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Abstract 

This paper presents the performance analysis of real- 
izing median filtering on a distributed multiprocessor 
system. The results of the performance analysis give a 
good indication of the performance gain in using 
multi-processor for median filtering over uni-proces- 
SOT. Such performance gain is proportional to the 
problem size as shown by varying the size of the im- 
age. Furthermore, through the analysis, it is clear 
that the computation time and inter-processor com- 
munications scale well with the number of processors 
in the system. However, the overall system perform- 
ance does not have such behavior because of the ini- 
tialization overhead dominating the computation time 
as the number of processors increases beyond a cer- 
tain point. It is because of this relationship that an 
optimal performance is achievable with a certain 
number of processors. It is also found that this num- 
ber varies with the problem size. In nddition, the sub- 
image model is found to be an acceptable approach 
for this type of processing as only the necessary parts 
of the image are sent to the other processors. The 
master and slave scheme proves to be easy for pro- 
gramming, control and data manipulation. As a 
whole, this type of non-linear processing seem to fit 
well into the MIMD architecture. 

1 Introduction 

Typical digital images in practice are often degraded 
in some manner and to some extend that requires 
specially designed algorithmic steps to reduce or 
eliminate the degradation effect before they are dis- 
played or further processed. The objective of image 
restoration is to determine an output image j ( x , y )  
that resembles its original image f(x,y) as closely as 
possible [ I ,  21. In order to achieve this objective, im- 
age restoration algorithms must be carefully chosen to 
deal with the type of degradation introduced at the 

input channels, transmission medium, sensor and/or 
digitiw. Typical degradation effects are blurring, 
distortion, additive random noise such as Gaussian 
white noise and salt-and-pepper noise; and signal-de- 
pendent noise such as speckle, film grain noise and 
quantization noise [3]. 

In general, image restoration algorithms are mathe 
matically complex. Within this category, there is a 
subset of algorithms that are simple and heuristic, and 
has been widely employed to perform deblurring and 
noise removal in the spatial domain. Most of these 
algorithms are designed to deal with the more popular 
and practical types of signal-independent noise, e.g. 
Gaussian white noise, salt-and-pepper noise, burst 
channel errors and noise with a geometric structure 
[41. 

Mathematically, an image degraded by additive ran- 
do,m noise can be represented by 

g b y )  = f ( X > Y ) + l l ( X , Y )  (1) 

where g(x,y) is the degraded image of an original im- 
age f(x,y) due to an additive noise distribution 
q ( x , y ) .  The process of noise removal may be inter- 
preted as given g(x,y) and the knowledge of the sta- 
tistical nature of q(x,y), an approximation, p(x.y)  
of f(x,y) can be obtained. More specifically, f ( ~ ,  y )  
may be calculated by 

N 
N 

f ( x , y ) =  i = - N  T [g(x+i ,y+j) l  (2) 
j = - N  

where n.1 denotes an (ZN+l) by (2N+1) local win- 
dow operator and N is an integer in this case. 
For an image of size M by M, the number of pixels to 
be processed by each local window operation is M2. If 
the local window operation is convolution-based, it 
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requires on average (2N+1)2 multiplications and 
(2N+1)2-1 additions to complete each local convolu- 
tion. This gives a total of 2(2N+1)’-1 ,acjth&etic Op- 
erations per pixel by assuming that the s& in exe- 
cuting multiplication and addition are the same. If the 
local window operation is a ranking operation, it re- 
quires (2N+l)ln(2N+1) number of comparisons using 
a quick sort algonthm per pixel. This gives the fol- 
lowing relationships 

For convolution-based operator: 
Number of x/+ per image = M2[2(2N+1)2-1 J 

For ranking-based operator: 
Number of comparisons per image = 

(3) 

M2[(2N+l)ln(2N+1)J (4) 

From equations (3) and (4), the number of multiplica- 
tiondadditions and comparisons required by the two 
types of filtering operations are depicted in Table 1. It 
should be noted that a comparison can be assumed to 
be a lot slower than a multiplication or addition. 

As can be seen in the above table, for typical M (512) 
and N (=2), the number of computations is compara- 
ble and rather large in both cases. If real-time re- 
sponse is desired, it is obvious that the processing 
platform should either be a very powerful and dedi- 
cated uniprocessor or a massively parallel multiproc- 
essor. It is the intention of this paper to investigate the 
issues related to the realization of these computation 
intensive image processing algorithms on multiproc- 
essors. The target platform chosen is the Meiko””, a 
distributed multiprocessor system and the target algo- 
rithm chosen for realization is the median filtering. 

This paper presents the performance analysis of real- 
izing median filtering on Meiko. The results of the 
performance analysis give a good indication of the 
performance gain in using multi-processor for median 
filtering over uni-processor. Such performance gain is 
proportional to the problem size as shown by varying 
the size of the image. Furthermore, through the 
analysis, it is clear that the computation time and in- 
ter-processor communications scale well with the 
number of processors in the system. However, the 
overall system performance does not have such be- 
havior because of the initialization overhead dominat- 
ing the computation time as the number of processors 
increases beyond a certain point. It is because of this 
relationship that an optimal performance is achievable 
with a certain number of processors. It is also found 
that this number varies with the problem size. In 
addition, the sub-image model is found to be an 
acceptable approach for this type of processing as 
only the necessary parts of the image are sent to the 
other processors. The master and slave scheme proves 

to be easy for programming, control and data manipu- 
lation. As a whole, this type of non-linear processing 
seems to fit well into the MIMD achitccture. 

N, M and Local Window Size 

The paper is organized into a number of sections 
covering the aspects of basic median filtering, its 
merits and pitfalls; the Meikon” computing surface; 
the implementation of median filtering in a distributed 
parallel environment and the analysis of the 
realization results. Discussions on the performance 
analysis and the lesson learnt will also be presented. 

2 Median Filtering 

Median filtering has been extensively used and is 
generally accepted as an effective algorithm for 
removing strong, spike-like components in a noisy 
image [5, 6, 71. This non-linear filter algorithm is 
particularly suited for reducing salt-and-pepper noise 
with the advantage of preserving most of the edge 
information. As pointed out in [ 5 ] ,  although noise 
suppression is obtained, signal distortion is introduced 
and some high spatial frequency features are lost. This 
manifests as a small degree of edge blurring in the 
restored image, which is not as large scale as those 
caused by some other filtering algorithms. This effect 
is not entirely undesirable if some of the fine details in 
the image are to be removed before object 
segmentation, or small gaps in lines or curves are to 
be filled. However, the distortion may be 
unacceptable visually and the reduction of the 
sharpness of lines, edges and boundaries may even- 
tually affect the accuracy of the subsequent feature 
extraction and recognition processes. 

Conceptually, median filtering is quite a simple algo- 
rithm. In the case of non-recursive median filtering, 
an odd number of pixels within a defined local win- 
dow is ranked, and the median is taken as the filter 
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output. Based on this concept, there exist many forms 
of median filter [7] such as the recursive median filter 
which has the filter output fed back to the tilt& and 
madmedian filter which is reputed to remove noise as 
well as preserving geometrical features in the image. 
However, in our performance analysis, we will focus 
on a general non-recursive median filter which has the 
following definition. 

For an image degraded by additive noise, we can as- 
sume equation (1) holds. In general, a two-dimen- 
sional (2N+1) by (2N+1) non-recursive median filter 
is defined by 

f(x,y)=median{g(x+ i , y +  j)l 
i = - N  ,.., -l,O,l,.. N ,  j = -N,..-l,O,l,.. N )  

( 5 )  

where f(.r,y) is the restored image defined as the 
median of the pixel values enclosed in a two-dimen- 
sional window of size (2N+1) by (2N+1) centered at 
g(x,y). 

An example is depicted in Figure 1 with N=2 and Me 
500, a window size of 5x5 is used for determining 
j ( x . y ) .  The original image (Figure l(a)) is a typical 
high-resolution head-and-shoulder picture of a lady. 
The noisy image (g(x,y)) is degraded by salt-and- 
pepper noise (Figure l(b)) and Gaussian white noise 
(Figure l(c)) of a signal-to-noise ratio (SNR) of -50 
dB in each case. It can be seen from Figures l(d) and 
I(e) that the visual quality of the restored images is 
acceptable, although a number of features of this 
algorithm should be noted. Firstly, the line and edge 
information of the restored image is slightly distorted. 
This is manifested in the form of reduced shharpness in 
those features especially on the right hand background 
of the image. Secondly, the strongly clustered noise 
components in the Gaussian white noise case is not as 
effectively removed as the salt-and-pepper noise case. 
This is evident in the restored image (Figure l(e)) 
where clustered noise components still remain 
although sparsely populated. This is due to the 
median determined by equation (5 )  is a noise pixel 
instead of a 'good image pixel in those local regions 
with more noise pixels than 'good pixels. Comparing 
this with other noise removing filters, median filter in 
fact performs much better than averaging, and is on a 
par with sigma filter in the Gaussian's case [8]. 

Comparative study of the computational complexity 
of the median filter and other filters such as the aver- 
aging filter, and sigma filter show that median filter- 
ing requires more computational resources than the 
averaging filter, max/min filters and even the sigma 
filter because of the comparison operation and the 
number of comparisons needed in sorting [8]. This 

becomes worst when N increases. Typical value of N 
is two or three. For N equals 2, measured timing 
statistic shows that the median filter is roughly 5.25 
times slower than an average filter and 1.2 times 
slower than a sigma filter. 

Figure 1: Median filtering of a 477 x 505 image 
using a 5x5 window size (a) Original image; @) 
Noisy image degraded by salt-and-pepper noise; (c) 
Noisy image degraded by Gaussian noise; (d) Re- 
stored image of (b); (e) Restored image of (c). 

In order to make median filter a viable algorithm for 
practical noise removal in terms of both noise elimi- 
nation capability and computational speed, parallel 
processing is an attractive proposition. Although cer- 
tain speed-up factor is anticipated when parallel proc- 
essing systems are employed for the filter realization, 
understanding must be obtained with regard to the 
optimum number of processors used, communication 
overhead between processors and the overall delay 
including the input and output of the large image 
array. Therefore, it is the intention of the following 
sections to explore these areas, and especially in 
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Section 4, determine whether there exist an optimum 
processing configuration, how the communication 
scheme between processors affect the ~ ~ e t p l l  per- 
formance, and the effect of moving a large image 
through the input and output channels. 

SvrHod 

3 MeikoTM Computing Surface 

MKOM MKO96 - 

The Meiko" Computing Surface is a RISC-based 
distributed-memory multiprocessor system. It con- 
sists of three types of processors in the whole system: 
the INTEL i860, the SUN SPARC 2 and INMOS 
T800 transputers. The INTEL i860 processors are the 
crux of the whole system where all the parallel com- 
putations are performed. In our cumnt configuration, 
there are 16 i860 processors in the MeikoTU Comput- 
ing Surface altogether. The SUN SPARC 2 acts as 
the host to the i860 processors whereas the INMOS 
T800 transputers are solely for communications and 
interconnections between the i860 processors. The 
Meiko" system provides a software configurable 
multi-stage crossbar communication network 
(Computing Surface Network, CSN) as the basis far 
exchanging data between different processing ele- 
ments. In other words, a processing element can be 
connected directly to any processing elements in the 
system, subjected to comparable delays. The system 
block diagram is depicted in figure 2. Theoretically, 
there is no upper bound on the number of i860s to be 
installed on a MeikoTM Computing Surface. Howevu, 
there should be a trade-off between the speed up, 
communication efficiency and the cost of the whole 
system. 

Physically, two i860 processors are accommodated on 
a single MK096 board. Each board also contains four 
T800 transputers for communication with the CSN 
network. Each i860 processor is supported by 16 to 
32 MB local memory and eight transputer links giving 
a total bandwidth of 160 Mbps per processor. At pre- 
sent, Meiko" has twelve i860 with 16 ME3 memory 
and four with 32 MB. This gives a total of 320MB 
memory for parallel programming. 

The MK083 board has a SPARC 2 RISC processor at 
40 MHz with 64 MB of memory and 64 KB cache. It 
is used to boot strap the i860 processors and perfom 
the resource management of the CSN. The SPARC 
host running the SunOS 4.1.3 provides an UNIX envi- 
ronment with C and FORTRAN compilers for the 
i860 processors. It also controls all the i860 p'oce~s- 
ing elements and provides YO operations for the 
system. 

The MeikoTM Computing Surface is classified as a 
distributed-memory MIMD (Multiple Instruction 

streams Multiple Data streams) system according to 
Flynn's taxonomy. An MIMD model is the most gen- 
eral and powerful as compared with other parallel 
architectural models like SIMD and SISD. There are 
many examples of MIMD machines. like Convex C3, 

SP1, IBM SP2, Meiko CS, Meiko CS2, nCube 2 and 
TM CM-5. For MIMD machines, each processor can 
execute different codes on different data on different 
subproblems of a single problem. Therefore, the 
communication between processing elements is an 
extremely important issue in such machine. 

CRI Cmy-3, CRI Gray Y-MP, CRI T3D. IBM 9076 

The MeikoTM Computing Surface also has fully sup- 
ported parallel processing library of routines, pro- 
gramming language, debugging tools and 
visualization software. They provide a certain degree 
of ease in parallel programming within an MIMD 
environment It is such programming support that 
motives the implementation and performance analysis 
of median filtering, of which the problem can be sub- 
divided and executed in individual processing ele- 
ments nicely. 

4. Performance Analysis 

4.1 Implementation of Median Filtering - a 
MasterlSlave Approach 

In our evaluation, the degraded image of pixel size 
477x505 is initially stored in the Sun SPARC host. 
The host is responsible for all the operating system 
operations, initialization and downloading of 
programs to the master and slave processors. An i860 
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processor is assigned as the master and it is 
responsible for the reading and writing of the image 
data frondto the secondary storage device attached to 
the host, as well as dispatching the subimages to the 
slave processors. In addition, the master itself also 
takes part in the filtering of a sub-image. Oncc the 
image is downloaded into the master, it is then 
divided into horizontal sub-images determined by the 
number of slave processors involved in the processing 
as given in quation (6). The 2N term in each bracket 
takes into account the edge condition spatially, where 
N has the usual definition. This can be seen more 
clearly from figure 3. This arrangement adds extra 
communication for the master, however it avoids the 
message passing communication between the 
processors during the filtering process and hence 
reduces the chance of blocking due to 
communication. Due to this consideration, when the 
sub-images are processed by the slaves and returned 
to the master, a simple reconstruction of the image is 
required as each filtered sub-image will have the size 1. Each 

image height 
number of slaves + 1 

of [image  width]^ 

sub-image is then sent to a slave i860 processor. The 
role of the slave processor is simply to perform the 
median filtering on the sub-image. Sub-image size = 

+ZN] (6) 
image height 

number of slaves + 1 
[ i g e  width + 2N] x 

Perch of pirrlr A-' 
r o r f i d " ~  

Figure 3: Pixels transmitted to the slaves 

Due to the inherent spatial locality of the median fil- 
tering process, the only communication between 
processors is at the beginning and the end of the me- 
dian filtering process. In essence, the master proces- 
sor dispatches the divided sub-images to the slave 
processors and collates the filtered sub-images at the 
end of the process through the message passing rou- 
tines provided by MeikoTU. This parallelization of the 
filtering process is depicted in figure 4. 

The advantage of using a master/slave approach is 
that the readwrite operations and the interfacing with 
the host are managed solely by the master processor 
and the slave processors are left to carry out the filter- 
ing process. Furthermore, the slave processors are 
only given the part of the image they need to process 
instead of the whole image. As a result, the amount of 
unnecessary communications is cut down. 

::zh* Of 

Figure 4: Visualization of parallelizing the filtering 
process 

The measurement of the system performance is taken 
from the master's mer and system rime. This mas- 
ter's user and system time is the time that the master 
needed to dispatch the sub-images to the slaves, filter 
its own sub-image and collect the sub-images from the 
slaves to reconstruct the final filtered image (equation 
7). It does not account for reading and writing the 
image from and to the secondary storage device of the 
host. In addition to the user and system time, the 
turnuruund rime of each complete run is also meas- 
ured. The turnaround time is the elapsed time for a 
complete run of the program. This accounts for the 
operating system overhead, the bootstraping of the 
processors, the loading of the executable codes into 
each processor, copying of the image from host disk 
to the master, $,-,%Er and the writing of the filtered 
image to the host disk. This parameter is given by 
equation (8) 

master's user and system time 
time for dispatching all the sub-images to the 
slaves 
time for performing a median filtering on a 
sub-image 
time for collating all the sub-images from the 
slaves to construct the filtered image. 

r # u m m u d  = tos +tp-l*t + t w i ~ e  + t m e r  +Iread (8) 
where 
Lnd= turnaround time for each complete median 

to'= operating system overhead 
kini,= time for processor initialization 
he= 

trr~d  = 

' filtering 

time for writing the whole image into the 
master 
time for reading the whole image from the 
master 
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4.2 Results 

Figures 5-9 summarize the results obtained from im- 
plementing the above configuration, and processing 
different image sizes on Meikon". The number of 
i860 processors implemented ranges from 1 to 12 for 
each case. All the images concerned are 8-bit gray- 
scale head-and-shoulder image of a lady having the 
same signal-to-noise ratio of -50dB degraded by 
Gaussian white noise. 

Figure 5 depicts the performance of median filtering 
on a 477x505 image. It plots the two time parameters 
(kuw and t,,,mlround) in seconds versus the number of 
processors used. As can be seen in the figure, a single 
i860 takes about 47 seconds to complete the median 
filtering process. For reference purpose, an identical 
median filtering process running on a 486 DXU66 
takes around 84 seconds to complete. The mean- 
square errors of the filtered images are the same in 
both cases. As the number of processors increases. 
tmaster decreases steadily, which can be approxi- 
mately roughly by equation (9) 

where n (n2l) is the number of slave processors. For 
example, for n=l l ,  t,,," (11)= t,,,&J)/ll ~ 2 . 8  sec- 
onds. If t,,,ulcr is our only consideration, then compu- 
tational speed-up will be proportional to the number 
of processors in the distributed system. In reality, this 
is seldom the case as the reading and writing of the 
image data from and to the secondary storage device 
play an important role in the timing equation, as well 
as the overhead required by the operating system and 
the overhead incurred in the processor initialization. 
Therefore, tlummvnd is a more realistic parameter to be 
considered here. 

When considering its behavior exhibits dif- 
ferent characteristic from hytu. As from figure 5,  

appears to reach a minimum at 5 or 6 proces- 
sors, and beyond that, the improvement is minimal. 
For a single processor configuration, k,,,,-,d is about 
47 seconds, which is 16 second more than &. For a 
12 processor configuration, the difference is about 20 
second instead, which represents a steady increase as 
the number of processors in the system is in-ed. 
This difference represents the sum of f. tpfi1, he 
and &J. Out of this list of timing parameters, f, be 
and kad should be relatively constant, independent of 
the number of processors used in the distributed SYS- 
tem. However, bril is not so as it is determined by the 
time required to bootstrap all the processors in'the 
system, and the time required to load the individual 
executable code segment into each processor. For 

processor htstraping, the time required is obviously 
proportional to the number of processors used. 

_ .  
I t a 4 r I 7 I 10 11 o 

Had--- 

Figure 5: Performance of median filtering on 
477x505 image degraded by Gaussian noise 

1 2 a 4 r 8 7 I 8 10 11 12 

) la~P=-Wn 

Figure 6: Performance of median filtering on 
954x1010 pixel image degraded by Gaussian noise 

1 2  1 4  6 I 7  I s 10 11 12 
Il0.d- 

Figure 7: Performance of median filtering on 
1908x2020 pixel image degraded by Gaussian noise 

Similarly, the executable code loading time also bears 
such relationship with the number of processors. With 
this overhead mainly determined by the number of 
processors used in the system, ; as a result is 
also determined by the number of processors in the 
system. 
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When the number of processors is small, is a 
dominating factor in t,,,-,,,,, and therefore, increas- 
ing the processor number will improve the o4erall 
performance. However, when the number of proces- 
sors is large, the relationship between k ~ ,  becomes 
the dominating factor in U, and therefore, in- 
creasing the number of processors will degrade the 
overall performance. Although this rise in 
beyond the minimum number is rather gradual (about 
5 seconds altogether), the indication is that the opti- 
mum number of processors should be employed in 
solving this type and size of problem is 5 or 6. 

Increase the size of image to 954x1010 pixels, which 
is 4 times the image in figure 1, the timing result is 
shown in figure 6. It depicts a similar phenomenon as 
in figure 5. The kSlu time shows a exponential de- 
cay. It should also be noted that the corresponding 
kLIrcr in figure 6 is exactly 4 times of that in figure 5. 
Such speed up of the median filtering is nearly ideal if 
we consider scaling the problem by size or by the 
number of processors used. On the other hand, it 
reaches a minimum at 7 processors for the 
curve. Although the subsequent rise in turnaround 
time is small, there is no further sign of decline in 
furnuound after 7 processors. This is believed to be due 
to the same reason as in the case of smaller image 
size. It should also be noted that &,-d is less that 4 
times of the corresponding in figure 5. This 
can be explained that the time for the operating sys- 
tem, reading and writing an image from and to the 
master is not increasing in the same proportion as 
bru. However, it should be noted that the difference 
between tumuovnd and hUlu becomes larger when more 
processors are added to the system. This can be ex- 
plained as tpini, becomes a lot more prominent com- 
pared with the computational activities in the proces- 
sors. For example, in a single processor configuration, 
bur is 125 seconds, t,uum.rwnd is 147 seconds, giving 
a difference of 22 seconds, 14.9% of trnuoud. In the 
case of the 12 processor configuration, is 12 
seconds, bmMvnd is 43 seconds, giving a difference of 
31 seconds, 75.6% of fwmuOud. 

Figure 7 is the timing result of filtering the same im- 
age of size 1908x2020 pixels. Again the t,,,- curve 
behaves in an expected way. The parameter 
declines all the way from 1 to 12 processors and the 
value is less then the corresponding &d in figures 
5 and figure 6 by 4 and 16 times respectively. HOW- 
ever, the difference between the kuru curve and the 
hlld curve increases as the number of processors 
increases. In this case, the difference varies from 
around 9% of t,vmuound to about 50% of -, 
which again, indicates the dominating factor in the 
system changes from the computation to initialization 

when the number of processors in the system is in- 
creased from 1 to 12. 

Figure 8 and figure 9 depict the combined results 
from figures 5-7 with logarithmic y-axis (time axis). 
In figure 8, the logarithmic y-axis reflects the growth 
of the image size with respect to the increase in 
kd. The differences between the three curves is 
the multiplicating factor of the tolln.rod on increasing 
the image size. The differences between the Ix and 
4x curves is smaller than that of 4x and 16x curves. 

Due to the communication overhead of distributing 
and collecting the subimages, increasing the image 
size by n times does not imply &d would also be 
inmased by A times. Of course, the communication 
overhead increases with the images size, so is the 
computations. The determining factor is which 
parameter grows faster. If the communication over- 
head grows faster, then much of the time is spent on 
communication rather than the useful filtering 
operations. On the other hand, if the reverse is true, 
the system spends more of its time on filtering and 
less on communication. This implies a more efficient 
operation as a whole. 

5 

'I 
1 1  1 I I 4  I s 7 s * 10 I 1  i z  

m.olpoclua 

Figure 8: Turnaround time of median filtering on 
different size of image 

1 1 : : : : :  ! : :  : : I 
1 a I 4 s s i s i o  t i  12 

-*- 
Figure 9: Master's user and system time on median 
filtering different size of image 
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Figure 9 is a comparison of hCu with different sizes 
of images. The time differences between the threc 
curves are fairly constant. This graph indicates that t 
is both scalable in the direction of idt%asing the 
problem size and the parallelism of more processing 
elements. 

5 Discussions 

The parameter reflects the actual computational 
load of the median filtering on the multi-processor 
system. It is scalable with respect to the problem size 
of the image. This is due to the individuality of com- 
putation on each pixel, which rquires no communi- 
cation during the filtering process. Thus, tmyrcr scales 
well on the problem size. 

However, &d is not scalable. Increasing the im- 
age size by n times does not imply &d would 
increase by the same proportion. When the problem 
size is small, bmvound would increase as the number of 
processors used is more than 5 (figure 5). Such trend 
of not being scalable is also shown in figure 6 with 
more than 7 processors. This behavior can be ac- 
counted for by the overhead required by the processor 
bootstraping and by loading the execution codes onto 
the processors. Disregarding the number of processors 
used in the system, the other overheads due to the 
operating system, reading and writing of the image 
from and to the memory are relatively constant for a 
fixed size image. Although the increase in tturnaround 
is not significant, it can be deduced that the overall 
performance will not improve much when the number 
of processors in the system is more than a certain 
number. In addition, the optimal number of proces- 
sors is dependent on the problem size. For an 
477x505 image, the optimum is 5 or 6 processors, and 
it is 7 for an 954x1010 image. In these cases, using 
more processing element does not imply a gain in the 
overall performance. 
In our computational model, the image is distributed 
as sub-images to the slave processors, this is exactly 
where the overhead of the parallel computation is. In 
principle, there are two possible extreme approaches 
for communicating the image data between the proc- 
essors. The first one is that the master distributes a 
copy of the image to each of the slave processor. 
Upon receiving the image copy, the slave processor 
calculates the part that it is responsible for. When the 
calculation is completed, the image copy is sent back 
to the master. The master collates all the copies into a 
final filtered image. This approach saves the compu- 
tation of subdividing the image into subimages by the 
master. However, communication overhead increases, 
which could be significant when the image is large. 
Although the communication bandwidth allows such 

overhead (for small image s ix) ,  it is undesirable to 
send a large amount of irrelevant pixels to the slave 
processors. 'Ihe second approach is to pass pixel by 
pixel to the slave processors. The master is only 
responsible for the communications of sending and 
receiving pixels. In such case, the master stays idle 
for most of the time waiting for synchronization. Of 
course, both methods mentioned above are far from 
satisfactory. Our approach in sending a sub-image to a 
slave processor makes the necessary and reasonable 
compromise between these two extreme cases. 

The MlMD architecture with message passing inter- 
face between processing elements performs well on 
median filtering. If share memory is implemented, the 
bottleneck will be in the communication channel 
through which pixels are accessed. The effect is more 
serious for larger number of processing elements in 
the system. On the other hand, the SIMD architecture 
is only suitable for linear pattern of code execution 
and computational job in which each pixel is sub- 
jected to similar processing. In median filtering, the 
major operation is on sorting a group of integer num- 
bers. This is a non-linear process as the number of 
swapping processes varies from pixel to pixel. In 
addition, the bottleneck on the share memory still 
exists. 

If we consider the overhead due to parallelizing the 
median filtering algorithm, this overhead can be cal- 
culated by quation (IO) and depicted in figure 10. 

The overall trend is that the overhead percentage in- 
creases as the number of processors increases. This 
indicates the scenario of when the processing system 
consists of a large number of processors. much of its 
time during execution is not spent on the actual filter- 
ing computation, but on initialization and communi- 
cations. The overhead percentage decreases as the 
image size increases. This corresponds to the fact that 
more time is now spent on processing the image in 
comparison with the overhead time. In other words, 
the growth rate of the initializationlcommunication 
overhead is less than the growth rate of the computa- 
tional rquircment due to the increase in problem size. 

Finally, parallelizing image filtering involves the 
partitioning of an image into sub-images and 
dispatching the individual subimages to the slave 
processors. The granularity of parallelism is thus very 
coarse. This is also true for filters based on 
calculating the convolution between a local neighbor- 
hood and a window of coefficients. Unless we have a 
good optimizing parallel compiler. to achieve fine 
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granularity is a uphill task for parallel language pro- 
grammer. 

100 T 
90 .- 

0 4 : : : : : : : : : ;  I 
1 2  3 4 5 6 7 0 0 1 0 1 1 1 2  

No. of processors 

Figure 10: Percentage of overhead on median filter- 
ing 

6 Conclusion 

Firstly, it is evident that there is a definite gain in per- 
formance when computation intensive task such as 
median filtering is realized in a multi-processor sys- 
tem instead of a uni-processor system. As can be seen 
in figure 5, for Me500 and N=2, the largest perform- 
ance gain is about 2.5 times between 5 processors and 
1 processor. Further analysis results shown in figures 
6 and 7 indicate the performance gain increases as M 
increases. For M = l W ,  the gain is about 3.7 times 
whereas for Mz1500, the gain is about 5.5 times. This 
also indicates that the gain in performance is 
proportional to the size of the problem. 

Secondly, increasing the number of processors in the 
system does not always imply an increase in overall 
performance. This is due to the fact that the paralleliz- 
ing overhead (bS, kini, and etc.) increases with the 
number of processors, even though bptlu, the compu- 
tational and processor communication time decreases 
with the number of processors. It is because of this 
relationship that the overall performance curve shows 
an optimal point corresponding to a certain number of 
processors. For less than this number, km 
dominates, and for more than this number, the 
parallelizing overhead time dominates. 

Thirdly, the sub-image model is found to be an 
acceptable approach for this type of processing as 
only the necessary parts of the image are sent to the 
other processors. The master and slave scheme proves 
to be easy for programming, control and data manipu- 
lation. In addition, this type of non-linear processing 
seems to fit well onto the MIMD architecture. 

Finally, this coarse grain parallelization points to the 
potential of speeding up computation intensive tasks 

such as the median filtering shown in this paper. This 
potential may be further exploited if fine grain 
parallelization becomes more readily available. This 
requires good opthizing parallel compilers and 
perhaps other parallelizing tools to achieve the goal. 
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