
Multithreaded Self-Scheduling:
Application o€tw@hpading on Loop Scheduling for

Distributed Shared Memory Multiprocessor
K P Hung, N H C Ymg and Y SCheung

Dcporinrent of Electrical & Elecmnic Engineering
lRe Wniversiw of Hong Kong

Haking Wong Building, Posfulam Road, HONG KONG

Abstract
A new loop scheduling scheme called mul-

tithreaded self-scheduling (MY$) for disfributed
shared memory multiprocessor is pposed Based on
the principles of multithreading, attempts to hide
the remote memory access latencies by switching be-
tween multiple contexts of threads. Consequent&,
loops scheduled by using MST can obtain better per-
formance comparing to the single-thread approoches.

In this paper, a series of simulation results corre-
sponding to various parameter changes arc presented
which provides o measure of the eflectiveness of Ms5
under different boundary conditions and suggests the
ways for jiirther improvements.

1. Introduction

1.1 Distributed Shared Memory1 [Li]

Shared memory multiprocessor offers a favourable
programming paradigm of a global address space for
parallel programs such that concurrent executing pro-
gram components can communicate through shared
variables. However, building an &dent network
connecting all the processing elements can be expen-
sive. Furthermore, such system has poor scalability.

g g p
&.....a

. -
Figure 1. con~~- khmn F ” o r N o d ~

I I I L U f f d R O p E U B h g P ~

On the other hand, distributed memory multiprocessor
is more scalable, but its programming is clumsy and
difiicult as communications between processor nodes
need to be explicitly coded using message passing
Figure I). Therefore, the concept of distributed
sharcd memory multiprocessor is developed to take

and eliminate some oftheir pitfalls.
The hardware architecture ofDSM multiprocessor

is the sameor very similar to that ofdistributed mwn-
ory multiprocessor with the addition of a sdhvarc or
hardware layer (a DSM abstraction) to enable the

~ D S M is) m o m LI shucd v i d M- (SVM)

advantage of both Systems’ desirable characteristics

0-7803-2018-W5/$4.00 0 1995 IEEE

~~ -~

“ry modules distributed over processor nodes to
firm a global a d h space Figure 2). One of the
C- ’ ’cs of DSM m u l t i v r is non-uniform
mawry access (lVU.44). When a “OIY access is
&&, itwillbefastuifthe information requested is
located at the memory module of the local processor
node. Howewr, it wil l take longer ifthe information
requested is located at the memory module o f a remote
processor nodq though the “sm . for tDsuring
data coasistencyovcrtheglobal address space, and the
d a t a t l a ” ‘ ‘on from remote memory module to lo-
cal memoly module are transparent to application
Dro”

prpur I L U f f d Memory Mod& for M ~ p r o c u w r

Although the abstraction of DSM can be imple-
mented at different levels inside the computer hard-
wan or system sofiwa~, application saftware may not
observe their difference in term of functionality
(Figure 3). For examples, Kendall Square Research’s

Flpm 3. Implementdon of DSM in Merent lev&

KSR-12 uses a hardware implementation of DSM
called ALLCACHE3, Open Software Fundation’s
OSF/l-AD4 operating systcm supports an in-kernel
DSM server. There are also many other institutes de-
sign user level DSM servers on top of common dis-
tributed operating systems such as Mach.

1.2 Latency Hiding Techniques

While DSM has merits of shared memory pro-
gramming paradigm and more scalable. its memory
latency problem demands serious consideration. Un-

’KSR-1 U a t n d c m u k c € K e d . U ~ R e a e d ~
3ALLCACHE is a p.tcnttd i n d m of K d Square R-h
‘OSFII-AD is a cndanuk of Open S o h Fwndatio~ Inc.

680

like parallel program executing on distributed memory
multiprocessor which may be scheduled and parti-
tioned to match the underlying architecture for mini-
mizing time consumption in remote memory m,
DSM assumes a shared memory such that application
programs running on top of it have no knowledge
about local and remote memory accesses. Come-
quently, its number of remote memory accesses may
be more than expected. Several latency hiding tech-
niques mw] listed below have been developed to cater
for this situation.

prefetching
coherent caches
relaxed memory consistency
multipleantexts

Prefetching hides the latency of memory accesses
by issuing them in advance and expecting them to be
available when the executing program needs them
[Sa]. Coherent caches try to reduce cache misses by
hardware, and hence less remote memory accesses
frequency resulted. Technique of relaxed memory
consistency models is by pipelining and buffering
memory accesses to hide the latency. Multiplecon-
texts technique attempts to hide latency by switching
between contexts of different program execution com-
ponents when a latency (remote memoty access or
Jynchronizution) is encountered.

1.3 Processes versus Threads

To just@ the technique of latency hiding using
multipleantexts, context switching time is a deter-
mining factor. The context of a process can be divided
into two parts: system resources and execution states.
Typical system resources associated with a process are
addressable memory space, opened files, allocated
communication ports, access control information, etc.
They are often the large part of a process context es-
pecially the memory address space which contains a
large buffer called table lookahead4ookaside buffer
(TLB) for address space mapping. On the other hand,
the context of execution state consists mainly of the
processor registers, stack pointer, and program
counter. It is often a small part of a process context.

In traditional operating system, a process (Figure
4u) supports only a single flow of execution (also
called thread). Therefore, switching between different
flow of executions requires to save and restore the cor-

I ExMhons(.Ll@nd) I

Figure 4. T~aditianni Process and Multithmaded Proeras.

responding process contexts which may take a very
long time because of the sigruficant system resources
involved. In modem operating system, a process
Figure 46) often supports multiple flow of executions
(multifhreud/, and switching between different threads

may be faster as only the contexts of execution states
need to be saved or restored. For this reason, threads
are often called light weight processes and the pro-
grams that contain multiple threads are often de-
scribed as multithreaded programs.

1.4 New Loop Scheduling Scheme for DSM

In this paper, a new loop scheduling technique €or
DSM multiprocessor is proposed. By multithreading
the chunks in guided self-scheduling (GS) scheme,
the remote memory ~ccess latencies, that fkquently
happen in DSM multiprocessor, may be effectively
hidden by switching between multiple contexts of
threads. Therefore, this new scheme is named as
multithreaded self scheduling w).

In order to compare and ana lp the effectiveness
in latency hiding by MSS, a series of simulation
experiments were performed in comparing with the
GSS. The simulation results suggest the boundary
conditions for which MSS can obtain the best
performance which may be useful as the criteria for
improving both of the working mechanism of threads
and the algorithmic approach of MSS.

1.5 Organization of the Paper

This paper is organized into the following sec-
tions. Section 2 revisits some well known loop
scheduling schemes for shared memory multiproces-
sor. Then, multithreaded self-scheduling scheme is
introduced in Section 3 with an explanation of its
working principles and its suitability for DSM multi-
processor In section 4, a simulation model is devel-
oped, and some simulation cases are studied in section
5 so as to compare characteristics of multithreaded
self-scheduling and guided self-scheduling schemes
under different simulation conditions. Lastly, discus-
sions on the simulation results and their implications
are presented in section 6, and followed by a conclu-
sion in section 7

2 Loop Scheduling Schemes

Parallel loops are recognized as a great source of
parallelism when parallelizing a program. Thus, a
number of loop scheduling schemes [Lj] have been
suggested. For a loop with no dependency between it-
erations, every iteration of the loop may be executed in
parallel and it is sometimes called a doall loop. Doall
loops can be scheduled on a shared memory multi-
processor statically @rescheduling) or dynamically
(self-chedulingl. Prescheduling assigns loop itera-
tions evenly distributed on processor nodes. It expects
no runtime overhead in scheduling and a good load
balancing if the execution time for each iteration is the
same. However, varying completion time for different
iterations may result in imbalanced loading, and dy-
namic loop scheduling schemes are developed to solve
this problem by moving the scheduling decision from

681

compile or load time to run-time. The self-scheduling
schemes allow processors responsible to allocate its
own job. Scheduling one loop iteration at a time may
introduce a significant scheduling+- and
chunk scheduling scheme is proposed to schedule
equal- size chunks of a number of iterations at a time
to reduce this overhead. To further hpmve the load
balancing performance of chunk scheduling, Guided
self scheduling (GSS) Po] is developed. It is a practi-
cal loop scheduling scheme which compromises be-
tween load balancing and scheduling overhead. GSS
uses the strategy of decreasing chunk size for scbedul-
ing each successive chunk. The idea of GSS is to re-
duce scheduling overhead by scheduling chunks of
warser grain at the beginning, as well as to maintain a
good balance of load by scheduling chunks of tiner
grain near the end. Referring to an example illus-
trated in Figure 5 , a doall loop of lo00 iterations is
scheduled on a four-processor shared memory multi-
processor by GSS scheme. For each job requested by
a processor after completing a previous job, a chunk
with iteration-size of c will then be scheduled, and c
can be calculated by the following equation.

C = I wp1, where R is number of M o n s remained.
and p is number of p~ocascrs

IWO ltcnbons Dodl Locp

Flgum 5. E v m p k olGSS with Loop Count 1000 8nd 4 Pmcluon

There are also some other scheduling schemes
which derived from the GSS by further improving the
load balancing (Factoring) [Hu] or scheduling over-
head (Trapezoid selfscheduling) pz]. One of the
common features between all of these dynamic loop
scheduling schemes is that they schedule a lot of loop
iterations in a chunk at a time. This " m o n feature
does not only reduce the scheduling overhead but also
allow multiple-contexts (by multithreading) latency
hiding technique to be applied.

3. Multithreaded Self-Scheduling

Although the above self-scheduling schemes are
well known as appropriate methods to schedule loops
on shared memory multiprocessor, using the same
technique on DSM multiprocessor may result in sub-
stantial performance degradation due to the large
number of remote memory accesses. Consequently,
multithreaded self-scheduling Fiss) scheme is pro-
posed in this paper to address this issue.

h executing doall loops with large number of it-
erations on multiprocessor system, they are often di-
vided into chunks. Each chunk contains a number of
iterations andsdxeoutes on an allocated processor node
BS a PKKXSS. For example using GSS scheme in figure
6, a doall loop with loop count of 1000 may be divided
into a number of chunks. These chunks can then be
scheduled on processor nodes as smaller processes
(sub-tasks).

C l p . L A D . . I I h l p - m w m r . ~ M ~ n a s n r

A sub-task can further be divided into smaller
processes such that each iteration is itself a process.
Furthermore, these one-iteration processes may share
the same system resources in execution. Hence, it is
appropriate to define them as threads and to encapsu-
late them into a process sharing the same system re-
sources instead. This configuration of multithreaded
sub-task supports multiple contexts of threads with ef-
ficient thread management operations. It is also the
basic chunk defined in the scheme of MSS.

When a sub-task is executing on a processor node,
situations may arise that latency is introduced. Two
kind of latencies are often common in DSM multi-
processor, namely remote memory access latency and
synchronization latency. Executing an instruction may
involve some operands, and these operands may be 10-
cated at different processor nodes. For example, as
described in figure 7, the operands, Ma and Mb, are
located at processor node A and B respectively. If the
processor node, say A, is not the same node where the
instruction is executing, this operand needs to be re-
quested from the remote processor node A. Thus, a
remote memory access latency would be expected.
Moreover, the two operands, Ma and Mb, are likely to
be available at different time t l and t2 respectively.
For this reason, the execution may have to wait until
both of them are available. Thus, a synchronization
latency (t2 - t l) would be expected.

Sl sa S"

Figure 7. A Typial Mollithmded Sub-task

Remote memory acccss latency may be. considered
as substantial. However, synchronization latency is
difficult to forecast, it may be small or large and varies
according to different program behaviours and execu-
tion environments. In MSS, only the remote memory
access latency is intended to be hidden.

682

The working principle of MSS (Figure 8) is based
on the cooperative work of DSM server and sub-task’s
thread scheduler. When a memory access is issued,
the DSM server determines the availability of the in-
formation requested in the local memory module. If it
is in the local memory module (a hir), a local memory
access is performed and the current executing thread
continues. However, if it is not in the local memory
module (a miss), the DSM server resolves the memory
access by requesting it from a remote processor node.
There are various methods to perform this resolution
in different DSM schemes pi]. In MSS, DSM server
needs to acknowledge the thread scheduler on a miss,
and the scheduler can base on this information to
block the current executing thread and allocate the
processor to another runnable thread. As the remote
access is completed and the information is transferred
from the remote memory module to the local memory
module, the thread scheduler is acknowledged again
such that the previously blocked thread can then be
changed to a runnable thread for reallocation. If the
time cost for managing the threads is small (or cheap)
and there are sufficient number of threads for switch-
ing, the remote memory access latency may be effec-
tively hidden.

Figure 8. Block Diagram of MdtlUvuded Self-Sehednllng

Although only GSS is multithreaded for our
simulation study, MSS is a general technique which
may be applied to most self-scheduling schemes with
reasonable chunk size. Chunk self-scheduling, factor-
ing, and trapezoid self scheduling are all possible be
multithreaded. Furthermore, prescheduling can also
be multithreaded as long as the chunk size is large
enough.

4 Simulation model

In order to compare the performance of the mul-
tithreaded self-scheduling scheme against the tradi-
tional self-scheduling scheme, a simulation model was
built and tested b a d on both the MSS and GSS. The
corresponding chunks scheduled in MSS are the same
size to those of GSS. The difference is only on the be-
haviour of the chunks. In MSS, each chunk is a mul-
tithreaded process, while it is a single-thread process
in GSS as depicted in figure 9.

The scheduler in figure 9a refers to the thread
scheduler of MSS. It is responsible for multiple
threads execution management. A thread can be of

Merent states Figure 10) and any change of its state
1s pcrfomed through the thread scheduler

, .

@) D d Loop Exccutsd by Guided Self-Scheduling
Figure 9. Dmerent &h.vlour of chrmkr In MSS and GSS.

For the sake of simplicity in the simulation, the
overheads on creating and destroying threads are ig-
nored by the assumption that the number of context
switching operations between threads is &ciently
large compared with the h e a d creation and destruc-
tion operations, hence the total time of context
switching operations dominates the overall execution
time of a chunk contributed by thread management.
This is often the case because thread creation and de-
struction are mostly the allocation and deallocation of
small storage for the execution states @rocessor regis-
ters, stack pointer, program counter). These over-
heads are generally small though it depends on the
specific system and thread implementation method. In
addition, the number of context switchings is substan-
tial in MSS as remote memory accesses are common
in DSM multiprocessor, and each remote memory ac-
cess triggers at least one context switching (one for

W
Figure 10. State Diagram of a T h d hi MSS.

blocking this thread, and maybe another one for dis-
patching this thread later when the remote memory

683

data is available). Furthermore, ~ynchrO&tions
between threads are also ignored by the fact that there
is no dependency between threads in doall loops.

Intuitively, the trade-off between M$s and GSS is
the context switching time and the remote memory ac-
cess latency. Therefore, several simulation cases were
investigated and simulated with varying simulation
parameters in order to study this intuition in details.

5. Simulation Cases

The doall loop used in the simulation is shown in
figure 11. It contains no interdependency between dif-
ferent iterations within the loop, and each iteration is
characterized by the portion of ExeOnly (execution
time units without memory access) and the portion of
ExeMem (execution time units with memory access).

DOALL I = 1, N
ith iteration fEueOnlv. EwMem) _, I ENDDO I

Figure 11. A D o d loop for the iimuLtlon experiments.

Throughout the simulation, the distribution of two
kinds of execution time units (Ereonly and ExeMem)
in an iteration is assumed to be random because mem-
ory access distribution in a set of instructions is de-
termined by the specific application, the coding
method of the programmer, as well as the code gen-
eration method of the compiler. With such complex
factors affecting the memory access pattern, it is al-
most impossible to forecast when a memory access
will be issued. Therefore, the use of random memory
access pattern seems appropriate in this simulatil

Context Switching T": 200 or 400 Pnfh
9l %
10 d t s
1000 units

Local Memory Accesses Hit Rotio:
Local Memory Accesses Latency:
Remote Memory Accesses Latency:
h e o n l y (Per Iterotion WithoutMemory
Access Erecution Time Units): 1000
ExeMem (Per Iteration With Memory
Access Erecunon Time Units): 500

Number offrocessors: 20
Number ofLmp Iterotions: 1000

F'lgurc 12. DeQdt SimuLUon Parmeten.

study. Moreover, the occurrence of local memory ac-
cess is also assumed to be random and fixed by a hit
ratio. The reason for assuming random ocamence of
local memory access is very similar to that of memory
access pattern because it is also affected by program-
ming method, code generation method, specific appli-
cation as well as DSM schemes. The latencies of dif-
ferent kinds of memory a m are fixed to a constant
so that remote memory access latency is a fixed time
period everytime and so as the local memory access
latency. It is the simplest model of a NUMA multi-
processor without considering the variation of the
memory access latency. In real situation, it i s often
acceptable as the time difference between local mem-
ory access and remote memory access is large so that

the lattncy variations of these two kinds of memory
accesses a very localiwt Therefore, an acceptable
approximation of thm using constant values as in
this simulation.

sets of simulation experiments are performed
and they a based on di&rent context switching
times, namely 200 and 400 time units. Unless a spe-
cific simulation parameter is being varied, the default
values for these parameters arc given in figure 12.

These parameters an cardully chosen with the
objective of decting Mnnt rtalistic situations.

The default context switching time is 200 or 400
units which may nas~nably reflect the context
switching time for saving and restoring processor
contexts. We do not assume a fast context
switching time because most of the thread imple-
mentations currently are performed at the software
level. User-space threads have faster context
switching time. white kernel-level threads have
slower context switching time.
The default hit ratio is 97% because the effect of
locality is assumed; though it may vary on swap
page size, specific application, etc.
The default local memory access latency is 10 units
and that of remote access latency is 1000 units. The
local memory access time is very fast by its nature
and is likely to be much faster than the context
switching time, therefore 10 units are assumed. On
the other hand, the remote memoxy access is
generally considered as a slow process affected by
the speed of the interconnection network and its
contentions, routing algorithm, and DSM server
overhead. Consequently, it is assumed to be several
times slower than the default context switching
time.
ExeOnly and ExeMem are application specific and a
reasonably long iteration is assumed.
The default number of loop iterations is 1000 while
the default number of processors is 20 so that a
reasonably large chunk size for self-scheduling
schemes is d t e d . The numbers are not chosen to
be excessively large so that the simulation cases can
be completed within a reasonable time period.

Avvlyc Procaror B ~ u y Time

Ovenll E x d o n Time.
~ due pmcrva is bury mun thttbc pmccvor U podusiug outpur

One of the aims for applying latency hiding tech-
niques in DSM multiprocessor is to improve the effi-
ciency of the processors by minimizing their idling
time and keeping them busy as often as possible.
Therefore, we present also the simulation results in the
characteristics of processor efficiency by the following
formula.

5.1 Effect of Varying Thread Context Switching
Time

This simulation experiment is performed by
varying the context switching time from IO to 1500

684

time units. MSS's overall execution time decreases a p
proximately linearly as the context switching time de-
creases. However, GSS shows a behaviour that is in-
sensitive to context switching time changes. The two
graphs intercept at a point with context switching time
of 970 time units and execution time of 910,000 time
units. For context switching time smaller than 970
time units, MSS performs better than GSS and reaches
35,000 execution time units as context switching time
approaches to zero. Beyond 970 time units of context
switching, MSS performs poorer than GSS.

300000 4
0 500 two t 500

context Swttshlng Tlml UnlO

Figure 13. Execuiion Time vs Context swltchlng Time

Similar to the case of execution time versus con-
text switching time, two graphs of processor efficiency
versus context switching time intercept at a point with
context switching time of 970 time units. However,
MSS shows an exponential increase of processor effi-
ciency as context switching time decreases. When the
context switching time approaches to zero, the proces-
sor efficiency approaches 21.5% which is more than 2
folds better than that of GSS's 8.5%.

I

I

0 5W IO00 two
Conhxt S W h l n g Tlml U n b

Flgwe 14. Proeruor Efficiency VI Context Switching T h e

5.2 Effect of Varying Local Memory Accesses
Hit Ratio

This simulation experiment is performed by
varying the local memory-accesses hit ratio from 70%
to 99%. For comparing the overall execution time as
in figure 15, MSS performs better than GSS in this
range of hit ratios. Furthermore, it may be expected
by projection to have a higher improvement if the hit
ratio goes below 70%. MSS has relatively small

variation in overall execution time in this range (e.g.
fiom 360,000 to 1894,0000 in MS-200) compared
with that of GSS (from 360,000 to 7680,000 in GSS-
200). However, all the graphs converge as the hit ra-
tio approaches to 100%. To an extreme, hit ratio of
100% is actually the special case of shared memory
multiprocessor.

4 3 - 0 - - M-

I""" *- :-

70 75 80 C 3 M M tW

L O C ~ I Mmow h e s s nn m o (XI

Figure 15. Execution T h e verclu Loal M u n o y Accrues
Hlt h t f o

While execution time shows a linear relationship
with the local memory access hit ratio, the processor
efficiency exponentially improves as the hit ratio in-
creases. With very high hit ratio, say 99%, both MSS
and GSS have processor efficiency of 21%. However,
GSS shows a substantial decrement (8% ut 97% hit
ratio, 3% ut 90% hit ratiofor GSS-200) as the hit ratio

70 75 80 C3 M 85 100

LOU(M m o y ACC*SS nn nauo (XI

F i p m 16. Processor ElIidency v e m L n d Memory
Arresra €Ut Ratlo

decreases. Relatively speaking, MSS suffers smaller
processor efficiency degradation on decrement of hit
ratio (1 7% ut 97% hit rutio. 9% ut 90% hit ratio for

5.3 Effect of Varying Local Memory Access

MSS-200).

Latency

This simulation experiment is perfomed by
varying the local memory access latency from 10 to
250 time units. All the graphs in the plot of overall
execution time versus local memory access latency are
linear and very close to each other. However, MSS
shows a constant improvement in overall execution

bme compared wlth the GSS in this range of local
memory access latency.

In processor efficiency, the g r a p & & q y e cyo-

SWOMH)

E
5 -
E 4woMKl

Pmooooa I

U

; swoooo

1000000

0
0 50 1w 150 zw 250

Local Memorykceu h b n y

Flgure 17. Execution The vernu Loal Mmory
Accor Latency

nentdly as the local memory access latency increases.
For the latency larger than 100 time Units, all 4 graph
are sufficiently close to each others such that no sig-
nificant difference in processor efficiency can be
found However, for the latency s d e r than 100 time
uruts, MSS (16% at 10 trme units latency) shows a
two-fold improvement compared with GSS (8% at 10
time units latency)

0 50 100 150 2 0 0 m
Local Memory Access Mmsy

Figure 18. Processor Eftlciency v e m L o 4 Memory
Accws Latency

Effect of Varying ExeMem (Per Iteration
With Memory Access Execution Time Units)

0 204 400 uw) 8w
ExeMem (Per nenaon %" Memory Ae- %.cullon

Tlme UniEl

Figure 19. Execution Time Unlta versua ExeMcm

This simulation experiment is performed by
varying the ExeMem from 100 time units to 800 time

units. Figure 19 shows that the execution time per-
formance of MSS is always bener than GSS in this
range of E M e m . AS the ExeMun increases, im-
provement in overall execution time for MSS from
GSS increases. AU the graphs show a linear relation-
ship between overall execution time and &&em, and
are (by projection) to converge at a point
near zero ExeMem.

1 -.
10

0 4 I

0 200 400 6w MH)

ExeMem (Per Itention Wlm Memory k c e n E x E d o n
Tlme Unk)

Fipu-c 20. Processor Emdency v e m ErcMm

Processor efficiency increases exponentially as the
ExeMem decreases. In this range of ExeMem, MSS
always performs better than GSS (38% at 100 Exe-
Mem for MSS-200 versus 24 % at 100 ExeMem for
GSS-200 and 13% at 800 ExeA4em for MSS-200 ver-
sus 7% at 800 EreMem for GSS-200).

5.5 Effect of Varying Number of Processors in
the Multiprocessor

0 50 100 150 zw 250 MO
Number Of.Pmcessors

F1pu-c 21. Execution T h e Units venw Number of
P m u r o n

This simulation experiment is performed by
Varying the number of processors from 16 to 256. The
overall execution time increases exponentially as
number of processors decreases. The graphs almost
converge at the point with 256 processors while MSS
shows substantial improvement over GSS with smaller
number of pnmssors (e.g. 1100,000 time units at 16
processors for GSS-200, and 570,000 time units at 16
processors for MSS-200).

Processor efficiency decreases linearly as the
number of processors increases. However, the graphs

686

show a small variations in the processor efficiency
changes with variation in the number of processors

Ratio of MSS to
GSS Execution

In T

Ratio of Context Switching
Time to Remote Memow

I
0 SO 4 0 0 I50 200 2% 3W

Number of Pmcessors

Figure 22. Processor Emcicncy vcmu Number of
Processon

(1 6.2% at I6 processors and 14.2% at 256 processors
for MSS-200, while 8.2% at 16processors and 7.2% at
256processors for GSS-200).

70

from GSS to MSS
(CS Time = 200)

ftom GSS to &S
(CS Time = 400)

2 99 1 7 7

70.8 50.0
nq.9 80.0

QI n
~

103.8

" a b l e thread may effectively hide the latency.
However, when runnable threads are exhausted,
blocking a thread by switching may be redundant be-
cause there is no other runnable thread that can use
the processor. It may prolong the latency by switching
back when it becomes a runnable thread again upon
the availability of the remote memory data.

Beyond the intercepting point, overhead of con-
text switching becomes dominant, as such MSS results
in a poorer performancc compared with the GSS.
This simulation result suggests that MSS may be an
effective way for latency hiding only if the context
switching time is reasonably smaller than the remote
memory access latency. Furthermore, the per proces-
sor efficiency is improved substantially when context
switching time is smaller than 30% of the remote
memory access latency as indicated in figure 14. The
processor efficiency is improved approximately 2%
per each 100 time units of context switching time de-
creases within the range of 0 to 300 time units of con-
text switching time, while it is about 1.14% in the
range of 300 to 1000 time units and even smaller for
the range larger than 1000 time units. However, to
shorten the context switching time in the former range
may require substantially more efforts compared with
the later range.

The second simulation experiment investigates
the effect of varying the local memory access hit ratio
to the loop scheduling methods. From figures 15 and
16, we can observe that both MSS and GSS converge
to one point as the hit ratio approaches to 100% which
is also the special case of shared memory multiproces-
sor. It is because the number of remote memory ac-
cesses approaches to zero and hence the thread
switching benefits no longer exist. As the hit ratio de-
creases, the performance improvement of MSS is more
significant. From this result, it is suggested that GSS
and MSS have very similar performance on shared
memory multiprocessor, while MSS may be more
suitable for DSM multimxessor if the simulation

100.0

parameters hold.
I Hit I Percentageh- I Percentageh- 1

I Ratio provement in Proc- provement'm Proc- I (%) I essorEfficiency 1' essorEfficiency 11
7.93 4.21
7.67 4.61

99
Table 2. Percentage Improvement on Processor
Efficiency with different Locnl Memory Access

Hit Ratio.
Another interesting observation is that the per-

centage improvement of processor efficiency is not
monotonous as depicted in figure 16. Moreover, some
quantitative comparisons can be found in table 2. The

percentage improvement reaches the highest point at
hit ratio of around 96%. It may be explained as fol-
lows. For the case with very high hit ratio, the number
of remote memory accesses is small such that the
merit of MSS in latency hiding ~ ~ ~ ~ e c t i i e l y
shown. Hence, a relatively small processor efficiency
improvement. On the other hand, a very low hit ratio
results into a large number of remote memory accesses
and relatively insul%cient available threads for effec-
tive multiplecontexts latency hiding. Therefore, the
processor efficiency improvement is relatively small
too. For an optimal point, the hit ratio should not be
too high or too low such that the number of threads
matches the number of remote memory accesses for
the best latency hiding effect. In short, the number of
iterations (threads) in a chunk and number of remote
memory accesses may require to match in order to
obtain the best processor efficiency improvement by
MSS.

Referring to figure 17, we can observe that the
variation of local memory access latency has no sig-
nificant effect on the overall execution time difference
between MSS and GSS. It can be interpreted as the
improvement on latency hiding will not be affected by
this parameter. It is logical as the switching of
threads is merely determined by the signal from the
DSM server to the thread scheduler which in turns is
decided by the nature of the memory access (local or
remote). If the local memory access latency is large
compared with the context switching time, the per-
formance of MSS would be improved further by
switching threads on encountering any kind of mem-
ory accesses.

Since the number of local memory accesses is
large for the default hit ratio (97%), the improvement
on processor efficiency becomes insigruficant when
the local memow access latencv increases as shown in

100
200
400
600
800

figure 18. Theie is no reason to spinning (spinning
I ExeMem I Percentageh- I Percentageh- 1

provement in provement in
Processor Effi- Processor Effi-

ciency from GSS
to MSS (CS Time

ciency from GSS
to MSS (CS Time

= 200) = 400)
13.8 8.4
11.8 1.3
8.9 5.1
7.0 4.3
6.2 3.6

efficiency is slightly deduced figure 20 and table 3) as
ExeMem increases. It can be explained that the fewer
the memory accesses (and hence fewer remote memory
accesses) the better the MSS can hide the remote
memo$ access latency. It is expected that the im-
provement in processor efficiency may drop again
when the number of memory ~ccesses is very small
which is similar to the case with high local memory
access hit ratio.

The last simulation experiment is performed by
varying the number of processor nodes in the multi-
processor. This in turns varies the average chunk size
on scheduling. From figure 21, it is obsewed that the
performance improvement of MSS is more significant
when the number of processors is small (execution

provement in

1 16 1 =? 1 Tim:;400) I
32 7.6 4.5
64 7 6 A S

ficiency with &ere& Number of Processors.
time improvedpom I1 00,000 to 579 000 time units at
16 processors). In addition, figure 22 and table 4
show that the percentage improvement on processor
efficiency of MSS and GSS is converging slowly.

For the case with fewer processors, the average
chunk size is relatively large and multithreading on a
larger chunk may result in a better latency hiding ef-
fect. However, as the number of processor nodes in-
creases, the performance of both GSS and MSS con-
verges. In one extreme, the chunk size reduces to one
when the number of processor increases to 1000. In
this situation, the MSS and GSS have no difference as
processor nodes in both schemes have only one thread
to execute. Of course, the task completion time is
faster with an increasing number of processors but the
processor efficiency is poorer. Actually, scheduling
one iteration at a time is not a good idea as the
scheduling overhead is great, a slight modidcation of
GSS had also been suggested in [Po] to define some-
how a minimum chunk size which may also be bene-
ficial to MSS.

6.2 Different Level of Threads

In the above simulation study, we have not as-
sumed any specific threads implementation as well as
the details of the DSM. Since their implementation
decisions may be closely related, threads (like DSM)
can also be implemented at different levels. As we
have discussed the implementation choices of DSM
before, let us look at the issues on threads now. In
practice, threads can be classified as user-level threads

688

and kernel-level threads. User-level threads imple-
mentation can result in fast thread management op-
erations because the thread scheduling is in the user
space. However, the scheduler has no way to access
the information in the kernel and hence only non-
blocking type kernel system calls may be used which
are usually slower. In contrary, kernel-level threads
implementation does not have this problem as the
scheduler can obtain the kernel information for thread
management but it suffers a serious performance
drawback as thread management needs to be per-
fomed through system calls. Furthemore, the crash
of a kernel thread may corrupt the kernel so that pro-
tection checking on kernel thread operations has to be
performed which is time consuming.

A hybrid kerneUuser-level thread management
system based on scheduler activations have been sug-
gested which contains the most benefits of user-level
thread and kernel-level thread [An] pa] . The idea of
this management system is that user-level threads are
built on top of a kernel entity called scheduler activa-
tion. Scheduler activation supports communications
between user-level threads and the kernel by notifying
the user-level threads of kernel events and vice versa.
Therefore, the performance of such threads is good for
they are executing in user-level, as well as retaining
the functionality of kernel level threads.

7. Conclusion

From the above performance analysis of MSS and
GSS, we conclude that MSS is an efficient loop
scheduling scheme for DSM multiprocessor. How-
ever, several considerations may be desirable in order
to obtain the best performance from MSS.

The context switching time between threads needs
to be small compared with the remote memory ac-
cess latency. For our default simulation parameters,
the context switching time of 30% or below of (i.e.
below 300 time units) the remote memory access
latency can result in 1.8 to 2.6 times processor effi-
ciency improvement or 1.7 to 2.4 times execution
time improvement by using MSS instead of GSS.
For the case with context switching time compara-
ble to or larger than the remote access latency, MSS
performs poorly.
The number of remote memory accesses and the
number of threads on a multithreaded sub-task need
to be matched for the best processor efficiency.
Therefore, calculation of chunk size (number of
threads) can be modified from the method of GSS
with consideration given to the number of remote
memory accesses.
Local memory accesses may also be hidden if con-
text switching time is d c i e n t l y small comparing
to local memory access latency.
MSS is more efficient in the situation where the
number of processors in the multiprocessor is scarce
and the loop (or total number ofthrearls) is rela-
tively large.

Several issues related to this simulation can be
further investigated. A more sophisticated simulation
model which considers both the memory locality effect
of DSM and some real problem loops can be studied.
A machine realization of MSS is now under investi-
gation which would reflect the real execution environ-
ment more accurately. Further investigation on apply-
ing the concept of MSS to other scheduling schemes is
in progress, which may eventually cover the doacross
loop and with other dependencies.

8. References

[AnIT. E. Anderson, B. N. Bershad, E. D. Lazowska,
H. M. Levy, "Scheduler Activations: Effective
Kernel Support for the User-Level Management
of Parallelism," Proc. of the 13th ACM Sympo-
sium on Operating &stem Principles, in Operat-
ing &stem Review, Vol25, No. 5, pp 95-109, Oct.
1991.

palp. B. Davis, D. McNamee, R Vaswani, E. D. La-
zowska, "Adding Scheduler Activations to Mach
3.0," Technical Report 92-08-03, University of
Washington, Aug. 1993.

[HuIS. F. Hummel, E. Schonberg, and L. E. Flynn,
"Factoring: A Practical and Robust Method for
Scheduling Parallel Loops," Proc. Supercomput-
ing 91, IEEE CSPress, pp. 610-619, 1991.

pw]K. Hwang, "Advanced Computer Architecture:
Parallelism, Scalability, Programmability," Com-
puter Science Series, McGraw Hill, Inc., pp. 475-
504, 1993.

pi]K. Li. "Shared Virtual Memory System on
Loosely Coupled Multiprocessor," Technical Re-
port, Yale University, 1986.

[Lj] D. J. Lilja, "Exploiting the Parallelism Available
in Loops," IEEE Computer, Feb. 1994.

[NiIB. Nitzberg, V. Lo, "Distributed Shared Memory:
A Survey of Issues and Algorithms," IEEE Com-
puter, Vol. 24, pp. 52-60, Aug. 1991.

[PoIC. D. Polychronopoulos, D. J. Kuck, "Guided
Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers," IEEE Trans. Com-
puters, Vol36, No. 12, pp 1425-1439, Dec. 1987.

[Sa]R H. Saavedra, W. Mao, K. Hwang,
"Performance and Optimization of Data
Prefetching Strategies in Scalable Multiproces-
sors," Joumal of Parallel and Distributed Com-
puting Vol. 22, 1994.

[TzIT. H. Tze4 L. M. Ni, "Trapezoid Self Schedul-
ing: A Practical Scheduling Scheme for Parallel
Computers." IEEE Trans. Parallel and Distrib-
uted@stems, Vol. 4, No. 1. pp. 81-98, Jan. 1993.

689

