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Abstract

This paper describes a self-learning navigation method
which utilizes fuzzy logic and reinforcement learning for
navigation of a mobile vehicle in uncertain environments.
The proposed navigator consists of three modules:
Obstacle Avoidance, Move to Goal and Fuzzy Behavior
Supervisor. The fuzzy rules of the on-line obstacle
avoidance are learnt through reinforcement learning. A
new and powerful method is proposed to constructed
these rules automatically. The effectiveness of the
learning method and the whole navigator are verified by
simulation.

1. Introduction

Path planning is an important issue in navigation of
mobile vehicles, which could be classified into three
general approaches: roadmap [1], cell decomposition [2]
and potential field {3.4]. The first two are carried out in an
off-line manner in completely known environments. They
are not suitable for navigation in complex, unknown or
dynamic environments. The potential field method seems
quite efficient in on-line path planning, however, it has
two disadvantages: (1) It is difficult to find the force
coefficients influencing the velocity and direction of the
mobile vehicle in a clutter environment which are too
complex to be embedded in a mathematical model; (2)
The potential local minimum could cause the vehicle to be
stuck there and unable to get out. In this situation, fuzzy
logic approach seems promising [5,6], however, it is not
easy to consistently construct the rules in the case of
navigating the mobile vehicle in a clutter environment. To
tackle this problem, reinforcement learning las been
introduced to learning these rules automatically [7], but
due to the slow learning rate, methods such as the
Environment Exploration Method (EEM) [7,8] which
operates the mobile vehicle to explore the environment
and has the rules constructed, is time consuming and
cannot guarantee to end up with a sufficient number of
learned rules.

In this paper we describe a new navigation method
which uses fuzzy logic and reinforcement learning, and
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propose a powerful method for constructing the fuzzy rule
base. It has four advantages: (1) high learning speed, (2)
high number of learned rules, (3) high adaptability, and
(4) reliable convergence of learning network.

2. Navigator overview

The navigation system is depicted in Fig. 1 (a). It
consists of three modules. Both the Obstacle Avoidance
and Move to Goal behaviors are based on fuzzy control.
their rule bases are constructed through reinforcement
learning. The Fuzzy Behavior Supervisor (FBS) is a
command module to fuse the two behaviors and generate
the correct motion command for the vehicle. In this paper
we will focus on the Obstacle Avoidance module and the
construction of the fuzzy rule base.

3. Algorithm of collision-free havigation

The Obstacle Avoidance module is shown in Fig. | (b\
With the appropriate W generated by the self-tuning
module, the input sensor readings is fuzzified and fuzzy
inference is made. Finally the vehicle’s action: the linear
velocity and it’s steering angle, are correctly determined
by defuzzification. The design of this module is as
follows: (1) fuzzification of the input variables, (2) rule
base construction through reinforcement learning, (3)
defuzzification of the output variables. o
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Fig. 1 Diagram of the proposed Navigator
3.1 Sensor reading and control variables

Assuming the vehicle is equipped with five ultrasonic
sensors equally and spatially distributed on the front
semicircle on the x-y plane, each of which gives the
distance to the obstacle d,(i = 1,---,5) in its field of view.



The control variables of the mobile vehicle are its linear
velocity v and its steering angle A4. In order to navigate

the mobile vehicle to it’s destination, we assume that the,

position of the mobile vehicle p(X,Y) is always known
from the internal sensor of the vehicle, and the goal vector
p, (X,Y) is given. Therefore the navigation problem can
be described as: given the input variables 4,, p(X,}) and
pF(X,Y), controls the output variables v and - A¢ such
that the vehicle avoids obstacles siiccessfully and finally
achieves its destination.

3.2 Fuzzy control of the obstacle avoidance

As shown in Fig. 2; the crisp value of input variable d
is fuzzified and expressed by the fuzzy sets - VN, NR, FR;
which stand for ‘very near, near and far respectively. The
fuzzy sets of the output: variables v and ‘Aé have their
definite membership functions whose center positions (b,
and b, ) will be determined by reinforcement learn,ing.
The fuzzy rule base which plays a role in mapping sensor
input space d, to the mobile vehicle’s action space v and
A8 are denoted by: .

Rulej: IFd, is D, AND..ANDd, is D,

THENwvis ¥, A6 is AG)/ (j=1.---.243)

where d stands for sensor input; D is the fuzzy set for d,
in the jth rule. which is one of VN, NR, FR; v and A&
denotes the output variables; V; and A®  are the fuzzy sets
for v and A8. Let the fire strength of jrk fule be denoted
by u . For the inputs d, = d, ,--,d, = d,, the fire strength
of jth nile can be denoted by

fy =y (@A, () nonp, (d) (1
If Mamdani’s minimum operation .is used for the fuzzy

implication and the height defuzzification method is used
for defuzzification, the crisp control action is given by

2243/1[)
and A== L2
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Fig. 2 The membership functions of input andﬂout put variéb!es

3.3 Rule learning for obstacle avoidance

“The approaches which utilize reinforcement learning
to learn obstacle avoidance have been introduced by
[7][8]. Ref. [7] is based on fuzzy control and [8] is not.
However, both of them are based on EEM. These methods
at least have three disadvantages: (1) It is time consuming
to explore the environment; (2) whether the rules are
sufficiently learned or not cannot be ascertained upon the
termination of the.learning process; (3) the number of
learned rules cannot be certain. Furthermore, it is not clear
that an optimum environment for training the vehicle
exists. In this paper, we proposed a method to tackle this
problem. Since we have no intention to proposed a fully
new reinforcement learning theory, we adopt Sutton and
Barto’s' model [9], and give a brief description of the
learning method.

The structure of learning miethod is depicted in Fig. 3.
The Fuzzy Quantization encodes the input crisp value of
sensors into H, by equation (1). o

‘ Fuzzy Quantization

‘ Defuzzification

Fig. 3 Diagram of neural network to learn obstacle avoidance

L

In order to give the associativity in learning the rules,
the trace, w (1) of the fire jzh rule is used. The trace at

time step, #+7 is given by

2, () = A (0 + (1= )4, (0 3)
where A, 0<A<l, is the trace decay rate. When a collision
occurs, the. ACE receive a external reinforcement signal
which is designed as

{—1 if min(d,) <(R,,, +d, . J(1+¢)

amv

o=

n

0 otherwise
where m=/,2, R is the radius of the 'mobile véhicle,
d_is the minimum distance which the ultrasonic sensor

¥ min

can detect, and ¢, O<e<l, is a safety factor. While using
the temporal difference learning theory, the prediction of

the external reinforcement signal is

pa(1) = E(Zy""r,,,(r' + 1)) ' (5)

(21 ' .
where 0 <y <1, and E(e) denotes the expectation. Thus
if p_(¢) is correctly learnt, then
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p,d—-D=r()+p, (1) (6)
In the case of incorrect learning, an internal reinforcement
signal will be generate by equation (7) to train the ACE,
which is defined as

£ =1, (0 +mp, ()= p, (1 =1)

m

The prediction value, p () is implemented as folloWs:

(7

243

p, ()= G[Z‘_’n,/(l)/l,(l)}

where G(x)=2/(I+e*")~1. In order to predict p (1)
correctly, the weights of ACE must be updated. It is
expressed by

v, T+ D)=y, (O)+ B, (Op (1) 9
where S is a positive constant determining the rate of
change of v . In the same way, the weights of ASE are

(8)

updated by
w,(+h)=0,()+a,

i (0)e,, (1) (10)
where a, O<a<l, determines the learning rate. ¢, (¢) is the
eligibility at time ¢ of the jth rule, which is updated by

e, (t+)=0¢e, (1)+(1-9)y, (Hu, 1) (1
where J, 0<5<1, is a trace decay rate, and y (1) = (v,A0)
is the control actions at time step . Eventually, if the rules
are sufficiently learnt in a specific environment, the
weights of ASE will -converge to a fixed values. The
center position of the fuzzy sets (Fig. 3) at each time step
are determined by

@ mj ( { )~fm

k max(\wm’. (I)D + ‘a)m,.(r)‘
where b , k and f are constant. While the learning
process terminates, the learned b, (1) at the time step is

b

mf

(1)=b,+ (12)

used as the collision avoidance rule base for the mobile
vehicle in real navigation.

3.4 Implementation of rule learning

In this paper, we separate the rule learning and real
navigation into two stages: (1) In the rule learning stage,
we use a small value of W (Fig. 2), and implement
learning in a very small and simple environment; (2) In
the real navigation stage, the self-tuning module is
activated to tune-the universe of discourse of the sensor
input by generating an appropriate value of W for the
current environment where the vehicle is. As a result, the
fuzzy rule base learned in a small environment can be
adaptively used in a fully unkown environment.

4. Simulation and results

In the simulation, we used a corridor-like environment
(Fig. 4) to learn the fuzzy rules. Since the environment is
regular, when the learning algorithm converges, the
trajectory of the vehicle will be kept unchanged, thus the
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learning process could be terminated with-a sufficient

number of learned rules. The parameters of  the

simulation are as follows: (1) the distance which the

ultrasonic sensors can detect is from 4cm to 200cm; (2) R

and W are set to be 28cm and 20cm respectively; (3) The
other parameters are shown in table 1.

A=05 f =15em/s e=02
5=085 b =15cm/s k=02
y =095 b, =0 rad a=08
=15 J,=m/2rad £=08

Table 1. Parameter Used for simulation .

For W=20cm, The optimum width of the corridor for
learning is 72cm. At the beginning of the simulation,

,, (1) is set to small nonzero values, while v, (1), u (1),

p,(t=1), e, (r)are set to zero. The mobile vehicle begins

its first trial of the learning steps which consists of a series
of learning steps until a collision occurs. When a collision
occurs, it will backtrack 4 time steps and the heading
direction will be reversed, and a new trial begins. The
performance of the learning process can be expressed as
the number of steps that were taken before a collision
occurred. The vehicle was trained in the clockwise (CW)
and counter-clockwise (CCW) directions, until the
trajectory of both of these directions converged, meaning
the weights of the ASE have achieved their fixed values.
Simulation was carried out to compare our method with
the EEM. In the EEM, the vehicle was trained in the
environment shown in Fig. 7 with the same pardmeters as
our method. The rules are sufficiently learned (it can be
verified by the control surface of the controller) in our
method after 34 trials, where CCW takes up 22 trials since
it begins with a blank rule base, and CW takes up 12
trials. However the EEM takes 100 trials and the rule base
is far from sufficient (30% of the rules is blank). It only
handled 3000 learning steps before a new collision
occurred. Further simulation shows that the rule base is
not constructed sufficiently at 40000 learning steps. Fig. 5
shows that the proposed method is. quite efficient as
compared with the EEM. In some situations when the
EEM caused the vehicle to go into a dead loop, the
performance of learning become worse.

trajectory .
of vehicle navigate
successfully
collision idth=T2.
oceur wiath=/2cm
. ~ obstacle
start point

size: Smxém
Fig. 4 Learning in a small and simple environment - -



After the construction of the rule bases, we test its
adaptability in the -environment ‘as shown in Fig. 7 by
simulation. The vehicle navigated 200000 steps, explored
the whole environment without collision. However, since
the fuzzy control is based on a small W, and the output of
the - control algorithm is keep unchanged while the
distance of the obstacle is lager than R*+2W, it has two
disadvantages: First, the obstacle avoidance algorithm ‘is
very nearsighted. This resulted in that the vehicle might
take an unreasonable trajectory (Fig. 6) in real navigation.
Second, the change of v. and A8 is large in one time
interval. In order to avoid these disadvantages, we use a
self-tuning module to determine an appropriate W for the
Obstacle Avoidance module in real navigation. This make
the vehicle “see” farther (Fig. 6) and smoothly move
around obstacles. However, it reduces the average
velocity of the vehicle. The whole navigator is tested by
simulation as shown in Fig. 7. In addition, the navigator is
free of local minimum (Fig. 8)
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Fig 5 Performance of the proposed training method
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Fig. 6" Testing the self-tuning module

5. Conclusion

We proposed an efficient :method to learn the fuzzy
rule base of collision avoidanceé. Based on this method, we
proposed .a new scheme of an intelligent navigator, in

which a self-tuning mechanism was used to tune the
universe of discourse of the input variables. The proposed
method will find its application "in  multi-behavier.
navigation of mobile vehicle in our future research.
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Fig. 7 Navigation from a start point to three destinations
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Fig. 8 Navigation without local minimum
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