
Performance Analysis of Median Filtering on Meikom - a Distributed

Multiprocessor System

K M Poon and N H C Yung

Department of Electrical & Electronic Engineering
The University of Hong Kong

Haking Wong Building, PoSfitlam Road, HONG KONG
Tel: 852-2859-2685 Fa: 852-2559-8738 Email: nyung9hkueee.hku.M

Abstract

This paper presents the performance analysis of real-
izing median filtering on a distributed multiprocessor
system. The results of the performance analysis give a
good indication of the performance gain in using
multi-processor for median filtering over uni-proces-
SOT. Such performance gain is proportional to the
problem size as shown by varying the size of the im-
age. Furthermore, through the analysis, it is clear
that the computation time and inter-processor com-
munications scale well with the number of processors
in the system. However, the overall system perform-
ance does not have such behavior because of the ini-
tialization overhead dominating the computation time
as the number of processors increases beyond a cer-
tain point. It is because of this relationship that an
optimal performance is achievable with a certain
number of processors. It is also found that this num-
ber varies with the problem size. In nddition, the sub-
image model is found to be an acceptable approach
for this type of processing as only the necessary parts
of the image are sent to the other processors. The
master and slave scheme proves to be easy for pro-
gramming, control and data manipulation. As a
whole, this type of non-linear processing seem to fit
well into the MIMD architecture.

1 Introduction

Typical digital images in practice are often degraded
in some manner and to some extend that requires
specially designed algorithmic steps to reduce or
eliminate the degradation effect before they are dis-
played or further processed. The objective of image
restoration is to determine an output image j (x , y)
that resembles its original image f(x,y) as closely as
possible [I , 21. In order to achieve this objective, im-
age restoration algorithms must be carefully chosen to
deal with the type of degradation introduced at the

input channels, transmission medium, sensor and/or
digitiw. Typical degradation effects are blurring,
distortion, additive random noise such as Gaussian
white noise and salt-and-pepper noise; and signal-de-
pendent noise such as speckle, film grain noise and
quantization noise [3].

In general, image restoration algorithms are mathe
matically complex. Within this category, there is a
subset of algorithms that are simple and heuristic, and
has been widely employed to perform deblurring and
noise removal in the spatial domain. Most of these
algorithms are designed to deal with the more popular
and practical types of signal-independent noise, e.g.
Gaussian white noise, salt-and-pepper noise, burst
channel errors and noise with a geometric structure
[41.

Mathematically, an image degraded by additive ran-
do,m noise can be represented by

g b y) = f (X > Y) + l l (X , Y) (1)

where g(x,y) is the degraded image of an original im-
age f(x,y) due to an additive noise distribution
q (x , y) . The process of noise removal may be inter-
preted as given g(x,y) and the knowledge of the sta-
tistical nature of q(x,y), an approximation, p(x.y)
of f(x,y) can be obtained. More specifically, f (~ , y)
may be calculated by

N
N

f (x , y) = i = - N T [g(x+i ,y+j) l (2)
j = - N

where n.1 denotes an (ZN+l) by (2N+1) local win-
dow operator and N is an integer in this case.
For an image of size M by M, the number of pixels to
be processed by each local window operation is M2. If
the local window operation is convolution-based, it

Meikom is the trademark of Meiko Limited.

63 1

0-7803-2018-2/95/$4.~ 0 1995 IEEE

requires on average (2N+1)2 multiplications and
(2N+1)2-1 additions to complete each local convolu-
tion. This gives a total of 2(2N+1)’-1 ,acjth&etic Op-
erations per pixel by assuming that the s& in exe-
cuting multiplication and addition are the same. If the
local window operation is a ranking operation, it re-
quires (2N+l)ln(2N+1) number of comparisons using
a quick sort algonthm per pixel. This gives the fol-
lowing relationships

For convolution-based operator:
Number of x/+ per image = M2[2(2N+1)2-1 J

For ranking-based operator:
Number of comparisons per image =

(3)

M2[(2N+l)ln(2N+1)J (4)

From equations (3) and (4), the number of multiplica-
tiondadditions and comparisons required by the two
types of filtering operations are depicted in Table 1. It
should be noted that a comparison can be assumed to
be a lot slower than a multiplication or addition.

As can be seen in the above table, for typical M (512)
and N (=2), the number of computations is compara-
ble and rather large in both cases. If real-time re-
sponse is desired, it is obvious that the processing
platform should either be a very powerful and dedi-
cated uniprocessor or a massively parallel multiproc-
essor. It is the intention of this paper to investigate the
issues related to the realization of these computation
intensive image processing algorithms on multiproc-
essors. The target platform chosen is the Meiko””, a
distributed multiprocessor system and the target algo-
rithm chosen for realization is the median filtering.

This paper presents the performance analysis of real-
izing median filtering on Meiko. The results of the
performance analysis give a good indication of the
performance gain in using multi-processor for median
filtering over uni-processor. Such performance gain is
proportional to the problem size as shown by varying
the size of the image. Furthermore, through the
analysis, it is clear that the computation time and in-
ter-processor communications scale well with the
number of processors in the system. However, the
overall system performance does not have such be-
havior because of the initialization overhead dominat-
ing the computation time as the number of processors
increases beyond a certain point. It is because of this
relationship that an optimal performance is achievable
with a certain number of processors. It is also found
that this number varies with the problem size. In
addition, the sub-image model is found to be an
acceptable approach for this type of processing as
only the necessary parts of the image are sent to the
other processors. The master and slave scheme proves

to be easy for programming, control and data manipu-
lation. As a whole, this type of non-linear processing
seems to fit well into the MIMD achitccture.

N, M and Local Window Size

The paper is organized into a number of sections
covering the aspects of basic median filtering, its
merits and pitfalls; the Meikon” computing surface;
the implementation of median filtering in a distributed
parallel environment and the analysis of the
realization results. Discussions on the performance
analysis and the lesson learnt will also be presented.

2 Median Filtering

Median filtering has been extensively used and is
generally accepted as an effective algorithm for
removing strong, spike-like components in a noisy
image [5, 6, 71. This non-linear filter algorithm is
particularly suited for reducing salt-and-pepper noise
with the advantage of preserving most of the edge
information. As pointed out in [5] , although noise
suppression is obtained, signal distortion is introduced
and some high spatial frequency features are lost. This
manifests as a small degree of edge blurring in the
restored image, which is not as large scale as those
caused by some other filtering algorithms. This effect
is not entirely undesirable if some of the fine details in
the image are to be removed before object
segmentation, or small gaps in lines or curves are to
be filled. However, the distortion may be
unacceptable visually and the reduction of the
sharpness of lines, edges and boundaries may even-
tually affect the accuracy of the subsequent feature
extraction and recognition processes.

Conceptually, median filtering is quite a simple algo-
rithm. In the case of non-recursive median filtering,
an odd number of pixels within a defined local win-
dow is ranked, and the median is taken as the filter

632

output. Based on this concept, there exist many forms
of median filter [7] such as the recursive median filter
which has the filter output fed back to the tilt& and
madmedian filter which is reputed to remove noise as
well as preserving geometrical features in the image.
However, in our performance analysis, we will focus
on a general non-recursive median filter which has the
following definition.

For an image degraded by additive noise, we can as-
sume equation (1) holds. In general, a two-dimen-
sional (2N+1) by (2N+1) non-recursive median filter
is defined by

f(x,y)=median{g(x+ i , y + j)l
i = - N ,.., -l,O,l,.. N , j = -N,..-l,O,l,.. N)

(5)

where f(.r,y) is the restored image defined as the
median of the pixel values enclosed in a two-dimen-
sional window of size (2N+1) by (2N+1) centered at
g(x,y).

An example is depicted in Figure 1 with N=2 and Me
500, a window size of 5x5 is used for determining
j (x . y) . The original image (Figure l(a)) is a typical
high-resolution head-and-shoulder picture of a lady.
The noisy image (g(x,y)) is degraded by salt-and-
pepper noise (Figure l(b)) and Gaussian white noise
(Figure l(c)) of a signal-to-noise ratio (SNR) of -50
dB in each case. It can be seen from Figures l(d) and
I(e) that the visual quality of the restored images is
acceptable, although a number of features of this
algorithm should be noted. Firstly, the line and edge
information of the restored image is slightly distorted.
This is manifested in the form of reduced shharpness in
those features especially on the right hand background
of the image. Secondly, the strongly clustered noise
components in the Gaussian white noise case is not as
effectively removed as the salt-and-pepper noise case.
This is evident in the restored image (Figure l(e))
where clustered noise components still remain
although sparsely populated. This is due to the
median determined by equation (5) is a noise pixel
instead of a 'good image pixel in those local regions
with more noise pixels than 'good pixels. Comparing
this with other noise removing filters, median filter in
fact performs much better than averaging, and is on a
par with sigma filter in the Gaussian's case [8].

Comparative study of the computational complexity
of the median filter and other filters such as the aver-
aging filter, and sigma filter show that median filter-
ing requires more computational resources than the
averaging filter, max/min filters and even the sigma
filter because of the comparison operation and the
number of comparisons needed in sorting [8]. This

becomes worst when N increases. Typical value of N
is two or three. For N equals 2, measured timing
statistic shows that the median filter is roughly 5.25
times slower than an average filter and 1.2 times
slower than a sigma filter.

Figure 1: Median filtering of a 477 x 505 image
using a 5x5 window size (a) Original image; @)
Noisy image degraded by salt-and-pepper noise; (c)
Noisy image degraded by Gaussian noise; (d) Re-
stored image of (b); (e) Restored image of (c).

In order to make median filter a viable algorithm for
practical noise removal in terms of both noise elimi-
nation capability and computational speed, parallel
processing is an attractive proposition. Although cer-
tain speed-up factor is anticipated when parallel proc-
essing systems are employed for the filter realization,
understanding must be obtained with regard to the
optimum number of processors used, communication
overhead between processors and the overall delay
including the input and output of the large image
array. Therefore, it is the intention of the following
sections to explore these areas, and especially in

633

Section 4, determine whether there exist an optimum
processing configuration, how the communication
scheme between processors affect the ~ ~ e t p l l per-
formance, and the effect of moving a large image
through the input and output channels.

SvrHod

3 MeikoTM Computing Surface

MKOM MKO96 -

The Meiko" Computing Surface is a RISC-based
distributed-memory multiprocessor system. It con-
sists of three types of processors in the whole system:
the INTEL i860, the SUN SPARC 2 and INMOS
T800 transputers. The INTEL i860 processors are the
crux of the whole system where all the parallel com-
putations are performed. In our cumnt configuration,
there are 16 i860 processors in the MeikoTU Comput-
ing Surface altogether. The SUN SPARC 2 acts as
the host to the i860 processors whereas the INMOS
T800 transputers are solely for communications and
interconnections between the i860 processors. The
Meiko" system provides a software configurable
multi-stage crossbar communication network
(Computing Surface Network, CSN) as the basis far
exchanging data between different processing ele-
ments. In other words, a processing element can be
connected directly to any processing elements in the
system, subjected to comparable delays. The system
block diagram is depicted in figure 2. Theoretically,
there is no upper bound on the number of i860s to be
installed on a MeikoTM Computing Surface. Howevu,
there should be a trade-off between the speed up,
communication efficiency and the cost of the whole
system.

Physically, two i860 processors are accommodated on
a single MK096 board. Each board also contains four
T800 transputers for communication with the CSN
network. Each i860 processor is supported by 16 to
32 MB local memory and eight transputer links giving
a total bandwidth of 160 Mbps per processor. At pre-
sent, Meiko" has twelve i860 with 16 ME3 memory
and four with 32 MB. This gives a total of 320MB
memory for parallel programming.

The MK083 board has a SPARC 2 RISC processor at
40 MHz with 64 MB of memory and 64 KB cache. It
is used to boot strap the i860 processors and perfom
the resource management of the CSN. The SPARC
host running the SunOS 4.1.3 provides an UNIX envi-
ronment with C and FORTRAN compilers for the
i860 processors. It also controls all the i860 p'oce~s-
ing elements and provides YO operations for the
system.

The MeikoTM Computing Surface is classified as a
distributed-memory MIMD (Multiple Instruction

streams Multiple Data streams) system according to
Flynn's taxonomy. An MIMD model is the most gen-
eral and powerful as compared with other parallel
architectural models like SIMD and SISD. There are
many examples of MIMD machines. like Convex C3,

SP1, IBM SP2, Meiko CS, Meiko CS2, nCube 2 and
TM CM-5. For MIMD machines, each processor can
execute different codes on different data on different
subproblems of a single problem. Therefore, the
communication between processing elements is an
extremely important issue in such machine.

CRI Cmy-3, CRI Gray Y-MP, CRI T3D. IBM 9076

The MeikoTM Computing Surface also has fully sup-
ported parallel processing library of routines, pro-
gramming language, debugging tools and
visualization software. They provide a certain degree
of ease in parallel programming within an MIMD
environment It is such programming support that
motives the implementation and performance analysis
of median filtering, of which the problem can be sub-
divided and executed in individual processing ele-
ments nicely.

4. Performance Analysis

4.1 Implementation of Median Filtering - a
MasterlSlave Approach

In our evaluation, the degraded image of pixel size
477x505 is initially stored in the Sun SPARC host.
The host is responsible for all the operating system
operations, initialization and downloading of
programs to the master and slave processors. An i860

634

processor is assigned as the master and it is
responsible for the reading and writing of the image
data frondto the secondary storage device attached to
the host, as well as dispatching the subimages to the
slave processors. In addition, the master itself also
takes part in the filtering of a sub-image. Oncc the
image is downloaded into the master, it is then
divided into horizontal sub-images determined by the
number of slave processors involved in the processing
as given in quation (6). The 2N term in each bracket
takes into account the edge condition spatially, where
N has the usual definition. This can be seen more
clearly from figure 3. This arrangement adds extra
communication for the master, however it avoids the
message passing communication between the
processors during the filtering process and hence
reduces the chance of blocking due to
communication. Due to this consideration, when the
sub-images are processed by the slaves and returned
to the master, a simple reconstruction of the image is
required as each filtered sub-image will have the size 1. Each

image height
number of slaves + 1

of [image width]^

sub-image is then sent to a slave i860 processor. The
role of the slave processor is simply to perform the
median filtering on the sub-image. Sub-image size =

+ZN] (6)
image height

number of slaves + 1
[i g e width + 2N] x

Perch of pirrlr A-'
r o r f i d " ~

Figure 3: Pixels transmitted to the slaves

Due to the inherent spatial locality of the median fil-
tering process, the only communication between
processors is at the beginning and the end of the me-
dian filtering process. In essence, the master proces-
sor dispatches the divided sub-images to the slave
processors and collates the filtered sub-images at the
end of the process through the message passing rou-
tines provided by MeikoTU. This parallelization of the
filtering process is depicted in figure 4.

The advantage of using a master/slave approach is
that the readwrite operations and the interfacing with
the host are managed solely by the master processor
and the slave processors are left to carry out the filter-
ing process. Furthermore, the slave processors are
only given the part of the image they need to process
instead of the whole image. As a result, the amount of
unnecessary communications is cut down.

::zh* Of

Figure 4: Visualization of parallelizing the filtering
process

The measurement of the system performance is taken
from the master's mer and system rime. This mas-
ter's user and system time is the time that the master
needed to dispatch the sub-images to the slaves, filter
its own sub-image and collect the sub-images from the
slaves to reconstruct the final filtered image (equation
7). It does not account for reading and writing the
image from and to the secondary storage device of the
host. In addition to the user and system time, the
turnuruund rime of each complete run is also meas-
ured. The turnaround time is the elapsed time for a
complete run of the program. This accounts for the
operating system overhead, the bootstraping of the
processors, the loading of the executable codes into
each processor, copying of the image from host disk
to the master, $,-,%Er and the writing of the filtered
image to the host disk. This parameter is given by
equation (8)

master's user and system time
time for dispatching all the sub-images to the
slaves
time for performing a median filtering on a
sub-image
time for collating all the sub-images from the
slaves to construct the filtered image.

r # u m m u d = tos +tp-l*t + t w i ~ e + t m e r +Iread (8)
where
Lnd= turnaround time for each complete median

to'= operating system overhead
kini,= time for processor initialization
he=

trr~d =

' filtering

time for writing the whole image into the
master
time for reading the whole image from the
master

635

4.2 Results

Figures 5-9 summarize the results obtained from im-
plementing the above configuration, and processing
different image sizes on Meikon". The number of
i860 processors implemented ranges from 1 to 12 for
each case. All the images concerned are 8-bit gray-
scale head-and-shoulder image of a lady having the
same signal-to-noise ratio of -50dB degraded by
Gaussian white noise.

Figure 5 depicts the performance of median filtering
on a 477x505 image. It plots the two time parameters
(kuw and t,,,mlround) in seconds versus the number of
processors used. As can be seen in the figure, a single
i860 takes about 47 seconds to complete the median
filtering process. For reference purpose, an identical
median filtering process running on a 486 DXU66
takes around 84 seconds to complete. The mean-
square errors of the filtered images are the same in
both cases. As the number of processors increases.
tmaster decreases steadily, which can be approxi-
mately roughly by equation (9)

where n (n2l) is the number of slave processors. For
example, for n=l l , t,,," (11)= t,,,&J)/ll ~ 2 . 8 sec-
onds. If t,,,ulcr is our only consideration, then compu-
tational speed-up will be proportional to the number
of processors in the distributed system. In reality, this
is seldom the case as the reading and writing of the
image data from and to the secondary storage device
play an important role in the timing equation, as well
as the overhead required by the operating system and
the overhead incurred in the processor initialization.
Therefore, tlummvnd is a more realistic parameter to be
considered here.

When considering its behavior exhibits dif-
ferent characteristic from hytu. As from figure 5,

appears to reach a minimum at 5 or 6 proces-
sors, and beyond that, the improvement is minimal.
For a single processor configuration, k,,,,-,d is about
47 seconds, which is 16 second more than &. For a
12 processor configuration, the difference is about 20
second instead, which represents a steady increase as
the number of processors in the system is in-ed.
This difference represents the sum of f. tpfi1, he
and &J. Out of this list of timing parameters, f, be
and kad should be relatively constant, independent of
the number of processors used in the distributed SYS-
tem. However, bril is not so as it is determined by the
time required to bootstrap all the processors in'the
system, and the time required to load the individual
executable code segment into each processor. For

processor htstraping, the time required is obviously
proportional to the number of processors used.

_ .
I t a 4 r I 7 I 10 11 o

Had---

Figure 5: Performance of median filtering on
477x505 image degraded by Gaussian noise

1 2 a 4 r 8 7 I 8 10 11 12

) la~P=-Wn

Figure 6: Performance of median filtering on
954x1010 pixel image degraded by Gaussian noise

1 2 1 4 6 I 7 I s 10 11 12
Il0.d-

Figure 7: Performance of median filtering on
1908x2020 pixel image degraded by Gaussian noise

Similarly, the executable code loading time also bears
such relationship with the number of processors. With
this overhead mainly determined by the number of
processors used in the system, ; as a result is
also determined by the number of processors in the
system.

636

When the number of processors is small, is a
dominating factor in t,,,-,,,,, and therefore, increas-
ing the processor number will improve the o4erall
performance. However, when the number of proces-
sors is large, the relationship between k ~ , becomes
the dominating factor in U, and therefore, in-
creasing the number of processors will degrade the
overall performance. Although this rise in
beyond the minimum number is rather gradual (about
5 seconds altogether), the indication is that the opti-
mum number of processors should be employed in
solving this type and size of problem is 5 or 6.

Increase the size of image to 954x1010 pixels, which
is 4 times the image in figure 1, the timing result is
shown in figure 6. It depicts a similar phenomenon as
in figure 5. The kSlu time shows a exponential de-
cay. It should also be noted that the corresponding
kLIrcr in figure 6 is exactly 4 times of that in figure 5.
Such speed up of the median filtering is nearly ideal if
we consider scaling the problem by size or by the
number of processors used. On the other hand, it
reaches a minimum at 7 processors for the
curve. Although the subsequent rise in turnaround
time is small, there is no further sign of decline in
furnuound after 7 processors. This is believed to be due
to the same reason as in the case of smaller image
size. It should also be noted that &,-d is less that 4
times of the corresponding in figure 5. This
can be explained that the time for the operating sys-
tem, reading and writing an image from and to the
master is not increasing in the same proportion as
bru. However, it should be noted that the difference
between tumuovnd and hUlu becomes larger when more
processors are added to the system. This can be ex-
plained as tpini, becomes a lot more prominent com-
pared with the computational activities in the proces-
sors. For example, in a single processor configuration,
bur is 125 seconds, t,uum.rwnd is 147 seconds, giving
a difference of 22 seconds, 14.9% of trnuoud. In the
case of the 12 processor configuration, is 12
seconds, bmMvnd is 43 seconds, giving a difference of
31 seconds, 75.6% of fwmuOud.

Figure 7 is the timing result of filtering the same im-
age of size 1908x2020 pixels. Again the t,,,- curve
behaves in an expected way. The parameter
declines all the way from 1 to 12 processors and the
value is less then the corresponding &d in figures
5 and figure 6 by 4 and 16 times respectively. HOW-
ever, the difference between the kuru curve and the
hlld curve increases as the number of processors
increases. In this case, the difference varies from
around 9% of t,vmuound to about 50% of -,
which again, indicates the dominating factor in the
system changes from the computation to initialization

when the number of processors in the system is in-
creased from 1 to 12.

Figure 8 and figure 9 depict the combined results
from figures 5-7 with logarithmic y-axis (time axis).
In figure 8, the logarithmic y-axis reflects the growth
of the image size with respect to the increase in
kd. The differences between the three curves is
the multiplicating factor of the tolln.rod on increasing
the image size. The differences between the Ix and
4x curves is smaller than that of 4x and 16x curves.

Due to the communication overhead of distributing
and collecting the subimages, increasing the image
size by n times does not imply &d would also be
inmased by A times. Of course, the communication
overhead increases with the images size, so is the
computations. The determining factor is which
parameter grows faster. If the communication over-
head grows faster, then much of the time is spent on
communication rather than the useful filtering
operations. On the other hand, if the reverse is true,
the system spends more of its time on filtering and
less on communication. This implies a more efficient
operation as a whole.

5

'I
1 1 1 I I 4 I s 7 s * 10 I 1 i z

m.olpoclua

Figure 8: Turnaround time of median filtering on
different size of image

1 1 : : : : : ! : : : : I
1 a I 4 s s i s i o t i 12

-*-
Figure 9: Master's user and system time on median
filtering different size of image

637

Figure 9 is a comparison of hCu with different sizes
of images. The time differences between the threc
curves are fairly constant. This graph indicates that t
is both scalable in the direction of idt%asing the
problem size and the parallelism of more processing
elements.

5 Discussions

The parameter reflects the actual computational
load of the median filtering on the multi-processor
system. It is scalable with respect to the problem size
of the image. This is due to the individuality of com-
putation on each pixel, which rquires no communi-
cation during the filtering process. Thus, tmyrcr scales
well on the problem size.

However, &d is not scalable. Increasing the im-
age size by n times does not imply &d would
increase by the same proportion. When the problem
size is small, bmvound would increase as the number of
processors used is more than 5 (figure 5). Such trend
of not being scalable is also shown in figure 6 with
more than 7 processors. This behavior can be ac-
counted for by the overhead required by the processor
bootstraping and by loading the execution codes onto
the processors. Disregarding the number of processors
used in the system, the other overheads due to the
operating system, reading and writing of the image
from and to the memory are relatively constant for a
fixed size image. Although the increase in tturnaround
is not significant, it can be deduced that the overall
performance will not improve much when the number
of processors in the system is more than a certain
number. In addition, the optimal number of proces-
sors is dependent on the problem size. For an
477x505 image, the optimum is 5 or 6 processors, and
it is 7 for an 954x1010 image. In these cases, using
more processing element does not imply a gain in the
overall performance.
In our computational model, the image is distributed
as sub-images to the slave processors, this is exactly
where the overhead of the parallel computation is. In
principle, there are two possible extreme approaches
for communicating the image data between the proc-
essors. The first one is that the master distributes a
copy of the image to each of the slave processor.
Upon receiving the image copy, the slave processor
calculates the part that it is responsible for. When the
calculation is completed, the image copy is sent back
to the master. The master collates all the copies into a
final filtered image. This approach saves the compu-
tation of subdividing the image into subimages by the
master. However, communication overhead increases,
which could be significant when the image is large.
Although the communication bandwidth allows such

overhead (for small image s ix) , it is undesirable to
send a large amount of irrelevant pixels to the slave
processors. 'Ihe second approach is to pass pixel by
pixel to the slave processors. The master is only
responsible for the communications of sending and
receiving pixels. In such case, the master stays idle
for most of the time waiting for synchronization. Of
course, both methods mentioned above are far from
satisfactory. Our approach in sending a sub-image to a
slave processor makes the necessary and reasonable
compromise between these two extreme cases.

The MlMD architecture with message passing inter-
face between processing elements performs well on
median filtering. If share memory is implemented, the
bottleneck will be in the communication channel
through which pixels are accessed. The effect is more
serious for larger number of processing elements in
the system. On the other hand, the SIMD architecture
is only suitable for linear pattern of code execution
and computational job in which each pixel is sub-
jected to similar processing. In median filtering, the
major operation is on sorting a group of integer num-
bers. This is a non-linear process as the number of
swapping processes varies from pixel to pixel. In
addition, the bottleneck on the share memory still
exists.

If we consider the overhead due to parallelizing the
median filtering algorithm, this overhead can be cal-
culated by quation (IO) and depicted in figure 10.

The overall trend is that the overhead percentage in-
creases as the number of processors increases. This
indicates the scenario of when the processing system
consists of a large number of processors. much of its
time during execution is not spent on the actual filter-
ing computation, but on initialization and communi-
cations. The overhead percentage decreases as the
image size increases. This corresponds to the fact that
more time is now spent on processing the image in
comparison with the overhead time. In other words,
the growth rate of the initializationlcommunication
overhead is less than the growth rate of the computa-
tional rquircment due to the increase in problem size.

Finally, parallelizing image filtering involves the
partitioning of an image into sub-images and
dispatching the individual subimages to the slave
processors. The granularity of parallelism is thus very
coarse. This is also true for filters based on
calculating the convolution between a local neighbor-
hood and a window of coefficients. Unless we have a
good optimizing parallel compiler. to achieve fine

638

granularity is a uphill task for parallel language pro-
grammer.

100 T
90 .-

0 4 : : : : : : : : : ; I
1 2 3 4 5 6 7 0 0 1 0 1 1 1 2

No. of processors

Figure 10: Percentage of overhead on median filter-
ing

6 Conclusion

Firstly, it is evident that there is a definite gain in per-
formance when computation intensive task such as
median filtering is realized in a multi-processor sys-
tem instead of a uni-processor system. As can be seen
in figure 5, for Me500 and N=2, the largest perform-
ance gain is about 2.5 times between 5 processors and
1 processor. Further analysis results shown in figures
6 and 7 indicate the performance gain increases as M
increases. For M = l W , the gain is about 3.7 times
whereas for Mz1500, the gain is about 5.5 times. This
also indicates that the gain in performance is
proportional to the size of the problem.

Secondly, increasing the number of processors in the
system does not always imply an increase in overall
performance. This is due to the fact that the paralleliz-
ing overhead (bS, kini, and etc.) increases with the
number of processors, even though bptlu, the compu-
tational and processor communication time decreases
with the number of processors. It is because of this
relationship that the overall performance curve shows
an optimal point corresponding to a certain number of
processors. For less than this number, km
dominates, and for more than this number, the
parallelizing overhead time dominates.

Thirdly, the sub-image model is found to be an
acceptable approach for this type of processing as
only the necessary parts of the image are sent to the
other processors. The master and slave scheme proves
to be easy for programming, control and data manipu-
lation. In addition, this type of non-linear processing
seems to fit well onto the MIMD architecture.

Finally, this coarse grain parallelization points to the
potential of speeding up computation intensive tasks

such as the median filtering shown in this paper. This
potential may be further exploited if fine grain
parallelization becomes more readily available. This
requires good opthizing parallel compilers and
perhaps other parallelizing tools to achieve the goal.

7 References

[I] R. C. Gonzalez & R. E. Woods, "Digital Image
Processing". Addison-Wesley, 1992.

[2] J. S . Lim, "Two-Dimensional Signal & Image
Processing", Prentice-Hall, 1990, pp.524-588.

[3] N. D. Sidiropoulos, J. S . Baras & C A
Berenstein, "Optimal filtering of digital binary
images corrupted by uniodinttrsection noise",
IEEE Truns. on Image Processing, Vo1.3, No.4,
July 1994, pp.382-403.

[4] J. S . Lee, "The sigma filter and its application to
speckle smoothing of synthetic aperture radar
image", in Statistical Signul Processing edited by
I. W. Edward, G. S. Smith, Marcel Dekker, New
York, 1984, pp.445-459.

[5] G. R. Arce & M. P. McLoughlin, "Theoretical
analysis of the Max/Median Filter", IEEE Trans.

69.
On ASSP, VoLASSP-35, NO.1, Jan 1987. pp.60-

[6] Zheug Yi, "Image analysis, modeling, enhance-
ment, restoration, feature extraction and their
application in nondestructive evaluation and
radio astronomy", Ph.D. Thesis, Dept of EE,
Iowa State University, USA, 1987.

[7] I. E. Hall & J. D. Awtrey. "Real-time image en-
hancement using 3x3 pixel neighbourhood op-
eration functions", in Selected Papers on Digitul
Image Processing, Vol. MS17, Ed. by Mohan M.
Trivedi, SPIE Optical Engineering Press, 1990,
pp.595-598.

[8] N H C Yung & H S h i , "An intelligent spatial
filtering algorithm for removing additive random
noise in digital images", Reseurch Report,
Department of Electrical & Electronic
Engineering, The University of Hong Kong,
1994, pp.23-59.

[9] L. A. Crowl. "How to measure, present, and
compare parallel performance", IEEE Purullel &
Distributed Technology, Systems & Application,
V01.2, No.1, Spring 1994, pp.9-25.

639

