until the time when CA service is completed
by the CA server nodes. When comparing the system
response time of our scheme with other schemes, such
as the flooding scheme in [7], the major difference in
system response time lies in the time needed for a user
to locate enough CA server nodes, which is called CA
server locating delay (CSLD). We now analyze the
CSLD in our scheme.

It is obvious that our CH-assisted CA locating
scheme shifts the responsibility of CA discovery from
each user node to CHs. According to our scheme, a
user node only needs to contact the CH for the CA
information table (CIT). As presented in Section 3,
there are three possibilities on the CH reply, namely
(see Section 3-B for the details): Case 1), when

iN t≥ ; Case 2-a), when (,)i
j

N B i j t+ ≥ ; Case 2-

b), when (,)i
j

N B i j t+ < . For all cases, after

obtaining the CIT, the user’s job is extremely simple:
contact CAs in the cluster and/or CHs of other clusters
as instructed by the CIT.

In Case 1), the user can immediately contact CA
nodes within the cluster after receiving the CIT. Thus,
the locating delay is just the response delay of the CH,
and the system response time is mostly the time for
CA server nodes to perform the CA service.

In Case 2-a), the user node needs to contact CA
server nodes in neighboring clusters. Note that we
have two approaches to maintain the CIT (see Section
3-B): the first one is to record the CA IDs of a
neighbor cluster in the CIT, and the second one is to
only record the number of CA nodes in that cluster.
For the first approach, the delay is essentially the
same as Case 1); for the second approach, the delay is
a little, but not much, longer since the user node only
has to communicate with several neighboring CHs to
obtain the CA IDs.

In Case 2-b), since there are not enough CA in the
vicinity of the requesting user, the CH has to collect
the CA information from the remote area by
broadcasting requests to all the CHs in the network.
The CH can reply to the requesting user once the
received responses consist of enough number of CA,
instead of waiting for all the responses from all CHs.
Thus, the locating delay is mainly determined by the
response delay from other CHs, which should be quite
limited.

When compared to the flooding scheme [7], the
locating delay is almost negligible for Case 1) and
Case 2-a) in our scheme; even for Case 2-b), the
locating delay is still limited.

Above all, the system response time is greatly
shortened, which is a salient advantage for our
scheme.

2)System Overhead
In our scheme, a CH is required to maintain CA

ID within the cluster. Since this work can be viewed
as part of the job for monitoring the cluster
membership, there is no system overhead from a CA
service perspective. Therefore, we only have two
sources of system overhead.

Firstly, the CH needs to periodically exchange CA
information with the direct neighbors in both Case 2-
a) and 2-b). However, in cluster management,
information exchange (such as routing, cluster
membership change, etc.) is frequent between
neighboring CHs. Therefore, the CA information
exchange can be piggybacked with other cluster
management information. In this way, the extra
system overhead is negligible.

Secondly, a CH needs to flood other CHs for CA
information in Case 2-b) when receiving a user
service request, during which a certain amount of
overhead will occur. However, the overhead is much
reduced when compared to other approaches. Further,
we can also avoid the occurrence of such an
undesirable situation by merging clusters with few
CAs; by this means, most of CA services can be
obtained within the vicinity. Another method is that
the CH only chooses to probe a subset of CHs, e.g.,
the relatively closer CHs, for future report, after the
initial flooding. This approach is better when the
frequency of user CA service request is higher and the
mobility of the nodes is slower.

Overall, our cluster-based approach is able to
provide prompt system response while reducing
system overhead to a minimum. Thus, our approach is
particularly suitable for large MANET, which could
be otherwise difficult to manage with the conventional
methods.

B.Discussions on CA Share Update Scheme
Our share update scheme exhibits two desirable
characteristics.

The first is that we guarantee there is only one
initialization CA node within the whole MANET.
This is achieved by: 1) random backoff to minimize
the collision probability; 2) collision resolution by
prioritizing the node with the smallest ID. The share
update scheme presented in [5] does not consider such
an issue, and will thus suffer from the problem of
multiple initializations.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

The second feature of our scheme is that we
utilize CH-assisted CA locating scheme for CA share
update and propagation. Such an approach simplifies
the implementation complexity, since functions for
CA locating can be re-used. Further, our scheme
provides an orderly update procedure, as it propagates
from one cluster to another. Correspondingly, the
update process is also speeded up.

C. Discussions on Security
In [5], the secret shares are distributed to all nodes in
the network, instead of to a subset of selected nodes as
in paper [1]. The problem of locating CA nodes is
solved, since a node requesting CA service only needs
to find more than t neighboring nodes. However, this
approach greatly increases the number of shares in the
network. Clearly, the more number of shares, the
higher is the probability for attackers to compromise
more than t shares.

Let p be the probability of one node being
compromised, fp be the probability of a CA secret
being compromised in the fully distributed CA model
in [5], and N be the total number of nodes in the
network. Then

{ , (1,)} (1) (1)
N

i i N i
f N

i t

p p K t K N C p p −

=

= ≥ ∈ = −

Given t , since fp is monotone increasing with
N , it is shown in Equation (1) that a larger system is
more prone to attacks. Therefore, the approach in [5]
is not desirable for large networks.

In our work, the number of CAs is much smaller,
and thus it will have better security than [5]. Let pp
be the probability of the secret being compromised in
our partially distributed CA model. There is

'{ , (1,)} (1) (2)
n

i i n i
p n

i t

p p K t K n C p p −

=

= ≥ ∈ = −

Obviously, pp will be much smaller than pp since
n N .

D. Comparison
In this section, we compare our work with the other
related work. To provide CA services, there are two
extreme cases. One is the traditional centralized CA,
and the other is the fully distributed case [5] in which
every node in the network is a CA. Our method can be
categorized as partially distributed in the sense that
only some of the nodes hold the shares. In following
Table 2, we summarize the performance comparison of
these three strategies.

Schemes

Metrics

Centralized
CA

Partially
distributed
CA

Fully
distributed
CA

Communication
overhead

high medium low

Service response
time

long quick quick

CA service
Availability

low high high

Number of share-
holding nodes

1 n N (much
larger
than n)

Single point of
failure

yes no no

Ease to locate
enough CA

nodes for attack

difficult not easy easy

Table 2: Comparison of the centralized,
partially and fully distributed CA

6. SIMULATION RESULTS

A.Simulation Setup
We use NS2 as the simulation tool. IEEE 802.11
MAC is adopted, and the radio transmission range is
250 m. We simulate an ad hoc network with 60 nodes,
among which 20 are CA nodes. The nodes are
uniformly distributed within an area of 600m by
600m. The node movement follows the widely used
mobility model implemented in the CMU Monarch
extension. We simulate two maximal moving speeds,
1 m/s and 5 m/s, and the nodes have zero pause time.

We implement the distributed clustering scheme
in [6] to form one-hop non-overlapping clusters. Since
the cluster head selection rule in [6] is based on the
smallest ID, we modify the selection rule so that the
cluster head is a CA whenever possible.

In the simulation, we investigate the probability of
locating enough CAs in a cluster and its neighbors. It
can be expected that when a cluster contains enough
CA nodes, the CA locating time is almost negligible,
since the node information is contained in the
response from the CH node. When the CAs in the
directed neighbors need to be involved, the system
response time is still short, because the requesting
node only need to contact the CHs in the neighboring
clusters. Therefore, we focus on investigating the CA
distribution within one cluster and its neighbors.

B.CA Distribution within One Cluster
We first investigate the per node probability of the
number of CAs within a cluster. In the simulation, we
track a particular node and count the number of CAs

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

within its cluster at a snapshot of the network, based
on which the per node probability is calculated.

In Figure 1, we plot the per node probability mass
functions (pmf) of the number of CA nodes within a
cluster when nodes are traveling at speeds of 1 m/s
and 5 m/s. It should be noted that we use curves in the
following figures only for the purpose of illustration.
In fact, the number of CAs is a discrete value. As we
can observe, the probability mass functions are similar
for different mobile speeds, and this is expected. Since
nodes are moving randomly, the node distribution
(including CA nodes) is still uniform and is not
affected by the mobile speed.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

number of CA within a cluster

pr
o

ba
b

ili
ty

Node speed: 1 m/s
Node speed: 5 m/s

Figure 1: Probability mass functions of the number
of CAs in a cluster.

In Figure 2, we show the probability that the
number of CA in a cluster is greater than or equal to
the CA threshold t . Obviously, when t is a small
number such as 2 or 3, there is a high probability that
the CA service can be performed within the cluster.
Even when t is 4, the probability is still as high as
0.5.

On the other hand, the probability decays fast
when t is greater than 4. Therefore, it is necessary to
balance between t and the number of CAs. From our
experiment, we find there are on the average 4 CAs
within the cluster for a particular node, and the
probability for t no greater than 4 is about 0.5.
Therefore, as a rule of thumb, we may select t to be
smaller than the average number of CAs in a cluster,
and the chance of finding enough CAs within the
cluster should be higher than 0.5. Of course, the
selection of t also depends on the desired security
level. Obviously, the selection of t is a tradeoff
between service availability and security level.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of CA within a cluster (t)

P
r{

C
A

 n
u

m
be

r ≥
 t

}

Node speed: 1 m/s
Node speed: 5 m/s

Figure 2: Probability of the number of CAs in a
cluster greater than or equal to the CA threshold
t .

C.CA in Neighboring Clusters
Here we study the per node probability of the number
of CA in a cluster plus neighboring clusters.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of CA in a cluster and its neighbors (t)

P
r{

C
A

 n
um

b
er

 ≥
 t

}

Node speed: 1 m/s
Node speed: 5 m/s

Figure 3: Probability of the number of CAs in a
cluster and its neighbors greater than or equal to
t .

In Figure 3, we present the probability that the
total number of CAs in a cluster and its neighbors is
greater than or equal to t , when node speeds are 1 m/s
and 5 m/s. Again, there is slight difference between
curves of the two speeds. This is because the number
of clusters as well as node and CA distribution are not
affected by the mobile speed.

Most importantly, we notice that the probability is
high even for relatively large value of t . For example,
when t is as high as 10, the probability for a cluster
and its neighbors to have more than 10 CA nodes is
still above 0.7. When t is moderate or small, the
probability is even higher. For example, when t is 4,

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

the probability is above 0.95; when t is 6, the
probability is still above 0.9. Therefore, for a
moderate t , the probability for a search beyond
neighboring clusters is rather low.

From the above simulation results, we observe
that our protocol is able to achieve high availability of
local CA service, i.e., within the same cluster and its
direct neighbors. Obviously, this high availability of
local service will translate into prompt system
response time for CA services.

7. CONCLUSION

In this paper, we establish a cluster-based architecture
to realize CA service in MANET. Our CH-assisted
CA locating scheme shifts the responsibility of CA
discovery from each user node to CHs. In this way,
distributed CA information is managed only among
the CHs, which greatly reduces service response time
and system overhead. We also propose a share update
procedure, which can resolve the multiple
initializations problem and achieves fast system-wide
update. Through simulation, we show that for a
moderate CA threshold, there is a high probability to
find enough CAs nodes within a cluster or in
neighboring clusters. Consequently, system response
time can be significantly improved. We also find node
mobility has little influence on the availability of
service.

ACKNOWLEDGMENTS

 This research is supported in part by the Areas of
Excellence Scheme established under the University
Grants Committee of the Hong Kong Special
Administrative Region, China (Project No. AoE/E-
01/99), a grant from the Research Grants Council of
the HKSAR, China (Project No. HKU/7144/03E), and
a grant from the Innovation and Technology
Commission of the HKSAR, China (Project No.
ITS/170/01).

REFERENCES

[1] L. Zhou, Z. J. Haas, “Securing Ad Hoc Networks,”
IEEE Network, Nov/Dec 1999.

[2] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive Secret Sharing Or: How to Cope With
Perpetual Leakage,” Advances in Cryptography –
Crypto’ 95, Lecture Notes in Computer Science 963,
1998.

[3] A. Shamir, “How to Share a Secret,” Communications
of the ACM, 22(11): 612-613, Nov. 1979.

[4] M. Bechler, H,-J. Hof, D. Kraft, F. Pahlke, and
L,Wolf, “A Cluster-Based Security Architecture for

Ad Hoc Networks,” Proceedings of the 23rd IEEE
INFOCOM’04, Hong Kong, China, Mar. 2004.

[5] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang,
“Providing Robust and Ubiquitous Security Support
for Mobile Ad-Hoc Networks,” Proceedings. Of the
International Conference on Network Protocols
(ICNP), pp. 251-260, 2001.

[6] C. R. Lin and M. Gerla, “Adaptive Clustering for
Mobile Wireless Networks," IEEE JSAC, Vol. 15, No.
7, Sep. 1997.

[7] S. Yi, and R. Kravets, “MOCA: Mobile Certificate
Authority for Wireless Ad Hoc Networks,” 2nd Annual
PKI Research Workshop Program, Apr. 2003.

[8] S. Kent, and T. Polk, IETF Public-Key Infrastructure
Working Group Charter, Available at
http://www.ietf.org/html.charters/pkix-charter.html.

[9] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk,
and M. Yung, “Proactive public-key and signature
schemes,” Proceedings of the 4th Annual Conference
on Computer Communications Security, pp. 100–110,
Zurich, Switzerland, Apr. 1997.

[10] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung,
“Proactive RSA,” In Advances in Cryptology—
Crypto’97, Lecture Notes in Computer Science 1294,
pp. 440–454. 1997.

[11] Y. Frankel, P. Gemmel, P. MacKenzie, and M. Yung,
“Optimal resilience proactive public-key
cryptosystems,” IEEE Proceedings of the 38th
Symposium on Foundations of Computer Science, pp.
384–393, Oct. 1997.

[12] D. Balfanz, D. K. Smetters, P. Stewart and H. Chi
Wong “Talking To Strangers: Authentication in Ad-
Hoc Wireless Networks,” In Symposium on Network
and Distributed Systems Security (NDSS '02), San
Diego, California, Feb. 2002

[13] T. Lai, D. Zhou, “Efficient, and scalable IEEE 802.11
ad-hoc-mode timing synchronization function,”
Advanced Information Networking and Applications,
pp. 318–323, Mar. 2003.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

