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hannel identi�
ation and symbol estima-tion for asyn
hronous MIMO systems are 
onsidered inthis paper. MIMO 
hannels are estimated from the se
-ond order statisti
s of the re
eived signals subje
t to anambiguity matrix and unknown time delays. Then a smallnumber of pilot symbols are used to resolve the ambigu-ity matrix and time delays. A two-step symbol estimationmethod, whi
h estimates the 
hannels before re
overingthe symbols, is proposed. Only upper bounds for the 
han-nel orders and time delays are needed for implementingthe algorithms. Neither knowledge of real 
hannel ordersnor pre
ise syn
hronization of different users is required,whi
h makes the algorithm appli
able to pra
ti
al MIMOsystems. 1. INTRODUCTIONMultiple input multiple output (MIMO) system has thepotential to greatly in
rease system 
apa
ity and there-fore is 
onsidered as a major te
hnique for future wireless
ommuni
ation systems. Sin
e there are multiple usersand signals propagate through different 
hannels usuallyhave different time delays, it is virtually impossible topre
isely syn
hronize an MIMO system. The situationis even more obvious in the uplink of a 
ellular mobilesystem. Therefore, a MIMO system is usually an asyn-
hronous system. Although quite a few methods havebeen proposed for MIMO 
hannel estimation and equal-ization [1, 6, 7, 9℄, most of them have two restri
tions.One is the requirement of the �rst 
oef�
ient (a matrix) inthe Z transform representation of the MIMO matrix 
han-nel to be of full 
olumn rank whi
h impli
itly implies pre-
ise syn
hronization [3℄. The other is the true 
hannelorders are known [4, 5℄. In [9℄, a blind 
hannel estima-tion method for syn
hronous MIMO systems is proposedwhi
h only required an upper bound of the 
hannel orders.For a MIMO system, it is virtually impossible to a
hievepre
ise syn
hronization and obtain the exa
t 
hannel or-ders. Very few work has been published on equalizingasyn
hronous MIMO systems with multipath 
hannels.This work is supported by a grant, HKU 7164/04E, from the Re-sear
h Grants Coun
il of the Hong Kong SAR, China.

In this paper, an asyn
hronous MIMO system withmultipath 
hannels is 
onsidered, whi
h allows different
hannels to have different time delays. By shifting the
hannels, we turn the system into a form in whi
h onlyfew time delays need to be estimated. Channels and trans-mitted symbols of the transformed system 
an be blindlyestimated by some knownmethods with an ambiguity ma-trix and the time delays embedded. For estimating thetime delays and the ambiguity matrix, pilot symbols arene
essary and a method is proposed. Major features ofthe methods are: (1) pre
ise syn
hronization of different
hannels is not required; (2) only an upper bound for themultipath 
hannel orders is needed for implementation;(3) time delays for the multiple 
hannels 
an be differentand unknown, and only an upper bound for all the timedelays is required. These features make the algorithm ap-pli
able to pra
ti
al MIMO systems. Simulations showthat the algorithms are effe
tive and robust.The rest of the paper is organized as follows. In Se
-tion 2, the asyn
hronous MIMO system model and itstransformation are dis
ussed. The 
hannel identi�
ationalgorithm is presented in Se
tion 3. Se
tion 4 proposesa semi-blind two-step symbol estimation method. Somesimulation results are given in Se
tion 5. Finally, 
on
lu-sions are drawn in Se
tion 6.In the following, supers
ripts T, † and ∗ stand fortranspose, Hermitian (trans
onjugate), and 
onjugate, re-spe
tively. Symbol def
= is used for introdu
ing a new no-tation. Iq is the identity matrix of order q and ⊗ is theKrone
ker produ
t of matri
es.2. SYSTEM MODELConsider an asyn
hronous MIMO system with P usersand M re
eivers (antennas). Ea
h user sends a symbol se-quen
e: sj(n) (j = 1, 2, · · · , P ). Assume that the trans-mitted symbols have zero expe
tations and are indepen-dently and identi
ally distributed. In general, let the timedelay of the 
hannel from user j to antenna i be dij . Thenthe re
eived signal in the ith re
eiver (antenna) 
an be de-
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s
ribed as
xi(n) =

P
∑

j=1

Nij
∑

k=0

hij(k)sj(n− k − dij) + ηi(n),

=

P
∑

j=1

∑

k

hij(k − dij)sj(n − k) + ηi(n),(1)where hij(k) is the 
hannel response from user j to an-tenna i, Nij is the order of 
hannel hij(k) (hij(0) 6= 0,
hij(Nij) 6= 0), and ηi(n) is the 
hannel noise, whi
h iswhite and un
orrelatedwith the transmitted signals. Obvi-ously, the a
tual (effe
tive) 
hannel responses are hij(k−
dij) � thus the �rst 
oef�
ient of the MIMO matrix 
han-nel is matrix [hij(−dij)]ij and it is not of full 
olumn rankin most 
ases. Therefore, most known methods [1, 6, 7, 9℄
annot be used for the system (see [3℄ for more explana-tions). In the following, we will transform the system intoanother form whi
h enables some of the known methodsto be appli
able.De�ning hij(k) = 0 for k < 0 or k > Nij and dj

def
=

min
i

(dij),we have
xi(n) =

P
∑

j=1

∑

k

ĥij(k)ŝj(n − k) + ηi(n), (2)where
ĥij(k) = hij(k − dij + dj), ŝj(n) = sj(n − dj). (3)Let N̂j

def
= max

i
(Nij + dij) − dj . Then it is obvious that

ĥij(k) = 0 if k < 0 or k > N̂j . Hen
e (2) 
an be writtenas
xi(n) =

P
∑

j=1

N̂j
∑

k=0

ĥij(k)ŝj(n − k) + ηi(n). (4)We assume that M > P . Letting
x(n)

def
= [x1(n), x2(n), · · · , xM (n)]T ,

ĥj(n)
def
= [ĥ1j(n), ĥ2j(n), · · · , ĥMj(n)]T ,

η(n)
def
= [η1(n), η2(n), · · · , ηM (n)]T , (5)we 
an express (4) into ve
tor form as

x(n) =

P
∑

j=1

N̂j
∑

k=0

ĥj(k)ŝj(n − k) + η(n), n = 0, 1, · · · .(6)Considering L 
onse
utive outputs and de�ning
x̂(n)

def
= [xT (n),xT (n− 1), · · · ,xT (n − L + 1)]T ,

η̂(n)
def
= [ηT (n), ηT (n − 1), · · · , ηT (n − L + 1)]T ,

ŝ(n)
def
= [ŝ1(n), · · · , ŝ1(n −N1 − L + 1), · · · ,

ŝP (n), · · · , ŝP (n −NP − L + 1)]T , (7)we get
x̂(n) = Ĥŝ(n) + η̂(n), (8)

where Ĥ is an ML × (N̂ + PL) (N̂ def
=

P
∑

j=1

N̂j) matrixde�ned as
Ĥ def

= [Ĥ1, Ĥ2, · · · , ĤP ],

Ĥj
def
=











ĥj(0) · · · ĥj(N̂j) 0 · · · 0

0 ĥj(0) · · · ĥj(N̂j) · · · 0. . . . . .
0 0 · · · ĥj(0) · · · ĥj(N̂j)











.(9)3. BLIND CHANNEL IDENTIFICATIONThe system model (8) is similar to that in [9℄ with Hand s repla
ed by Ĥ and ŝ, respe
tively. To use the re-sults in [9℄, the matrix Ĥ must be of full 
olumn rank.If M > P and the smoothing fa
tor L > N̂/(M − P ),the matrix has more rows than 
olumns. Therefore, it ismost likely of full 
olumn rank and some results in [9℄ 
anbe readily used. Using the method in [9℄, we 
an derivea method for estimating the ĥij(k), whi
h is a delayedversion of hij(k). If the estimated 
hannels are used forequalization, obtaining ĥij(k) is enough and there is noneed to know hij(k). However, to �nally obtain the sym-bols sj(n), the delay dj (not all dij ), the minimum delayof the M 
hannels for user j, must be found. The resolv-ing of the dj will be dis
ussed in the next se
tion. Thealgorithm for estimating the ĥij(k) is given in the follow-ing. Note that it is an improved version of [9℄ by in
or-porating the maximum des
ription length (MDL) method[8℄.Algorithm 1 : Blind 
hannel identi�
ation for asyn-
hronous MIMO systemsIt is assumed that an upper bound for all the 
hannelorders, that is, a number Nupp su
h that N̂j 6 Nupp (j =
1, 2, · · · , P ), is known or estimated. Choose a smoothingfa
tor L > PNupp/(M − P ).Step 1. ComputeR = 1

Ls

∑L+Ls−1
n=L x̂(n)x̂†(n), where

Ls is the number of samples used. Compute the eigen-value de
omposition (EVD) of R. Use the MDL method[8℄ to estimate the rank of H. Let the estimated rank be
r. Average the smallest ML − r eigenvalues of R toget an estimation (σ̄2

η) for the noise varian
e. Let R̄ =
R− σ̄2

ηIML.Step 2. Compute Q = 1
Ls

∑L+Ls−1
n=L x̂(n)x̂†(n − 1)and Q̄ = Q − σ̄2

η(JL ⊗ IM ). Then 
ompute the singularvalue de
omposition (SVD) of Q̄. Let K1 = ML − r +
P . Choose K1 singular ve
tors ui (i = 1, 2, · · · , K1)
orresponding to the K1 least left singular values of Q̄and denote a matrix U = [u1,u2, · · · ,uK1

].Step 3. Compute W = U†R̄U and the EVD of W.Let V1 be the matrix of size K1 × P whose 
olumns areeigenve
tors 
orresponding to nonzero eigenvalues of W,and U1 = UV1.Step 4. For k = 0, 1, · · · , Nupp + L− 1, 
ompute
rz(k) =

{

rx(k), k 6= 0
rx(k)− σ̄2

ηIM , k = 0
,
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where rx(k) = 1
Ls

∑k+Ls−1
n=k x(n)x†(n− k).Step 5. For k = 0, 1, · · · , Nupp, let

G(k) =
[

rz(k) rz(k + 1) · · · rz(k + L− 1)
]

U1.(10)The MIMO 
hannel matrix is then ĥ(k) = G(k)B−1,where B is a P × P matrix to be determined, and
ĥ(k) =







ĥ11(k) · · · ĥ1P (k)... · · ·
...

ĥM1(k) · · · ĥMP (k)






.4. TWO-STEP SYMBOL ESTIMATIONThere are an ambiguity matrix B (in the estimated 
han-nels) and delays dj to be resolved. For resolving them,pilot symbols are ne
essary. In this se
tion, a pilot-basedmethod is proposed and then a two-step symbol estimationmethod is dis
ussed.4.1. Estimation of the time delaysLet̄

s(n) = [s1(n − d1) s2(n− d2) · · · sP (n − dP )]
T

.(11)A linear minimum mean square error (MMSE) equaliza-tion 
an be 
onstru
ted as
s̄(n − γ) = H̄

†
γR

−1x̂(n), (12)where H̄γ is a matrix of sizeML×P whi
h is 
onstru
tedfrom the 
hannel responses ĥ(k) and γ is a delay, 0 6

γ 6 Nupp + L− 1 (see [2℄, page 341). Let Ḡγ be de�nedsimilarly as H̄γ fromG(k). From Algorithm 1 (Step 5), itis obvious that H̄γ = ḠγB−1. Therefore,
B†s̄(n− γ) = Ḡ

†
γR

−1x̂(n), (13)that is,
B†s̄(n) = y(n), (14)where y(n) = Ḡ

†
γR

−1x̂(n + γ). Please note that y(n)
an be 
omputed from the outputs and estimated 
hannels
G(k).Let

T(k)
def
= E(y(n)s†(n− k)), (15)where E(ξ) means the mathemati
al expe
tation of a ran-dom variable ξ and

s(n) = [s1(n) s2(n) · · · sP (n)]
T

. (16)From (14) we have
T(k) = B†E(̄s(n)s†(n− k)). (17)It is 
lear that

E(̄s(n)s†(n − k)) =

{

0, k 6= dj (j = 1, 2, · · · , P )
∆j , k = dj

where ∆j is a matrix with all elements being zeros ex-
ept that the element at j-th row and j-th 
olumn being1. Therefore, if k 6= dj (j = 1, 2, · · · , P ), T(k) mustbe zero. If k = dj , the j-th 
olumn of T(k) is the j-th
olumn of B† and all the other 
olumns are zeros. Sin
e
B† is invertible, none of its 
olumn is zero. Let m be anumber su
h that m ≥ dj (j = 1, 2, · · · , P ), whi
h 
anbe obtained from some knowledge on the time delays. Ifwe 
an obtain T(k) (k = 0, 1, · · · , m), the delays dj 
anbe easily found (dj is the only k su
h that the j-th 
olumnof T(k) is nonzero). In pra
ti
e, T(k) 
an only be esti-mated (with errors) from a �nite number of pilot samples,and therefore we should 
hoose dj to be the k su
h thatthe power of the j-th 
olumn of T(k) is maximized.4.2. Symbol estimationTo use (12) for symbol estimation, the ambiguitymatrixBin the estimated 
hannels needs to be resolved. The samepilots for resolving the time delays 
an be used here. Infa
t, de�ning

S = [̄s(m) s̄(m + 1) · · · s̄(m + J − 1)]

Y = [y(m) y(m + 1) · · · y(m + J − 1)] (18)From (14) we have
B†S = Y. (19)A least square (LS) estimation is then

B† = YS†(SS†)−1. (20)With the estimated 
hannel responses ĥ(k), the ambi-guity matrix B and the time delays, the transmitted sig-nals 
an be re
overed using (12). In this two-step method,
m + J pilot symbols are needed for ea
h user.5. SIMULATIONSConsider a 2-user 4-antenna system (M = 4, P = 2). The
hannel orders are 3 (for user 1) and 4 (for user 2) respe
-tively (note that the two users have different 
hannel or-ders). The 
hannel responses (without the time delays dij )
hij(k) are generated randomly. For ea
h user, the mod-ulation s
heme is 4-QAM. The time delays are: d11 =
d21 = d31 = d41 = 0, d12 = d22 = d42 = 1, d32 = 2.Hen
e N̂1 = 3, N̂2 = 5, Nmax

def
= max

j
N̂j = 5 and

d1 = 0, d2 = 1. Only an upper bound for all the ordersis assumed known in our simulations, that is, a number
Nupp is known su
h that Nupp ≥ Nmax. To verify the ro-bustness of the algorithm to the 
hannel order overestima-tion, we test four 
ases of the 
hannel order upper bound(Nupp): Nmax (exa
t upper bound),Nmax +2, Nmax +4and Nmax +6, respe
tively. The signal-noise-ratio (SNR)as the ratio of the average re
eived signal power to theaverage noise power is de�ned as

SNR
def
=

E(||x(n)− η(n)||2)
E(||η(n)||2) . (21)
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TheMSE between the estimated and true 
hannel responsesis de�ned as
MSE

def
= min

β

∑Nupp

l=0 ||ĥ(l)−G(l)β||2F
∑Nupp

l=0 ||ĥ(l)||2F
. (22)Simulations show that the algorithm is truly robust to 
han-nel order overestimation, noise and round-off errors.The MSE versus SNR is shown in Figure 1. We seethat the algorithm works well when only an upper boundfor all the 
hannel orders is known. When the 
hannel or-ders are overestimated, errors are inevitably introdu
ed tothe 
hannel tails (ideally should be zeros), whi
h 
ausesthe MSE to be
ome higher. Figure 2 shows the bit error

Fig. 1. MSE versus SNR(Ls = 500)rate (BER) (average of all users) versus SNR when thetwo-step method is used. An upper bound for time delaysis 
hosen as m = max
j

(dj) + 3, that is, the time delaysare overestimated by at least 3. The delay γ is 
hosento be Nupp, and for 
omparison, the BER results usingthe true 
hannels and delays are also given (see the linewith no mark). It is 
lear that the symbol estimation algo-rithm works well when only upper bounds for the 
hannelorders and time delays are known. Furthermore, the as-sumed upper bounds 
an be mu
h larger than the exa
tupper bounds. 6. CONCLUSIONSIn this paper, semi-blind 
hannel identi�
ation and sym-bol estimation algorithms for asyn
hronous MIMO sys-tems have been proposed. MIMO 
hannels and trans-mitted symbols are �rst estimated from the SOS of there
eived signals subje
t to an ambiguity matrix and un-known time delays. Some pilot symbols are then used toresolve the ambiguity matrix and the time delays. Thealgorithm requires neither knowledge of real 
hannel or-ders nor pre
ise syn
hronization of different users, whi
hmakes the algorithm pra
ti
al for appli
ations. Simula-tions have shown that the algorithms are effe
tive and ro-bust.
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