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Abstract-This paper analyzes the performance of the GP- called GP-NLMS algorithm, which has the lowest complexity in
NLMS algorithm, revealing the nature of its fast convergence the GP-APA family and thus is a good alternative to other LMS-
as well as its deficiency of inducing bigger steady state error. type algorithms in AEC and other problems.
Based on the analysis, a class of improved Generalized- In this paper, we analyze the effect of using variable or
Proportionate Stepsize LMS (GPS-LMS) algorithms are proportionate stepsizes on the initial convergence of the LMS
proposed. With an efficient switching mechanism, the new algorithm for white Gaussian input. It is found that the average
algorithms can dynamically switch between the GP-NLMS and behavior of the initial convergence can be improved if the stepsize
conventional LMS-type algorithms to achieve fast initial satisfies certain ordering properties. This gives rise to a family of
convergence and tracking speed and low steady state error. improved stepsize updating algorithms. We further show that the
Computer simulations verified the superior performance of the GP-NLMS algorithm satisfies this property and hence substantiate
proposed algorithms. its fast initial convergence observed in extensive numerical

simulation. Although the variable stepsize updating algorithm in
the GP-NLMS is able to achieve a reasonably low steady state

I. INTRODUCTION error, stepsize adaptation will unavoidably increase the mean
Adaptive filters find important applications in signal square error (MSE) at the steady state due to additional gradient

processing, communications, control and many other areas. Many noise. This observation motivated us to propose a hybrid algorithm
adaptive algorithms have been proposed and they can be classified and an efficient switching mechanism that is able to switch from
broadly into two major classes: recursive least squares (RLS) and the GP-NLMS algorithm to other conventional LMS-type
least mean squares (LMS) algorithms. Examples of LMS algorithms with a constant stepsize in order to reduce MSE when
algorithms include the conventional LMS algorithm, the approaching the steady state. Simulation results show that this
Normalized LMS (NLMS) algorithm [1], the fast LMS/Newton [2] new class of improved Generalized-Proportionate Stepsize LMS
algorithm, etc. They have a low computational complexity of (GPS-LMS) algorithms enjoys the fast initial convergence and
O(L) (where L is the number of taps of the adaptive filter), which tracking speed of the GP-NLMS algorithm and good steady state

makes thm aperformance of other constant stepsize LMS-type algorithms. In

makteswithemighattractver intho a pplicEchoCancellationsin adA this paper, we employed the NLMS, fast LMS/Newton and Partialfilter with hi ordergsuch s ti econceltion (AC Update algorithms to illustrate the good performance of the
[3]. However, theconvergencespee d of theonaL proposed algorithms. This paper is organized as follows: an
algorthm S very senstve to the eigenvalue spread of the nput analysis of the GP-NLMS algorithm is described in section II,
autocorrelation matrix. For highly correlated input signals, the analywhere a new family of improved stepsize updating algorithm will
convergence can be very low. This problem becomes more oposed. The proposed Improved GPS-LMS algorithms are
serious when the filter order increases or when the impulse bpre-, ,., ., . . . ~~~~~~~presented in section III. Experimental results and comparisons are
response of the system to be identified is time-varying, presented in section IV. Conclusions are drawn in section V.

While the problem of highly correlated input signals can be
alleviated by using transform-domain or Newton-type of adaptive II. ANALYSIS OF THE GP-NLMS ALGORITHM
filtering algorithms, the initial convergence and tracking speed of
these variant LMS-type algorithms for long and sparse channel The GP-APA algorithm proposed in [6] can be written as the
response can still be very slow. In the PNLMS algorithm first following GP-NLMS algorithm when one input data vector is
proposed by Duttweiler [4], the stepsize of each filter coefficient is being processed at each iteration:
adjusted in proportion to its estimated magnitude. This e(n)= d(n) - y(n) (1)
considerably improves the initial convergence of the NLMS T
algorithm. However, it still converges slowly when the impulse y(n)=W (n)X(n), X(n) [x1(n) x2(n) x(n)Y (2)
response is dispersive. To overcome this problem, Gay and W(n + 1) = W(n) + ae(n)D(n)X(n)/(XT (n)D(n)X(n) + 8) (3)
Benesty proposed the IP-NLMS algorithm [5], where the filter D(n) = diag(DI (n), D2 (n),. ., DL (n)) (4)
coefficients are updated as a linear combination of the NLMS and

I
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PNLMS updates. These efforts have attracted considerable D i
1 4 ^ ( 1) 4?

attention recently and this class of algorithms are usually referred 2 11c(n -1)1 + 2L (5)
to as the proportionate update algorithms [6,7,8]. In the
Generalized Proportionate Affine Projection (GP-APA) algorithm 11c(n - 1)111 = I i (n - 1)1, ci (n) =1 wi (n -1 -i (n -
of Hoshuyama et al [6], the step size of each filter coefficient in the (n (6)
APA is updated through the approximated derivatives of the filter w, (n) = qZi~(n -1) + (1- q7)wi (n - 1), i = 1,2, , L, (7)
coefficients, instead of the magnitude of the weight vector itself whrT()[1()W nf ()ad3()aersetvl
Faster initial convergence and tracking speed over the conventional'' , l
proportionate update algorithms were reported. When one input the stepsize and approximated time derivative of the i-th filter tap,
data vector is being processed at each iteration, it reduces to the so- ax is the global stepsize. ,1 serves as the minimum step size, and
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iq is the forgetting factor for calculating the smoothed tap L ,'=,[D,(n)L-I]V2(n)2.'(Dy(n)L-l) XLV2 (n)=0, (14)
weightwi (n) and 8 is a constant. denotes the 11 norm of a fLD
vector. The advantages of the GP-NLMS algorithm are two folds:=,in)=L.Tstelushaifheumotettlsepzsvecstor.n thme-advariantages fcthanelGP-NMspal hor thmarestfolds: in all direction is maintained, then that new update will at least be
Ft, time-invariantcanlsw spars hpa reisposes as good as the constant stepsize update. This characterizes a class
the time derivatives 3 (n) allow significant tap weights to be of updating schemes that can perform better than the conventional
given a larger stepsize and vice versa. This results in a faster initial constant stepsize updates. Note, D, (n) is proportional to the
converging speed. Secondly, since i (n) tends to reflect the time magnitude of the corresponding entry in the weight error vector,
variations of the filter weights, it yields a faster tracking speed in but not the magnitude of WO, unlike traditional proportionate
slowly time-varying channels. We now proposed a family of stepsize LMS algorithm. The reason why convergence speeding
improved stepsize updating algorithms and analyze the up is observed initially in most PNLMS algorithms is due to the
performance of the GP-NLMS algorithm. fact that W(n) is usually initialized to the zero vector. In this case,

A. Improved Stepsize Updating Algorithms the magnitude of VK (n) and WO X, the i-th entry of WO, is identical

Consider the following general stepsize update scheme, which can initially. As n increases, the speeding up will level off. We now

be employed for a number of variable stepsize LMS algorithms analyze the stepsize updating scheme in GP-NLMS and show that
such as the GP-NLMS: it satisfies the above ordering condition.

W(n + 1) = W(n) + pe(n)D(n)X(n) (8) B. GP-NLMSAlgorithm Stepsize Analysis
where , is the global stepsize parameter and For the GP-NLMS algorithm, we have
D(n) = diag(DI (n), D2 (n), , D, (n)) is a diagonal stepsize matrix, c(n+ 1) FEW(n+ 1) - W(n)] 1=1 V(n+ 1) - V(n) = 2,D(n) U(n) (15)
whose entities control the relative magnitude of the stepsizes for 1r1mW(i + 1)- W(at t Vn+ 1)-tV(sayaterU(propr(15)
each filter coefficient. Assume that the desired signal is given by For simplicity, assume that the input is white (say after appropriated(ch filter

W of[X(n) tA(s)sue Whai the tir malwisghvector transformation), i.e. U(n) = V(n) Initially, D(n) should be equal
to I and our stepsize estimate for the i-th coefficient at time instant

and r(n) is a zero-mean white Gaussian additive noise which is n+l is proportional toI 2uD (n)VJ (n) . Hence
uncorrelated with W(n) and X(n) Define the error weight ID,(n)V (n) c, (n+l)I
vector by V(n)= W(n)-WO Using (8) and the independent D D (n)JV (n) L c (n+ (16)
assumption [91, one gets The factor L ensures that the sum of the stepsizes is

V(n + 1) = (I - 2yD(n)R, )V(n), (9) maintained. Let VjGP(n) = HIn V (j), then it can be shown by
where RW is the autocorrelation matrix of the input vector and induction that

V(n) = E[V(n)] = E[W(n) - WO ] is the mean error weight vector
D (n + l)L VP (n)

of the variable stepsize LMS algorithms. Here, we have assume D L/ VjGP (n) (17)
that sufficient smoothing is carried out in the stepsize update VGP(n)V (n+ ) VGP(n+ )
algorithm such that D(n) is uncorrelated with the input and error since D (n + 2) L i ( = L G (
weight vector. For simplicity, we shall assume that the input l=E j (n)V, (n + 1) Zi=l JjGP (n + 1)
is white Gaussian distributed with RVX = I. This also applies to Finally, to stabilize the update, a hybrid update between
color input when it undergoes a whitening transformation. It gives proportionate stepsize and constant stepsize is usually employed

V(D) (n + 1) = (I - 2/D(n)) V(n) (10) and it gives the final update for the GP-NLMS algorithm:

The constant stepsize updating corresponds to D(n)=I for all n. To (n) L c(n +1) __L c(n+i) + __-) (18)
compare the performance of the two updates, we rewrite 2c(nl) 2 ) c(n+1) + )2j
V(D)n+) s c(n+1) Y~c n+1

V()(n + 1) as i=1 =

V(') (n + 1) - V(D) (n + 1) + 2p(D(n) - I)V(n) (1 ) Since the above update satisfies the ordering property insection A, the mean convergence rate will be improved. As n tends
Taking the norm of the vector, we have to infinity, ci(n) will tend to (IlL). However, due to the gradient

V ~(n+1) 12=11 V '9) (n +1) +4u2E/1 (D (n) - 1)2 V2 (n) noise, it will fluctuate around this value with a variance dependingVl- ln12(n )21(D,n)- i(non the steady state MSE. This will unavoidably increase the mean
+ 4ufi=l(1- 2 aDi (n)) (Di (n) - i)2(n), (12) square error (MSE) at the steady state due to additional gradient

noise. This observation motivated us to propose in the next sectionwhere VK (n) is the i-th entry in V(n). Since the first two terms are a hybrid algorithm and an efficient switching mechanism that is
positive, we only need to consider the third term as follows: able to switch from the GP-NLMS algorithm to other conventional

t3= L D (n) - 2uD (n) -V1 + 2uD (n))]V.2(n) (13) LMS-type algorithms with a constant stepsize in order to reduce
MSE when approaching the steady state.

Further, assuming that p is small compared to the other terms, we
have t3 -I=[D, (n)- i]V2(n) If D (n) is chosen in such a l l Tm-.THE IMPROVED GPS-LMS ALGORITHMS
way that the rate of decrease at each time instant is proportional to Mtvtdb h bv nlss ti eial oepo h
the magnitude of Vi* (n) , then Di (n) has the same order as GP-NLMS algorithm during initial convergence and time-varying

*'n sn h hbse nqaiy ehv environments, while employing a LMS-type algorithm with a
constant stepsize near the steady state in order to achieve a low
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steady state error and faster overall initial convergence and tracking TABLE I
speed. The key is to develop an efficient and reliable switching THE GENERALIZED-PROPORTIONATE STEPSIZE LMS ALGORITHMS
mechanism to switch alternately between the GP-NLMS and the 1. Initialization
constant stepsize modes according to a certain measure. w(O) =o ; Given initial value averaging window length P, calculate G.0

2. Adaptation GPS-NLMS GPS-fast-LMSINewton

We now propose a measure based on ~(n) in (6), which is X, (n) = [x(n +M),...x(n),...x(n -L -M + 1 OMu/t.OAdd. 6MMult. 6M
similar to the one we have proposed in [8]. We found that the l1 W, (n) = [w-, (n), ,,wo(n),-,wA,,(n)]T Add.

u,(n) = L2(n)D6-(n)L,(n)X,(n)J
norm of the vector ~(n) will decrease and converge gradually from FOR i=1 to L LOOP
its initial value to a very small value when the algorithm is about to i~v =n q (n -1) + Q -qw (n -1), 2L Add. (For PU-GPS-
converge to its steady state. However, this value is rather unstable K, (n)= w, (n-i) - iv (n-i) J NEMS, L Add.)
during tracking of time-varying channel impulse responses. END OFLOOP
Therefore, we propose another measure to determine the switching _(n ,I Ad. (orPU-PS
decision between the GP-NLMS and LMS-type algorithm updates. IacltG(l,%n ()G NEMS, O.5L Add.)
More precisely, we compute the absolute value of the approximate IF y(n),> (GP-NLMS)

deriativ ofjj~( )JI s G(n) 11~()jj j~(n- 1)11 andtheFOR i=1 to L LOOP
derivative of ~~~~(n -1) as~ Gn()=~n ~n- n h (n 'l(n-1) + f

decaying ratio %(n) GcQ(n)I/Gj where Go represents the 2~n-)2
c c ~~~~~~~ENDOFLOOP 5L±1I Mult. 2L-1I Add. (For

approximation of the initial level ofG (n), which is obtained by U(n) = djag(u, (n),U 2(n),...UL(n)) PU-GPS-NLMS,3.5L± 1
averagingG~~ (k) from k 1,2,..., P tpoie eeec o W(n +l) =W(n) +ae(n)U(n)X(n)/(XT(n)U(n)X(n) + 8)JMult. 1.5L-1I Add.)averaing jk)romk 1121 ..IP t prvidesa reerene to

ELSE (1) or (2)
measure the decay of the coefficients weight vector. A small value (1 NEMS 2L Mult. 0 Mult.
of %(n) indicates a diminished variations in the weight vector, and e(n) = d(n) - XT(n)W(n) 2LAdd. 0 Add.
the filter is likely to be near the end of its initial converging period. W(2 )n)fastLMS/ewtonX n

By choosing appropriately a threshold, say 2,it is possible to e(n) = d(n -M)- xT (n -M)W (n) o Mult. 2L Mult.

compaeX() aginstthisthreholdto determine whether W(n + i) = W (n) + 2fue(n)u,(n)J 0 Add. 2L Add.
compare %(n) against this threshold END IF

switching is necessary. When %(n) is larger than j,the algorithm Total: GPS-NLMS (with PU): 5L±1I (3.5L±1)Mult. 5L-1I (3L-1)Add. working
is likely to be in its initial convergence stage or in the tracking stage with GP-NLMS; 2L (2L) Mult. 5L (3.5L) Add. working with NEMS.
of a time-varying channel. The GP-NLMS update part will be GPS-fast LMS/Newton: 5L±6M±lMu/t. 5L±6M-lAdd. working with GP-
chosen to give a fast initial convergence and tracking performance.

NMS2L6 ut.5L6AdwoknwihfsLSNeon

On the other hand, when %(n) falls below 2 , the algorithm is update (9) -(10) in [2] based on the whitened input Ua (n) will be

likely to converge to its steady state and the LMS-type algorithms used. Otherwise, the GP-NLMS update in (I)-(7) will be employed.
should be invoked to further lower the steady state error. To Because of this sharing, the computational complexity of the
guarantee that %(n) has actually decreased below the threshold, the proposed GPS-NLMS and GPS-fast LMS!Newton algorithm

employing the original GP-NLMS scheme is at most the same as
switching decision should be made if %(n) is less than the threshold the GP-NLMS algorithm, except for the latter where a low order
for Q consecutive observations, where Q denotes the decision AR estimation part is added. Besides, this computational
window length. The parameters 2 , P and Q can be chosen complexity is only required in the initial converging stage or

experimentally in practical applications and simulation results show tracking environment. At the later converging stage, the dominant
that the performance of the proposed algorithm is not very sensitive updating part will be handed over to the NLMS or fast
to these values if they are reasonably chosen. LMS/Newton algorithms which have very low arithmetic

complexity.
Two constant stepsize LMS-type algorithms namely the NLMS

and the fast LMS/Newton algorithms are evaluated in this work.
I.SMLTo iSJT

Although the LMS part of the fast LMS/algorithm is identical to the I. SMLTO EUT
NLMS algorithm, it works with the whitened input Ua (n) , which We evaluate the convergence and tracking performance of the
requires a very small computation overhead of 6M additions and proposed algorithms through simulations of an echo canceller for
6M multiplications per iteration for computing the M/-th order AR sparse channels. 100 Monte Carlo experiments and time averaging
model of the input. Besides, a partial update (PU) scheme is were conducted to obtain the learning curves. The system model is
employed in the GP-NLMS stepsize update to reduce its similar to the one used in [3], where the input signal x(n) is
computational complexity. More specifically, when the GP-NLMS modeled as a speech signal using an AR process with
mode is active, at each odd (even) update time instant, only the coefficients[I -0.65 0.693 -0.22 0.309 -0.177] as given in [2]. We
stepsizes of the odd (even) coefficients are updated and the rest first examine the influence of using different values off? on the
remain unchanged. This alternating partial update saves half of the

cnegnepromnewe h hne sarnolcomputation cost in updating the weight vector coefficients, at the convergtednce perormanzed whulen theschannelwish a8 randomlye
expense of mild degradation of initial convergence speed. The bcgenratdund normaln)ized imulero-espnswhith 28ssataps.oThdetails of the GPS-NLMS, GPS-fast LMS/Newton and the PU- bakrudnie n)sazrom nwhtGusanadm
GPS-NLMS algorithms are summarized in Table 1, where for sequence with variance 8 2 (n) = 0.0001I Fig. 1 shows the MSE of
simplicity, the calculation of GO, and the comparison of %(n) and runn h PNM agrtm tcnbese0h s ff
, ateeryiteation ae not iclue,a hi opttoa ot reslts inka-highe steady state MSE, de to icrease gaint



the GP-NLMS algorithm, t7 = 0.9999 , y = 1, a = 1 , 8 = 0.00001, --fast LMS/Newton

and ,8 = 0.5. For the NLMS, fast LMS!Newton and the PNLMS
algorithms, the stepsizes were chosen so that the steady state MSE 9 o

of all the algorithms is approximately -40dB. For the switching -PNLMSI

mechanism, =0.5, P = 20, and Q = 100. Five algorithms, the - 10

fast LMS!Newton, PNLMS, GP-NLMS and the proposed (PU-) -1l
GPS-NLMS and GPS-fast LMS/Newton algorithms were -20 pU_GpS_NLMS
compared in two experiments. Experiment 1: Sparse echo path. -25 -GP-NLMS,GPS-NLMS(fastLMS/Newton)
From Fig. 2, we can see the proposed GPS-NLMS and GPS-fast tin einde. (n)
LMS/Newton algorithms were respectively switched from the GP- (a)
NLMS part to NLMS and the fast LMS/Newton part at around the fast LMS/Newton
1000th iteration. With the latter converging slightly faster than the X
former, these two algorithms both exhibit significantly improved 5

overall convergence behavior and outperform the GP-NLMS in PL 0PUOPS-NLMS
steady state MSE. The PU-GPS-NLMS algorithm was switched to -6
the NLMS part from the GP-NLMS part at around the 1400th o L 0

X
iteration and converged slower than the former two though it also -J

reached the expected low steady state MSE. Experiment 2: -15 NLMS,GPS-LMS(fastLMS/Newton)
Tracking in sparse echo path environment. The slowly varying 1760 1750 1300 1850 1900 1950 2000
echo path follows the model given in [2] as time Index (n)
w, (n + 1) = w (n) + &lw, (n)lv, (n), i = 1,2, , L , where £ is a small Figure 3. Tracking performance. MSD vs. time.

constant equal to 0.015 and vi(n)'s are a set of independent V. CONCLUSION
Gaussian white noise sequences with unit variance. The This paper studies the performance analysis of the GP-NLMSperformance index is the sum of squared coefficient error (MSD). algorithm and presents a class of adaptive filtering algorithms calledFig. 3(a) shows the tracking performance of all the algorithms and GPS-LMS algorithms. With an efficient switching mechanism, the
Fig. 3(b) magnifies the learning curves between the 1700th and the proposed algorithms can dynamically switches between the GP-
2000th time instants for the purpose of illustration. The GPS- NLMS algorithm and the LMS-type algorithms so that both fast
NLMS and GPS-fast LMS/Newton algorithms outperform the initial convergence and tracking speed as well as a low steady state
other algorithms with the fast LMS/Newton algorithm being the error can be achieved. The superior performances of the GPS-LMS
slowest one. Because the value of G (n) varied dramatically, the algorithms are verified using computer simulations of echo
proposed algorithms are working almost entirely in the GP-NLMS cancellation problem.
mode. As a result, they have the performance similar to the GP-
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