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Abstract - It is well known that orthogonal wavelet 
transform with filters of nonlinear phase gives poor visual 
results in low bit rate image coding. Biorthogonal wavelet 
is a good substitute, which is, however essentially 
nonorthogonal. A greedy steepest descend algorithm is 
proposed to design an adaptive quantization scheme based 
on the actual statistics of the input image. Since the L2 
norm of the quantization error is not preserved through 
the nonorthogonal transform, a quantization error 
estimation formula considering the characteristic value of 
the reconstruction filters is derived to incorporate the 
adaptive quantization scheme. Computer simulation 
results demonstrate significant SNR gains over standard 
coding technique, and comparable visual improvements. 

L Introduction 

Recently wavelet based image coding has become the 
domain of extensive research. For image coding 
application, it is desirable that an exact reconstruction 
subband coding scheme should correspond to an 
orthonormal basis with reasonable smooth mother 
wavelet. However, the resulting analysis and synthesis 
filters are in general not linear phase. On the other hand it 
is also desirable the FIR filter used be linear phase, since 
such filter can be easily cascaded in pyramidal filter 
structure without phase compensation [2]. Unfortunately, 
there are no nontrivial orthonormal linear phase FIR 
filters with the exact reconstruction property [5 ] .  Relaxing 
the orthonormality requirement and using biorthogonal 
basis is a good alternative. 

As is well known, the L2 norm of quantization errors is 
not preserved through the nonorthogonal transform, so 
there does not exist an exact analytical formula for 
optimal bit allocation as in the case of orthogonal wavelet 
transform [3]. The goal of the paper is to improve the 
applicability of biorthogonal wavelet transform to image 
coding by proposing an adaptive quantization design 
scheme based on the statistics of the input image. The 
design procedure is based on a criterion which best 
describes the trade-off between distortion and rate, and 
hence results in superior performance. 

II. Biorthogonal Wavelets 

11.1 Siganl Analysis with Biorthogonal Wavelet 
Biorthogonal wavelet bases were firstly introduced by 

Cohen [ 5 ]  and were extensively used by numerous authors 
in image coding application. The basic idea of 
biorthogonal wavelet transform is to represent a signal 
f( x) as a superposition of two biorthogonal bases 

v,,,(x) = 2-m/2v (2 -mx  - n)  

and $V',,,,(x) = 2-m'2v*(2-m'2x - n), where v*(x) 
is the dual basis of v(x), m and n are scaling and 
translation parameters respectively. Therefore the signal 
f (  x) can be expressed as 

and 
i- 

c m , n ( f >  = ( v m , n , f )  = I v , , n ( x ) f ( x W  -_ 
( 2 )  

As in the orthonormal case, one can introduce 
multiresolution analysis. We then define two dual scaling 
functions: $,,, ( X) = 2-"12 $( 2-" x - n )  and its dual 

* 
4 m . n  

A pair of filter hand h* have been introduced for 
decomposition and reconstruction of signal f to and 
from its wavelet representation respectively. Generally 
speaking, there are two pairs of filters: one pair h and g 
for decomposition and another pair h* and g' for 

reconstruction. Here only h and h* are independent. The 
relations between the different filters are given by the 
following formulas [2] : 

g', = (-1)' hl-,, and gn = ( -1)"  hy-,, 
C h n  h n + 2 k  = 6 k . O  ( 3 )  
n 

which ensures perfect reconstruction ( PR ). 
For signal decomposition, we have 

Cm,n  = c g 2 n - k  am-1.k 
k 

( 4 )  
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while for signal reconstruction, 

= 2 x C ( h + 2 k - n U m , k  + g : k - n  C m , k )  
k 

( 5 )  

11.2 Extension to the 2-0 case 
The results described in the previous section can be 

easily extended to 2-dimensional case by applying two 1- 
D wavelet transform separately [2]. 

In 2-D dyadic wavelet analysis, as in the 1-D case, we 
introduce a scaling function $(xy y) such that: 

where $(x) is a one-dimensional scaling function. 
Let y (x) denotes the one-dimensional wavelet 
associated with the scaling functionm $(x). Then, we 
have three two-dimensional wavelets defined as follows: 

$ @ Y  Y )  = $ ( ~ ) $ ( Y )  ( 6 )  

W Y X ,  Y )  = @(X>V(Y) 
w “ ( x ,  Y )  = V ( ~ ) $ ( Y >  ( 7 )  

w D  (xy Y )  = w(xlw(y) 

11.3 Image Coding with Biorthogonal Wavelets 
A wide variety of wavelet-based image compression 

schemes have been reported in previous literatures, 
ranging from simple entropy coding to more complex 
techniques such as vector quantization [2], adaptive 
transforms, embedded zerotree encoding [7] and edge- 
based coding [5 ] .  The principle of wavelet based image 
coding can be described as follows: the input image Po is 
fed into the first WT unit, the “smoothed version Pl is 
again fed into next WT unit for further decomposition 
while the wavelet details Dt ,Df and 0; are sent to a 
buffer for quantizing and encoding. This procedure is 
repeated J times, forming a J layer pyramid structure 

the wavelet pyramid. The “information packing” property 
of wavelet transform makes the image in wavelet domain 
have a lower entropy than the original, thereby increasing 
the possibility of compression. 

111. Adaptive Quantization Scheme for Image Pyramid 
Coding 

111.1 Problem Formulation 
The proposed adaptive quantization scheme is a scalar 

quantizer. If a variable-length entropy encoder is used, 
uniform quantization is optimal. To achieve the best 
results, a separate quantizer should be designed for each 
subband, which is equivalent to determine the optimal 
step size A for each subband based on the statistics of 
input image. If we represent the original image with J- 
level wavelet pyramid, for a predefined target bit rate 
RTarget, the problem is formulated as to find a set of 

optimal step size { A J ,  ( A))l(i6J,16k61) to minimize the 

overall distortion 

subject to the target bit rate constraint: 
= ~ ( A J ,  A;) ( 8 )  

( 9 )  

Since L2norm is not preserved through biorthorgonal 
wavelet transform, the &has not the simple form of 
direct summation of quantization error of each subband 
as in the orthogonal case. To estimate the overall 
distortion E ,  it is not necessary to perform the complete 
inverse wavelet transform each time the set of 
quantization step is updated. In subband image coding, 
one can assume that quantization error generated in one 
subband will not influence the error generation in other 
subband during reconstruction [4]. Therefore the overall 
distortion depends upon the frequency characteristic of 
reconstruction filters. Then the average distortion per 
sample after reconstruction can be expressed as [4] : 

where oil, 0 2 , ~ ~  and y l  and y h  are the quantization error 
and characteristic value of reconstruction filter 
corresponding to low-pass and high-pass subbands, 
respectively. And y I  , Y h  have the form (for normalized 

filter pair h and h* ): 

( 1 0 )  2 
02, = YI d l  + Y h  O n h  

The extension of above results to 2-dimensional case is 
straightforward. Let yo denote the characteristic value of 

reconstruction filter for LL band, yl for LH band, yz for 

HL band and y3 for HH band, for a J-layer pyramid 
image decomposition, we have 

j= l  k=l 

where Yo = Yl Y12 = Y l  Y h  9 YZ = Y h  Yl and 

Y 3  = Y h Y h ‘  

Rate estimation is another key issue involved in the 
quantizer design procedure. We do not restrict ourselves 
to a particular entropy encoder for the sake of generality, 
instead we adopt an empirical entropy RT introduced by 
Antonini [2] : 

1 J 1 3  
Rr = 4JRJ + c-c R: 

j=1 4 k=l 
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where represent the bit rates assigned to 

sub-image pJ and f i  ,respectively. For sub-image f i  , 
we can estimate the average entropy as follows: 

%f = --Cp(wi)log,p(wj) 

and (16-1). The design algorithm is iterative, and is given as 
follows: 
1) Initially set the quantization table {Ak} by A. = some 

small step; Ak = Am= for k = 1, * -,3 J . 

2) Initialize the tables of {a,} and {Ai} by searching 
1 L  ( 1 4 )  

4’ i=l 
J 

w i  in above expression denotes the codeword 
corresponding to f i  . 

111.2 The Adaptive Quantization Scheme 
The proposed adaptive quantization scheme follows its 

spirit from Wu’s algorithm [l]  for PEG baseline coders 
with some modification. It is felt that the proposed 
scheme is more suitable for wavelet-based image coding 
application. Compared to the quantization table in PEG 
baseline coders, the number of entry in the set of 
quantization step, which equals to the number of 
subbands in wavelet pyramid, is greatly reduced, therefore 
the complexity of the algorithm is greatly reduced. 

The basic concept of the scheme is described as follows: 
starting from a set of initial large quantization step 

{AJ , (A:)lSJsJ,l<kL3} for each subband, corresponding 
to low bit rates and high reconstruction distortion, the 
algorithm decreases the step size of one entry of the 
quantization set at a time until a predefined target bit rate 
is reached. A reasonable quantity that best describes the 

rate-distortion trade-off is __ , i.e., the ratio between 

the decrease in reconstruction error and the increase in bit 
rates. We re-lable the components of quantization table 

-A& 
AR 

to give 

A = {Ao, Al , . - *, A3 J }  for convenient description of the 
scheme. Then we can describe the procedure of quantizer 
design as the following optimization problem: 

The optimization problem of ( 15 ) can be divided into 
two parts; the first part calculates 

-A€ ( 16 -1 ) 
3Lk = max - IAk + & 

a, AR 
for all k and the second part finds 

A = maxAk ( 1 6 - 2 )  
k 

We set the initial value of A. in quantization table 
{Ak} as some small value, e.g. 16, to preserve the visual 
quality of image. The algorithm also maintains two extra 
tables {ak} and {A;} where the Ai  is the solution for 

Ak within domain { 1, * - , A,-,,= - 1} for 

k=1;-- ,3Jand {l,--- ,Ao-l}for k=O so that (16-1) 
has the maximum. 
3) Search k in {0,1,.--,3J} for k* to solve (16-2). 

4) Update k* -th entry of the quantization table {Ak} by 

setting Ak* = A;*. 
5) Update a k *  and Ai* by searching A in 

{I;.., A;* - 1} to solve (16-1) for k = k’ . 
6) if RT 2 RTarget then stop,else goto 3. 

The design algorithm terminates when the bit rate equal 
or exceeds the target bit rate RTarget . For normalized 

filter pair h(n) and h*(n), the absolute value of WT 
coefficient ranges from 0 to 255 and the Am= can be set 
to 255. However, computer simulation suggests that, as 
stated in Wu’paper, for practical image coding application 
at a reasonable bit rate, initializing the quantization step 
table with some relatively small step size leads almost the 
same result as with the maximum allowable step size 255, 
but the number of iteration required to arrive at the target 
bit rate is greatly reduced. 

IV Simulation Result 

Computer simulation was carried out to verify the 
feasibility and effectiveness of the proposed adaptive 
quantization design scheme for wavelet pyramid image 
coding. We compare the performance between the 
conventional and adaptive quantization scheme with the 
standard test image “Lena” of size 5 12 X 5 12 . In both 
cases the test image is decomposed with the same nine 
and seven taps biorthogonal wavelet [2]. The conventional 
quantization scheme uses the same step size for each band 
at the same resolution, decreasing by a factor of 2 when 
going to next coarser resolution, which is optimal for 
orthogonal wavelet decomposition [3]. We obtain PSNR 
of 34.5db at O.4bbp and 32.3db at 0.2bbp with the 
proposed adaptive quantization scheme, compared to 32.2 
at 0.4 bbp and 3O.ldb at 0.2bbp with conventional 
quantization scheme. Fig. 1 gwes the original test image 
and the reconstructed images with the proposed scheme 
at different bit rates. Significant improvement over 
conventional quantization scheme is observed both in 
PSNR perfomance and overall visual quality of coded 
image at the same bit rate. 
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V Conclusion Reference 

In this paper, we have presented a rate-constrained 
adaptive quantization scheme for wavelet based pyramid 
image coding. The scheme is based on a criterion which 
gives the best trade-off between distortion and bit rate and 
adapts to the actual statistics of the input image. The use 
of biorthogonal wavelet leads to better visual quality of 
coded image, which is, however, nonorthogonal in nature 
and the L2 norm of the quantization error is not 
preserved. through nonorthogonal transform. To 
incorporate the adaptive quantization scheme, we have 
derived the formula of quantization error estimation, 
considering the characteristic value of reconstruction 
filter, for biorthogonal wavelet transform under the 
assumption of cross-uncorrelated quantization error 
among subbands, which seems to work well for most 
working wavelets. Empirical entropy is also used to 
evaluate the bit rate of the coded image when the adaptive 
quantization scheme is applied to the decomposed image. 
The immediate estimation of both reconstruction error 
and bit rate makes the proposed adaptive scheme feasible 
and fast in implementation. Computer simulation shows 
considerable SNR gains over conventional scheme and 
comparable visual improvement. 

[ 11 S .  W. Wu and A. Gersho, “Rate-Constrainted Picture- 
Adaptive Quantization for P E G  Baseline Coders,” in 
Proc . Inter. Cod. on ASSP, pp. 365-368, Apri1,1993. 
[2] M. Antonini, M. Barlaud, M. Mathieu and 
Daubechies, “Image Compression Using Wavelet 
Transform,” IEEE Trans. Image Processing, Vol. 1, no.2, 

[3] J. Chen, S .  Itoh and T. Hashimoto, “Scalar 
Quantization Noise Analysis and Optimal Bit Allocation 
for Wavelet Pyramid Image Coding,” IEICE Trans. 
Fundamentals, Vol. E76-A, pp. 1502-1514, Sep. 1993. 
[4] C.K. Cheong, K. Aizawa, T. Saito and M. Hatori, 
“Subband Image Coding with Biorthogonal Wavelets,” 
IEICE Trans. Fundamentals, Vol. E75-A, pp. 871-881, 
July 1992. 
[5] C.K. Chui, Wavelets: A Tutorial in Theory and 
applications, Academic PressJnc. ,New York, 1992. 
[6] S. Mallat, “A Theory for Multiresolution Signal 
Decomposition: The Wavelet Representation,” IEEE 
Trans. Pattern Anal. Mach. Intel., Vol. 11,July 1989 
[7] J.M. Shapiro, “Embedded Image Coding Using 
Zerotrees of Wavelet Coefficients,” IEEE Trans. Siganl 
Processing, Vo1.41, No. 12, pp. 3445-3462, 1993. 

pp. 205220,1992. 

Fig.1 Reconstructed results for 5 12 X 5 12 image Lena 
( a ) original; 

( b ) PSNR: 34.5 at 0.4bbp; 
( c ) PSNR: 32.3 at 0.2 bbp 
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