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Abstract—This paper analyzes the performance of the GP-
NLMS algorithm, revealing the nature of its fast convergence
as well as its deficiency of inducing bigger steady state error.
Based on the analysis, a class of improved Generalized-
Proportionate Stepsize LMS (GPS-LMS) algorithms are
proposed. With an efficient switching mechanism, the new
algorithms can dynamically switch between the GP-NLMS and
conventional LMS-type algorithms to achieve fast initial
convergence and tracking speed and low steady state error.
Computer simulations verified the superior performance of the
proposed algorithms.

I INTRODUCTION

Adaptive filters find important applications in signal
processing, communications, control and many other areas. Many
adaptive algorithms have been proposed and they can be classified
broadly into two major classes: recursive least squares (RLS) and
least mean squares (LMS) algorithms. Examples of LMS
algorithms include the conventional LMS algorithm, the
Normalized LMS (NLMS) algorithm [1], the fast LMS/Newton [2]
algorithm, etc. They have a low computational complexity of
O(L) (where L is the number of taps of the adaptive filter), which
makes them attractive in those applications involving adaptive
filter with high order such as Acoustic Echo Cancellation (AEC)
[3]. However, the convergence speed of the conventional LMS
algorithm is very sensitive to the eigenvalue spread of the input
autocorrelation matrix. For highly correlated input signals, the
convergence can be very low.  This problem becomes more
serious when the filter order increases or when the impulse
response of the system to be identified is time-varying.

While the problem of highly correlated input signals can be
alleviated by using transform-domain or Newton-type of adaptive
filtering algorithms, the initial convergence and tracking speed of
these variant LMS-type algorithms for long and sparse channel
response can still be very slow. In the PNLMS algorithm first
proposed by Duttweiler [4], the stepsize of each filter coefficient is
adjusted in proportion to its estimated magnitude. This
considerably improves the initial convergence of the NLMS
algorithm. However, it still converges slowly when the impulse
response is dispersive. To overcome this problem, Gay and
Benesty proposed the IP-NLMS algorithm [5], where the filter
coefficients are updated as a linear combination of the NLMS and
PNLMS wupdates. These efforts have attracted considerable
attention recently and this class of algorithms are usually referred
to as the proportionate update algorithms [6,7.8]. In the
Generalized Proportionate Affine Projection (GP-APA) algorithm
of Hoshuyama et al [6], the step size of each filter coefficient in the
APA is updated through the approximated derivatives of the filter
coefficients, instead of the magnitude of the weight vector itself.
Faster initial convergence and tracking speed over the conventional
proportionate update algorithms were reported. When one input
data vector is being processed at each iteration, it reduces to the so-
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called GP-NLMS algorithm, which has the lowest complexity in
the GP-APA family and thus is a good alternative to other LMS-
type algorithms in AEC and other problems.

In this paper, we analyze the effect of using variable or
proportionate stepsizes on the initial convergence of the LMS
algorithm for white Gaussian input. It is found that the average
behavior of the initial convergence can be improved if the stepsize
satisfies certain ordering properties. This gives rise to a family of
improved stepsize updating algorithms. We further show that the
GP-NLMS algorithm satisties this property and hence substantiate
its fast initial convergence observed in extensive numerical
simulation. Although the variable stepsize updating algorithm in
the GP-NLMS is able to achieve a reasonably low steady state
error, stepsize adaptation will unavoidably increase the mean
square error (MSE) at the steady state due to additional gradient
noise. This observation motivated us to propose a hybrid algorithm
and an efficient switching mechanism that is able to switch from
the GP-NLMS algorithm to other conventional LMS-type
algorithms with a constant stepsize in order to reduce MSE when
approaching the steady state. Simulation results show that this
new class of improved Generalized-Proportionate Stepsize LMS
(GPS-LMS) algorithms enjoys the fast initial convergence and
tracking speed of the GP-NLMS algorithm and good steady state
performance of other constant stepsize LMS-type algorithms. In
this paper, we employed the NLMS, fast LMS/Newton and Partial
Update algorithms to illustrate the good performance of the
proposed algorithms. This paper is organized as follows: an
analysis of the GP-NLMS algorithm is described in section II,
where a new family of improved stepsize updating algorithm will
be proposed. The proposed Improved GPS-LMS algorithms are
presented in section III. Experimental results and comparisons are
presented in section IV. Conclusions are drawn in section V.

II.  ANaLvsIsS oF THE GP-NLMS ALGORITHM

The GP-APA algorithm proposed in [6] can be written as the
following GP-NLMS algorithm when one input data vector is
being processed at each iteration:

e(n)=d(n)-y(n) M

) =W mXm), Xm=[x0m xm) - xmf )

Wn+1) =Wn) +ae(m)DmXmAXT (D)X +5) (3)

D(n) = diag(D, (). D, (). . D, (m) @
1-p a(=bD S
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where W(n)=[w,(n)....w, (@], D,(n) and ¢,(n) are respectively
the stepsize and approximated time derivative of the i-th filter tap,
« 1s the global stepsize. S serves as the minimum step size, and
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n is the forgetting factor for calculating the smoothed tap
weight w,(n) and & is a constant. ||-||, denotes the /, norm of a

vector. The advantages of the GP-NLMS algorithm are two folds:
First, in time-invariant channels with sparse echo path responses,

the time derivatives ¢,(n) allow significant tap weights to be
given a larger stepsize and vice versa. This results in a faster initial
converging speed. Secondly, since ¢,(n) tends to reflect the time

variations of the filter weights, it yields a faster tracking speed in
slowly time-varying channels. We now proposed a family of
improved stepsize updating algorithms and analyze the
performance of the GP-NLMS algorithm.

A.  Improved Stepsize Updating Algorithms

Consider the following general stepsize update scheme, which can
be employed for a number of variable stepsize LMS algorithms
such as the GP-NLMS:

Wn+1) =W+ pem)DmX(n) ®)
where 4 is the global stepsize parameter and
D(n) = diag(D,(n),D,(n), --,D,;(n)) is a diagonal stepsize matrix,
whose entities control the relative magnitude of the stepsizes for
each filter coefficient. Assume that the desired signal is given by
d(n)=WJ] X(n)+n(n) , where W, is the optimal weight vector
and 77(n) is a zero-mean white Gaussian additive noise which is
uncorrelated with W(n) and X(n) .
vector by V(n)=W(n)-W, . Using (8) and the independent
assumption [9], one gets

Vintl) =(I=2uD(m)Ry )V (1), ®)
where R, is the autocorrelation matrix of the input vector and
V(n)=E[V (n)] = E[W(n)-W,] is the mean error weight vector
of the variable stepsize LMS algorithms. Here, we have assume
that sufficient smoothing is carried out in the stepsize update
algorithm such that D(n) is uncorrelated with the input and error

weight vector. For simplicity, we shall assume that the input
is white Gaussian distributed with R,, = . This also applies to

Define the error weight

color input when it undergoes a whitening transformation. It gives
VO 41y = (I =2uD(n)-V (). (10)

The constant stepsize updating corresponds to D(n)=I for all n. To
compare the performance of the two updates, we rewrite

VP (n+1) as

VOnm+1) =V P (n+1) + 2Dy - DV (n) . (1)
Taking the norm of the vector, we have

VO mADIE=V D 4+ D13 4 25 (D, (m) = 1)V (m)

+ Ay (1= 24D; () (D; ()= D), (12)
where V; (n) is the i-th entry in V{(n). Since the first two terms are
positive, we only need to consider the third term as follows:

t, =L, [D, (m) = 24D} ()= 1+ 24D, (M)} (n) . (13)
Further, assuming that 4 is small compared to the other terms, we
have ¢, ~X1,[D, (n)—1V*(n) . If D, (n) is chosen in such a
way that the rate of decrease at each time instant is proportional to
the magnitude of V, (n) , then D, (n) has the same order as

|V; (n)]. Using the Chebyshev inequality, we have

L-S5 D, ()=} )22t (D, i) -1)-EL p2my=0, (14
if 25D, (n)=L. This tells us that if the sum of the total stepsizes

in all direction is maintained, then that new update will at least be
as good as the constant stepsize update. This characterizes a class
of updating schemes that can perform better than the conventional

constant stepsize updates. Note, D, (n) is proportional to the

magnitude of the corresponding entry in the weight error vector,
but not the magnitude of W, unlike traditional proportionate
stepsize LMS algorithm. The reason why convergence speeding
up is observed initially in most PNLMS algorithms is due to the
fact that W(n) is usually initialized to the zero vector. In this case,

the magnitude of V, (n) and W, ;, the i-th entry of W, is identical
mitially. As » increases, the speeding up will level off. We now
analyze the stepsize updating scheme in GP-NLMS and show that
it satisfies the above ordering condition.
B.  GP-NLMS Algorithm Stepsize Analysis

For the GP-NLMS algorithm, we have
cn+D A B (n+D)=Wn)] [V (n+1)=V () H 21D(m)-Um) | . (15)
For simplicity, assume that the input is white (say after appropriate
transformation), i.e. U(n)=V(n) . Initially, D(n) should be equal
to I and our stepsize estimate for the i-th coefficient at time instant
n+1 is proportional to| 24D, (n)V;(n)| . Hence

| DV, ()|, lem+D] 16

SLIDGY, ol Ehlemen 19

The factor I ensures that the sum of the stepsizes is
maintained. Let V, (n) =IT"_V,(j) , then it can be shown by

induction that

D (n+1)~L-

R LALO]
D, (n+)~L Z,-L:1|V,-Gp(n)|’ a7
[V (), (n+1)] 7% (n+1)|

since D, (n+2)~L-

SLIE @V, (D] S T )]
Finally, to stabilize the update, a hybrid update between

proportionate stepsize and constant stepsize is usually employed
and it gives the final update for the GP-NLMS algorithm:

| gL L | (18
;,D‘(n):;‘_L pllaDl g gl ﬂ[%jLL\c‘(ml)u(lfﬂ)[;_Lj (18)
2le (n+ D) >l (n+1)]

Since the above update satisfies the ordering property in
section A, the mean convergence rate will be improved. As n tends
to infinity, ¢(n) will tend to (1/L). However, due to the gradient
noise, it will fluctuate around this value with a variance depending
on the steady state MSE. This will unavoidably increase the mean
square error (MSE) at the steady state due to additional gradient
noise. This observation motivated us to propose in the next section
a hybrid algorithm and an efficient switching mechanism that is
able to switch from the GP-NLMS algorithm to other conventional
LMS-type algorithms with a constant stepsize in order to reduce
MSE when approaching the steady state.

III. Tae IMPROVED GPS-LMS ALGORITHMS

Motivated by the above analysis, it is desirable to employ the
GP-NLMS algorithm during initial convergence and time-varying
environments, while employing a LMS-type algorithm with a
constant stepsize near the steady state in order to achieve a low
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steady state error and faster overall initial convergence and tracking
speed. The key is to develop an efficient and reliable switching
mechanism to switch alternately between the GP-NLMS and the
constant stepsize modes according to a certain measure.

We now propose a measure based on ¢(n) in (6), which is
We found that the /,

norm of the vector ¢(n) will decrease and converge gradually from
its initial value to a very small value when the algorithm is about to
converge to its steady state. However, this value is rather unstable
during tracking of time-varying channel impulse responses.
Therefore, we propose another measure to determine the switching
decision between the GP-NLMS and LMS-type algorithm updates.
More precisely, we compute the absolute value of the approximate

1), as G.(m)=||e), - E(n—l)Hl‘ and the
decaying ratio y(n)= G (n)/G’ , where G’ represents the

similar to the one we have proposed in [§].

derivative of

approximation of the initial level of G, (n) , which is obtained by
averaging G, (k) fromk =12....,P . It provides a reference to
measure the decay of the coefficients weight vector. A small value
of y(n) indicates a diminished variations in the weight vector, and
the filter is likely to be near the end of its initial converging period.
By choosing appropriately a threshold, say 7 , it is possible to
compare y(n) against this threshold to determine whether

switching is necessary. When y(#) is larger than y , the algorithm
is likely to be in its initial convergence stage or in the tracking stage
of a time-varying channel. The GP-NLMS update part will be
chosen to give a fast initial convergence and tracking performance.
On the other hand, when y(n) falls below y , the algorithm is
likely to converge to its steady state and the LMS-type algorithms
should be invoked to further lower the steady state error. To
guarantee that y(n) has actually decreased below the threshold, the
switching decision should be made if y(#) is less than the threshold
for O consecutive observations, where () denotes the decision
window length. The parameters 7 , P and Q can be chosen
experimentally in practical applications and simulation results show

that the performance of the proposed algorithm is not very sensitive
to these values if they are reasonably chosen.

Two constant stepsize LMS-type algorithms namely the NLMS
and the fast LMS/Newton algorithms are evaluated in this work.
Although the LMS part of the fast LMS/algorithm is identical to the
NLMS algorithm, it works with the whitened input «,(#) , which

requires a very small computation overhead of 6M additions and
6M multiplications per iteration for computing the M-th order AR
model of the input. Besides, a partial update (PU) scheme is
employed in the GP-NLMS stepsize update to reduce its
computational complexity. More specifically, when the GP-NLMS
mode is active, at each odd (even) update time instant, only the
stepsizes of the odd (even) coefficients are updated and the rest
remain unchanged. This alternating partial update saves half of the
computation cost in updating the weight vector coefficients, at the
expense of mild degradation of initial convergence speed. The
details of the GPS-NLMS, GPS-fast LMS/Newton and the PU-
GPS-NLMS algorithms are summarized in Table 1, where for

simplicity, the calculation of G , and the comparison of y(n) and

7 at every iteration are not included, as their computational costs

are relatively low compared with the others. It can be seen from
Table 1 that when the NLMS or fast LMS/Newton coefficients
weight update is invoked, the conventional NLMS update or the

TABLEI
THE GENERALIZED-PROPORTIONATE STEPSIZE LMS ALGORITHMS

1. Initialization
W (0)= 0; Given initial value averaging window length P, calculate o

2. Adaptation GPS-NLMS GPS fast-LMS/Newton

X () = M)y x (M) x(n— L~ M+ D
el *l } OMult.04dd. 6M Mult. 6M

Add.

We () = [W_y (1), Wy (1), Wy ()]

a,(n) = L) D™ m) L (m) X 5 (n)

FOR i=1 to L LOOP
W, (n) = 70, (n=1)+ (1=1)w, (1), }
¢,(m=w,(n-D)-w,(n-1)

END OF LOOP

Jecnl, =X

Calculate G.(n)» 20n) = G.(m)/G"

IF s 3 (GP-NLMS)
FOR i=1to L LOOP

2L Add. (For PU-GPS-
NLMS, L Add.)

} L Add. (For PU-GPS-
NLMS, 0.5L Add.)

ORI
2 Jetn-1) 2L
st 214
— di o - - 3.
Un) = diag(u, (m), 1, (m), - 1, (1)) ) Mault 1.5L-1 Add)
W(n+1)=W(n)+ae(nUmX()/(X (mUn)X(n)+ 5)

ELSE (1) or (2)

1) NLMS
e(m) = d(m)~ X7 (mW (n) }
Wn+1)=W(n)+ 2ue(n)X (n)

2) fast LMS/Newton

e(m)y=d(n—M)- X" (n- MW (n) } 0 Mult.

Wn+1)=W(n)+2ue(n)u,(n) 0 Add.
END IF
Total: GPS-NLMS (with PU): 5L+1 (3.5L+1) Mult. 5L-1 (3L-1) Add. working
with GP-NLMS; 2L (2L) Mult. 5L (3.5L) Add. working with NLMS.

GPS-fast LMS/Newton: SL+6M+1Mult. SL+6M-1A4dd. working with GP-
NLMS; 2L+6M Mult., SL+6M Add. working with fast LMS/Newton.

2L Mult. 0 Mult.
2L Add. 0 Add.

2L Mult.
2L Add.

update (9) ~ (10) in [2] based on the whitened input u_(n) will be
used. Otherwise, the GP-NLMS update in (1)-(7) will be employed.
Because of this sharing, the computational complexity of the
proposed GPS-NLMS and GPS-fast LMS/Newton algorithm
employing the original GP-NLMS scheme is at most the same as
the GP-NLMS algorithm, except for the latter where a low order
AR estimation part is added. Besides, this computational
complexity is only required in the initial converging stage or
tracking environment. At the later converging stage, the dominant
updating part will be handed over to the NLMS or fast
LMS/Newton algorithms which have very low arithmetic
complexity.

IV. SmMULATION RESULTS

We evaluate the convergence and tracking performance of the
proposed algorithms through simulations of an echo canceller for
sparse channels. 100 Monte Carlo experiments and time averaging
were conducted to obtain the learning curves. The system model is
similar to the one used in [3], where the input signal x(n) is
modeled as a speech signal using an AR process with
coefficients[1 -0.65 0.693 -0.22 0.309 -0.177] as given in [2]. We
first examine the influence of using different values of # on the
convergence performance when the channel is a randomly
generated and normalized impulse response with 28 taps. The
background noise 5, (n) is a zero-mean white Gaussian random

sequence with variance 5”2 (n) = 0.0001 . Fig.1 shows the MSE of

running the GP-NLMS algorithm. It can be seen the use of f
results in a higher steady state MSE, due to increased gradient
noise from the stepsize adaptation as discussed in Section II. B.
Next, the 128 tap echo path in the ITU-T recommendation
G.168 [10] is considered. The other settings remain the same. For
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the GP-NLMS algorithm, 7=0.9999 , =1, a =1, =0.00001 ,
and #=0.5. For the NLMS, fast LMS/Newton and the PNLMS

algorithms, the stepsizes were chosen so that the steady state MSE
of all the algorithms is approximately -40dB. For the switching
mechanism, 7 =0.5, P =20, and QO =100 . Five algorithms, the
fast LMS/Newton, PNLMS, GP-NLMS and the proposed (PU-)
GPS-NLMS and GPS-fast LMS/Newton algorithms were
compared in two experiments. Experiment 1: Sparse echo path.
From Fig. 2, we can see the proposed GPS-NLMS and GPS-fast
LMS/Newton algorithms were respectively switched from the GP-
NLMS part to NLMS and the fast LMS/Newton part at around the
1000 iteration. With the latter converging slightly faster than the
former, these two algorithms both exhibit significantly improved
overall convergence behavior and outperform the GP-NLMS in
steady state MSE. The PU-GPS-NLMS algorithm was switched to
the NLMS part from the GP-NLMS part at around the 1400™
iteration and converged slower than the former two though it also
reached the expected low steady state MSE. Experiment 2:
Tracking in sparse echo path environment. The slowly varying
echo path follows the model given in [2] as

w,(n+1)=w,(n)+gw,(n)v,(n), i=12,---,L , where ¢ is a small

constant equal to 0.015 and v,(n)'s are a set of independent

Gaussian white noise sequences with unit variance. The
performance index is the sum of squared coefficient error (MSD).
Fig. 3(a) shows the tracking performance of all the algorithms and
Fig. 3(b) magnifies the learning curves between the 1700™ and the
2000™ time instants for the purpose of illustration. The GPS-
NLMS and GPS-fast LMS/Newton algorithms outperform the
other algorithms with the fast LMS/Newton algorithm being the
slowest one. Because the value of G (n) varied dramatically, the

proposed algorithms are working almost entirely in the GP-NLMS
mode. As a result, they have the performance similar to the GP-
NLMS algorithm and their learning curves are nearly overlapped.
However, since the PU-GPS-NLMS algorithm employs partial
update to reduce the arithmetic complexity, its performance is
slightly inferior to its full update counterpart. In spite of this fact, it
still has the comparable performance with the GP-NLMS
algorithm.
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Figure 1. Influence of /3 on MSE of GP-NLMS algorithm
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Figure 3. Tracking performance. MSD vs. time.

V. CoNcLUSION

This paper studies the performance analysis of the GP-NLMS
algorithm and presents a class of adaptive filtering algorithms called
GPS-LMS algorithms. With an efficient switching mechanism, the
proposed algorithms can dynamically switches between the GP-
NLMS algorithm and the LMS-type algorithms so that both fast
initial convergence and tracking speed as well as a low steady state
error can be achieved. The superior performances of the GPS-LMS
algorithms are verified using computer simulations of echo
cancellation problem.
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