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ABSTRACT

SEMI-BLIND channel identification and symbol estima-
tion for asynchronous MIMO systems are considered in
this paper. MIMO channels are estimated from the sec-
ond order statistics of the received signals subject to an
ambiguity matrix and unknown time delays. Then a small
number of pilot symbols are used to resolve the ambigu-
ity matrix and time delays. A two-step symbol estimation
method, which estimates the channels before recovering
the symbols, is proposed. Only upper bounds for the chan-
nel orders and time delays are needed for implementing
the algorithms. Neither knowledge of real channel orders
nor precise synchronization of different users is required,
which makes the algorithm applicable to practical MIMO
systems.

1. INTRODUCTION

Multiple input multiple output (MIMO) system has the
potential to greatly increase system capacity and there-
fore is considered as a major technique for future wireless
communication systems. Since there are multiple users
and signals propagate through different channels usually
have different time delays, it is virtually impossible to
precisely synchronize an MIMO system. The situation
is even more obvious in the uplink of a cellular mobile
system. Therefore, a MIMO system is usually an asyn-
chronous system. Although quite a few methods have
been proposed for MIMO channel estimation and equal-
ization [1, 6, 7, 9], most of them have two restrictions.
One is the requirement of the first coefficient (a matrix) in
the 7 transform representation of the MIMO matrix chan-
nel to be of full column rank which implicitly implies pre-
cise synchronization [3]. The other is the true channel
orders are known [4, 5]. In [9], a blind channel estima-
tion method for synchronous MIMO systems is proposed
which only required an upper bound of the channel orders.
For a MIMO system, it is virtually impossible to achieve
precise synchronization and obtain the exact channel or-
ders. Very few work has been published on equalizing
asynchronous MIMO systems with multipath channels.
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In this paper, an asynchronous MIMO system with
multipath channels is considered, which allows different
channels to have different time delays. By shifting the
channels, we turn the system into a form in which only
few time delays need to be estimated. Channels and trans-
mitted symbols of the transformed system can be blindly
estimated by some known methods with an ambiguity ma-
trix and the time delays embedded. For estimating the
time delays and the ambiguity matrix, pilot symbols are
necessary and a method is proposed. Major features of
the methods are: (1) precise synchronization of different
channels is not required; (2) only an upper bound for the
multipath channel orders is needed for implementation;
(3) time delays for the multiple channels can be different
and unknown, and only an upper bound for all the time
delays is required. These features make the algorithm ap-
plicable to practical MIMO systems. Simulations show
that the algorithms are effective and robust.

The rest of the paper is organized as follows. In Sec-
tion 2, the asynchronous MIMO system model and its
transformation are discussed. The channel identification
algorithm is presented in Section 3. Section 4 proposes
a semi-blind two-step symbol estimation method. Some
simulation results are given in Section 5. Finally, conclu-
sions are drawn in Section 6.

In the following, superscripts 7', t and % stand for
transpose, Hermitian (transconjugate), and conjugate, re-

spectively. Symbol 4ef {5 used for introducing a new no-
tation. I, is the identity matrix of order ¢ and ® is the
Kronecker product of matrices.

2. SYSTEM MODEL

Consider an asynchronous MIMO system with P users
and M receivers (antennas). Each user sends a symbol se-
quence: s;(n) (j = 1,2,---, P). Assume that the trans-
mitted symbols have zero expectations and are indepen-
dently and identically distributed. In general, let the time
delay of the channel from user j to antenna ¢ be d;;. Then
the received signal in the ith receiver (antenna) can be de-
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where h;;(k) is the channel response from user j to an-
tenna ¢, N;; is the order of channel h;;(k) (hi;(0) # 0,
hij(Nsj) # 0), and n;(n) is the channel noise, which is
white and uncorrelated with the transmitted signals. Obvi-
ously, the actual (effective) channel responses are h;; (k —
d;j) — thus the first coefficient of the MIMO matrix chan-
nel is matrix [h;;(—d;;)];; and it is not of full column rank
in most cases. Therefore, most known methods [1, 6, 7, 9]
cannot be used for the system (see [3] for more explana-
tions). In the following, we will transform the system into
another form which enables some of the known methods

to be applicable.

Defining h;j(k) = 0 for k < 0 or k > N;; and d;
min(d,;),we have
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hij(k) = hij(k — dij + dj), 3;(n) 3)

— d;. Then it is obvious that

= sj(n —dj).

Let Nj def max(Nij + d”)
iAL,-j(k:) =0ifk<Oork > NJ Hence (2) can be written

as
P J
:ZZ ij(K)sj(n—k)+ni(n). ()
j=1 k=0
We assume that M > P. Letting
x(n) < [21(n), 22(n), -, 2ar(m)])”
o def 2 2
hJ( ) [hlj( ),hgj(N),'-- 7hMj(n)]Ta
def
n(n) = [m(n),n2(n), - nar(n))7, (5
we can express (4) into vector form as
P N
Z J Sjni )*77(”),”:0,17
j=1k=0
(6)

Considering L consecutive outputs and defining

%(n) £ K'(n),x"(n—1),- ,xT(n—L+1)T,
An) )T (n—1), " (n— L+ 1),
s(n) < [3i(n), 8n— Ny~ L+1),---,
$p(n), - ,8p(n—Np— L+ 1], ()
we get
%(n) = H3(n) + 7(n), 8)
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. def L
where H is an ML x (N + PL) (N = Z N;) matrix

defined as
A< AL A, Hp),
hj(0) - h(N;) 0 0
g | O WO B 0
0 0 h;(0)

3. BLIND CHANNEL IDENTIFICATION

The system model (8) is similar to that in [9] with H
and s replaced by H and 8, respectively. To use the re-
sults in [9], the matrix H must be of full column rank.
If M > P and the smoothing factor L > N /(M — P),
the matrix has more rows than columns. Therefore, it is
most likely of full column rank and some results in [9] can
be readily used. Using the method in [9], we can derive
a method for estimating the fLij(k), which is a delayed
version of h;; (k). If the estimated channels are used for
equalization, obtaining ilij (k) is enough and there is no
need to know h;; (k). However, to finally obtain the sym-
bols s;(n), the delay d; (not all d;;), the minimum delay
of the M channels for user j, must be found. The resolv-
ing of the d; will be discussed in the next section. The
algorithm for estimating the fzu (k) is given in the follow-
ing. Note that it is an improved version of [9] by incor-
porating the maximum description length (MDL) method
[8].

Algorithm 1 : Blind channel identification for asyn-
chronous MIMO systems

It is assumed that an upper bound for all the channel
orders, that is, a number N, such that NJ— < Nupp (5 =
1,2,---, P), is known or estimated. Choose a smoothing
factor L > PNy, /(M — P)

Step 1. Compute R = ZL+L %(n)X'(n), where
Ly is the number of samples used. Compute the eigen-
value decomposition (EVD) of R. Use the MDL method
[8] to estimate the rank of H. Let the estimated rank be
r. Average the smallest ML — r eigenvalues of R to
get an estimation (02) for the noise variance. Let R =
R-o IML

Step 2. Compute Q = ZL+L ()& (n — 1)
and Q = Q — 6,27(JL ® IM) Then compute the singular
value decomposition (SVD) of Q. Let K1 = ML — r +
P. Choose K, singular vectors u; (1 = 1,2,--- , K1)
corresponding to the K1 least left singular values of Q
and denote a matrix U = [uy,ug, -+ ,uk,|.

Step 3. Compute W = U'RU and the EVD of W.
Let V1 be the matrix of size K1 X P whose columns are
eigenvectors corresponding to nonzero eigenvalues of W,
and U1 = le

Step 4. Fork =0,1,---
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where v, (k) = Ll Ziiifl x(n)x"(n — k).
Step 5. Fork = 0,1, -+, Nypp, let

G(k)=[ rz(k) r:(k+1)
(10)

The MIMO channel matrix is then h(k) = G(k)B™2,

where B is a P x P matrix to be determined, and

hi1(k) hip(k)

h(k) = : :

hann(k) - hep(R)

4. TWO-STEP SYMBOL ESTIMATION

There are an ambiguity matrix B (in the estimated chan-
nels) and delays d; to be resolved. For resolving them,
pilot symbols are necessary. In this section, a pilot-based
method is proposed and then a two-step symbol estimation
method is discussed.

4.1. Estimation of the time delays

Let

sSp (n — dp)]T .
(11)
A linear minimum mean square error (MMSE) equaliza-
tion can be constructed as

S(n) = [s1(n — di) s2(n — da) - --

S(n —7) = HIR™'%(n), (12)

where Hv is a matrix of size M L x P which is constructed
from the channel responses h(k) and + is a delay, 0 <
v < Nypp + L — 1 (see [2], page 341). Let G7 be defined
similarly as HL., from G (k). From Algorithm 1 (Step 5), it
is obvious that H., = G,B~!. Therefore,

B's(n —v) = GIR '%(n), (13)

that is,
B'5(n) = y(n), (14)

where y(n) = GIR™'%(n + ). Please note that y(n)
can be computed from the outputs and estimated channels
G(k).
Let
T(k) < E(y(n)s' (n — k). (1)

where E(¢) means the mathematical expectation of a ran-
dom variable £ and

s(n) = [s1(n) sa(n) --- sp(n)]". (16)
From (14) we have
T(k) = B'E(5(n)s"(n — k)). (17)

It is clear that
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where A; is a matrix with all elements being zeros ex-
cept that the element at j-th row and j-th column being
1. Therefore, if k # d; (j = 1,2,---, P), T(k) must
be zero. If k = dj, the j-th column of T(k) is the j-th
column of BT and all the other columns are zeros. Since
BT is invertible, none of its column is zero. Let m be a
number such thatm > d; (j = 1,2,---, P), which can
be obtained from some knowledge on the time delays. If
we can obtain T(k) (k =0,1,--- ,m), the delays d; can
be easily found (d; is the only k such that the j-th column
of T(k) is nonzero). In practice, T(k) can only be esti-
mated (with errors) from a finite number of pilot samples,
and therefore we should choose d; to be the k such that
the power of the j-th column of T'(k) is maximized.

4.2. Symbol estimation

To use (12) for symbol estimation, the ambiguity matrix B
in the estimated channels needs to be resolved. The same
pilots for resolving the time delays can be used here. In
fact, defining

S =[s(m)s(m+1) ---
Y =[y(m)ym+1) -

s(m+J—1)]
yim+J—1)] (18)

From (14) we have
Bfs=Y. (19)
A least square (L.S) estimation is then
Bf = Ysf(ss’)~L. (20)

With the estimated channel responses h(k), the ambi-
guity matrix B and the time delays, the transmitted sig-
nals can be recovered using (12). In this two-step method,
m + J pilot symbols are needed for each user.

5. SIMULATIONS

Consider a 2-user 4-antenna system (M = 4, P = 2). The
channel orders are 3 (for user 1) and 4 (for user 2) respec-
tively (note that the two users have different channel or-
ders). The channel responses (without the time delays d;;)
hi;j(k) are generated randomly. For each user, the mod-
ulation scheme is 4-QAM. The time delays are: di; =
do1 = d31 = dy1 = 0,d12 = dao = dgo = 1,d32 = 2.
Hence ]\71 = 3, NQ = 5, Nmax def maxNj = 5 and
d; = 0,d> = 1. Only an upper bound f]or all the orders
is assumed known in our simulations, that is, a number
Nupp is known such that Nypp > Nipag. To verify the ro-
bustness of the algorithm to the channel order overestima-
tion, we test four cases of the channel order upper bound
(Nupp): Nimaa (exact upper bound), Npaq + 2, Nypar +4
and N,,q. + 6, respectively. The signal-noise-ratio (SNR)
as the ratio of the average received signal power to the
average noise power is defined as

st E([x(n) — n(n)][2
SR () @D



The MSE between the estimated and true channel responses
is defined as

o ure ||h _ 2
MSE % i 210 1|\|/ 0 - G(i)ﬁ = @
=0 DI

Simulations show that the algorithm is truly robust to chan-
nel order overestimation, noise and round-off errors.

The MSE versus SNR is shown in Figure 1. We see
that the algorithm works well when only an upper bound
for all the channel orders is known. When the channel or-
ders are overestimated, errors are inevitably introduced to
the channel tails (ideally should be zeros), which causes
the MSE to become higher. Figure 2 shows the bit error

MSE on channel responses

5 10 15 20 25 30
SNR (dB)

Fig. 1. MSE versus SNR(L, = 500)

rate (BER) (average of all users) versus SNR when the
two-step method is used. An upper bound for time delays
is chosen as m = max(d;) + 3, that is, the time delays

are overestimated byj at least 3. The delay  is chosen
to be Nypp, and for comparison, the BER results using
the true channels and delays are also given (see the line
with no mark). It is clear that the symbol estimation algo-
rithm works well when only upper bounds for the channel
orders and time delays are known. Furthermore, the as-
sumed upper bounds can be much larger than the exact
upper bounds.

6. CONCLUSIONS

In this paper, semi-blind channel identification and sym-
bol estimation algorithms for asynchronous MIMO sys-
tems have been proposed. MIMO channels and trans-
mitted symbols are first estimated from the SOS of the
received signals subject to an ambiguity matrix and un-
known time delays. Some pilot symbols are then used to
resolve the ambiguity matrix and the time delays. The
algorithm requires neither knowledge of real channel or-
ders nor precise synchronization of different users, which
makes the algorithm practical for applications. Simula-
tions have shown that the algorithms are effective and ro-
bust.
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Bit Error Rate (BER)
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Fig. 2. BER versus SNR (two-step method, L, = 1000)
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