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Abstract - It is well known that there exists strong energy 
correlation between various subbands of a real-world 
image. A new powerful technique of Finite State Vector 
Quantization ( FSVQ ) has been introduced to fully 
exploit the self-similarity of the image in wavelet domain 
across different scales. Lattices in R have considerable 
structure, and hence, Lattice VQ offers the promise of 
design simplicity and reduced complexity encoding. The 
combination of FSVQ and LVQ gives rise to the so-called 
FSLVQ, which is proved to be succe:;sfill in exploiting 
the energy correlation across scales and simple enough in 
implementation. 

I. Introduction 

Recently wavelet based image coding has become the 
domain of extensive research. Generally a K-level 
wavelet decomposition of a nature image yields 3K+1 
subbands, forming three K+l level directional pyramids. 
A simple observation of the high frequency subbands 
(HFS) reveals the fact that the bulk of the energy in HFS’s 
is concentrated more-or-less in the vicinity of areas which 
reflect the edge activity of the original image. This 
implies that the energy distribution in HFS is not uniform 
and those areas of HFS’s that contain most of the energy 
must be encoded more finely than the rest. It is also well 
known that there exist strong energy correlations between 
each subband images with the same orientation, which 
appears as self-similarity of the image in wavelet domain 
across different scales. Therefore it is ]possible to predict 
the activity of one band using the other band in the same 
orientation. The above two observations motivated the 
principle of Finite State Quantization in wavelet domain, 
which first proposed by T.Naveen ancl J.Woods in their 
original work[5], where they apply the powerful 
technique finite state scalar quantization to the multiscale 
subband coding. 

It has been shown that vector quantization can offer 
better coding performance compared to scalar 
quantization, mainly due to its inherent advantage of 
fractional bit allocation among the vector components. 
Lattice vector quantization (LVQ) is a type of VQ where 
the codebook is designed based on regular lattices. Lattice 
VQ offers the promises of design simplicity and reduced 
complexity encoding. The goal of the paper is to extend 
the work in [5] by combining the FSVQ with LVQ, which 
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gives rise to the so-called Finite State Lattice Vector 
Quantization (FSLVQ) and provides further exploration 
of the energy correlation between s,patial subbands of 
image while preserving simplicity in implementation. 

I1 Finite State Vector Quantization 

11.1 The Fundamental of FSVQ 
An FSVQ can be viewed as a collection of K separate 

vector quantizers together with a selection rule that 
determine which of the K VQ codebooks is used to 
encode the current input vector into a channel index. The 
key issue involved in FSVQ is the design of next-state 
function. It can be tackled by applying a classifier 
function to the reproduction of input vector, i.e., find 
s,+~ = J’(i,,), which is tractable for the decoder. In 
summary, we can keep the quantizer designed for the the 
idealized or omniscient state, which is the so-called 
omniscient design of FSVQ. 

11-2 The FSVQ Conjigtiation in Wavelet Domain 
As we state in the previous section, in wavelet 

transform domain the activity of one subband can be 
predicted by another subband of similar orientation. The 
element at the coarse scale is called the parent, and all 
elements corresponding to the same spatial location at the 
next finer scale of similar orientation are called children 
(See Fig.1). With the exception of lowest frequency 
subband, all parent have four children. While for the 
lowest frequency subband, each parient has only three 
children. The configuation is idealized for FSVQ 
approach, i.e., a spatial DPCM for the lowest frequency 
subband and finite state VQ for the higher frequency 
subbands. The non-uniform distribution of energy in a 
subband is reflected by the state of vector quantizer. We 
implement the FSVQ with a top-to-bottom fashion in the 
wavelet pyramid, i.e., the lower frequency subbands are 
quantized first. A special function V is designed to 
classify the quantizer outputs, while the class of the 
output element serves as the state of its children. It is 
worth pointing out that the state determination at both 
encoder and decoder is based on the decoded elements. 
Thus the decoder can track the next-state rule of encoder 
and the quantization process has, memory, which 
constitutes the FSVQ. 



I11 Lattice Vector Quantization 

111.1 The principle of Lattice Vector Quantization 
The considerable structure associated with a regular 

lattice and the fast quantization algorithm that this 
structure implies, have been stimulating for the use of 
lattice as vector quantizer[ 11. This quantization is more 
attractive than conventional nonuniform vector 
quantization in that when followed by a variable length 
entropy encoder it provides performance comparable to 
nonuniform vector quantizer with a much reduced 
computational complexity. A lattice is defined as a set of 
vectors 

A = { x : x = ulal  + u2a2+. . .+uNaN} (111-1 ) 

where a i  , i = 1 , 2 , ... , N are the basis vectors of the 
lattice and the ui are integers. The lattice VQ is 
constituted by selecting some of the lattice points x to be 
the output points Yi and forming Voronoi regions Cl l  
associated with these output points so that if a source 
vector X E Ri then Yi = Q(X) . 

111.2 Pyramid Lattice Vector Quantization 
It is well known that the Laplacian model is well fitted 

to the pdf of subband image data. For an 
L - Dimensional vector x = (x,,x2;..,xL)‘ consisting of 

i.i.d. Laplacian variables xi with variance 2/A; and 
mean zero, the joint pdf of x is 

( 111-2 ) 

i=l 

The contours of constant density 

satisfy EL Ai Ixi I = constant . We then define a “weighted 
I = 1  

pyramid” as : _ _  
l L  ( 111-3 ) 

S(L,A,C) = {x: -pL(x ,1= c) 
L j=i  

The asymptotic equipartition principle of information 
theory indicates that for large encoding rate and uniformly 
distributed codewords, all codewords close to S( L,  A, C )  
are roughly equally likely [2] .  This motivates us to 
construct a VQlnoiseless code by using a lattice to define 
the uniformly distributed codewords in R and a suitable 
enumeration code to assign equal-length binary 
codewords to each lattice points on the surface of same 
pyramid S( L ,  A, C)  . Usually suitable scaling and 
rounding are introduced to make the enumeration code 
feasible in practice. 

Since the vector components in our project are from 
the same class in a subband and can be viewed to have the 
same variance, a simplified pyramid can be defined as 
follow: 

( 111-4 ) 

i= I 

where the pyramid “radius” Y is the I ,  norm of x . We 

focus on cubic lattice Z N  in our project for simplicity, 

although other lattice can also be investigated. Let the 
integer function f (x)  to be the closest interger to a real 
x . The number of cubic lattice points on S ( L , r )  is 
N (  L ,  r )  . The introduced scaling factor or “quantization 
step” A is used to adjust the trade-off between entropy 
and distortion. Then the encoding process with LVQ for 
an input L - Dimensional vector x is as follows: 
1) LVQ with cubic lattice: 

The input vector X is scaled with A , and quantized as 
7 = f ( x  / A) , 

2) Enumeration 
a) The I ,  - norm of y , r = ))y))l is computed. 

b) r is encoded with entropy code ( variable length ) 

c) The enumeration code C”(r) developed in [4] is 
used to encode 7 with a binary codeword C’ of 

length [log, N ( L , r ) l  b 

then stored and transmitted. 

C’ as c l ( r ) .  

d)The union of the two sub-codewordc = ( c l , c l ’ )  is 

IV The FSLVQ Algorithm 

IV-1 The Design of FSLVQ for  Wavelet-Based Image 
Coding 

A J-level wavelet decomposition of image yields a J- 
layer wavelet pyramid structure 

denotes the LFS and detail in subband ( j , k ) ,  
respectively. 

We classify the elements in a subband into S classes 
based on its local variance. Although the nonuniform 
classification gives superior performance, we adopt a 
“equipopulous classes” approach[7] in our project for the 
interest of simplicity, which works well, provided that the 
number of class is sufficient large( S = 4 in our project). 
This classification then determines the state of the 
quantizer for a higher frequency subband. The process of 
classification for the FSLVQ design is described 2s 
follows: 

{pJ,(o:),,j,J,(oj>l,i,J,(o:,j,J>} 9 where PJ , D; 

Procedure Classification(P, J ,S) 
begin 
decompose the input image P with WT; implement 
the DPCM on P,, and obtain the open-loop 
prediction error. 
for level j=J to 1 
for pyramid direction k=l  to 3 

break the parent subband into block of size m x m , 
and classify the blocks into S eqnipopulous classes 
based on their loacl variance; partition the blocks 
in subband (j,k) to obtain the 
D;,s = {x E D;, CZass(p(x)) = s}  ; 

next 
next 

end 



Note: x and p ( x )  are the block in Df and the parent of it, 
respectively. 

As in all subband coding schemes, one must determine 
how to allocate bits among the subbaads. This issue can 
be formulated as the following constrained optimization 
problem: 

subject to bit rate constraint 

where E;,,  and R;,s denote the distortion and rate of s- 
class in subband ('j,k). 

The conventional approach is to obtain the optimum 
bit allocation by a Lagrange multiplier method [5]. 
However, the results are not constraint to non-negative bit 
allocation. A novel adaptive scheme developed by 
authors[6] can be extended to design the FSLVQ 
quantizer. Since the rate and distortion trade-off of lattice 
vector quantizer is adjusted by the scaling factor A ,  the 
overall distortion in (IV-1) can be expressed as : 

Then the aforementioned optimization problem is 
equivalent to finding a set of optimal scaling factor 

to minimize (IV-1) subject to 

E = D(AJ>A;.,J ( IV-3 ) 

( " '(A:'s ) l C j < J , l < k C 3 , l < s C S  I 

(" ' ( A ~ ~ ' ) l ~ j ~ J , l ~ k ~ 3 , 1 1 s < S  I 
(IV-2). 

The basic concept of the scheme is described as 
fol1ows:starting from a set of initial large scaling factor 

for every class in each subband, 

corresponding to low bit rate and high restruction 
distortion, the algorithm decreases one entry of the set of 
scaling factor at a time until a target bit rate is reached. 

The quantity ~ , i.e., the ratio between the decrease in 

reconstruction error and the increase in bit rates, is used as 
a criterion to reflect the rate-distortion trade-off. Then the 
procedure of the quantizer design can be described as: 

-A& . 
AR 

( IV-4) 
max max ~ 

j , k , s  zt,, -*&i A:,A+i:,a 

The detailed design procedure can be found in [6]. 
When performing the design algorithm, one can estimate 
the reconstruction error through the quantization error Via 
(IV-1). There also exists a convenient way for fast rate 
estimation. We notice that for a given weight vector W ( 
unit weight in our project), the length of the enumeration 
codeword can be precomputed for each I ,  norm and 
stored as a table. Thus simply computing the I ,  norm for 
each vector to be encoded allows a rapid evaluation of 
the number of bits required to encode a string of source 
vectors. If there are M blocks belonging to state s in 

subband (j,k), the estimated average bit rate for a 
particular scaling factor A:.,s can be expressed as: 

where H(r,) is the entropy of I, norrn rm . 
IV-2 The Implementation of FSL VQ 

The FSLVQ quantizer designed through the process 
outlined above can be used to encode the image in 
wavelet domain. The details of encoding and decoding 
are given in the following procedures 

procedure ENCODER( P, Rtarpel J,S) 
begin 
decompose the input image P into .I-lvel with WT; 
enocde the LFS subband with DPCM; divide the 
quantized prediction errors into block of size m x m 
and classify the blocks into S equipopulous class; 

for level j=J to 1 
for pyramid direction k=l to 3 
for state s =1 to S 
break the subband 0,k) into blocks of s i z e m x m ;  
determine the set of blocks for state s based on their 
parents and encode them with LVQ designed for 

next 
classify the quantized blocks in subband (j,k) 

equipopulous classes. 

Cj,k,s). 

into S 

next 
next 
end 

Similarly we have the procedure DECODER. 
Computer simulation was carried out to show the 

feasibility of the proposed FSLVQ algorithm for wavelet- 
based image coding. We implement thLe FSLVQ algorithm 
with 4-class on the standard monochrome Lena image of 
size 512 x 512 x 8 .  In our simulation we break the 
subband image into nonoverlapping blocks of size 4 x 4 
and constitute the 16-D vectors for LVQ. The 
classification of subband image is also based on the local 
variance of the 4 x 4 blocks. The overhead information 
that needs to send to the decoder includes the scaling 
factor for LVQ of each class in leach subband. Our 
simulation results are compared to Naveen's FSSQ coding 
scheme[5] in terms of R-D performance( see fig. 2 ). The 
improvement in PSNR with the proposed FSLVQ (4- 
calss) over the FSSQ (4-class) is nearly 0.2db. One can 
improve the R-D performance by encoding the LFS 
subband with DCT ECLVQ and predicting the classes in 
next higher frequency subband based ion the quantized ac- 
coefficients. Further improvement in performance can he 
expected if we adopt large block size or other more 
compact lattice such as E, and A ,6 . 

V. Conclusion 

In this paper, we have proposed a Finite State Lattice 
Vector Quantization scheme for wavelet-based image 
coding. Finite-State VQ have been proved to be 
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successful in exploiting the self-similarity of the image in 
wavelet domain across different scale. Lattice VQ offers 
the promise of design simplicity and reduced complexity 
encoding. The proposed FSLVQ combines both the 
efficiency of FSVQ in exploiting energy correlation and 
simplicity of LVQ in implementation. A niovel adaptive 
scheme developed by authors[6] is also used to design the 
FSLVQ quantizer, which adapts to the actual statistical of 
input images. Finally, comparisons with the earlier 
version of FSVQ, i.e., Naveen's suband-FSSQ[S], which 
is very efficient in exploiting the energy correlation 
among subbands with scalar quantizer, favour the 
proposed FSLVQ quantizer. 
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