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ABSTRACT: A n  i terat ive  image segmentat ion 
algorithm that segments an image on a pixel-by-pixel 
basis is described. The observation infomation to be 
utilized is the joint gray level values of the pixel to be 
segmented and those of its neighborhood pixels. The 
iterative process is initialized by thresholding the image 
with Otsu 's method. Each pixel is segmented into a class 
when the a posteriori probability, conditioned on the 
observation information, that it belongs to this class is 
maximum. The newly segmented image is  employed to 
re-estimate the a posteriori probabilities and the 
segmentation process is repeated until there is no 
further pixel classifcation change in a particular run. 
Among those segmented images generated in the 
iterative process, the best segmented image is chosen 
according to a maximum entropy criterion. Simulation 
studies demonstrate that the proposed algorithm can 
achieve very signif cant improvement in segmentation 
performance as  compared to the more popular 
thresholding approach. Furthermore, the performance 
is neither sensitive to the initial threshold value nor the 
form of the probability density function of the image. 
Segmentation of practical images also demonstrates 
that the proposed algorithm is capable of good 
segmentation results,for real-life images. 

1. INTRODUCTION 

An image is a collection of spatially-ordered picture 
elements (pixels) representing a scene. For the 
consideration of an image segmentation process, the 
scene usually consists of several objects in a background 
and the segmentation process will classify, or segment, 
each pixel into a certain class. Such a classification 
process is an important step towards higher level image 
processing including image understanding, object 
identification and pattern recognition [I] .  A very 
popular method of image segmentation is thresholding. 
In this method, a threshold value is determined by 
analyzing the image. A pixel is segmented into one class 
if its gray level value is greater than the threshold value; 

otherwise it is segmented into another class. Multi-class 
thresholding is defined in a similar manner. There exist 
various algorithms for the determination of the 
thresholding value [2-4]. 

An important advantage of thresholding is that the 
threshold value can be derived in high speed if only 
simple statistical properties, such as pixels' probability 
density function (pdf), of the image are considered [5].  
But since an image pdf does not contain sufficient 
amount of information to characterize the image 
faithfully, a pdf-based thresholding algorithm may not 
always arrive at a good threshold value. A possible 
improvement is to make use of more information, such 
as spatial information, to determine the threshold value. 
In recent years, several new thresholding methods that 
utilize spatial information in determining the threshold 
value have been reported 16-81. Another limitation of 
thresholding lies in its fundamental characteristics and 
hence is more difficult to overcome. After a threshold 
value has been determined, all pixels having the same 
gray level value will invariably be segmented into the 
same class. The segmentation result is limited by the 
degree of overlap of the pdf's of the constituent 
sub-images irrespective of how the threshold value is 
derived. When the degree of overlap is small, good 
thresholding results are still possible; if the degree of 
overlap is substantial, it is impossible to obtain good 
thresholding results. 

To overcome these limitations, it would be necessary 
to segment each image pixel individuallly according to 
some observation information. For this purpose, a 
pixel-by-pixel segmentation algorithm that utilizes 
spatial information is proposed and described in this 
paper. In Sections 2 to 4, the notations, theory and 
implementation of the proposed algorithrn are described 
in details. In Section 5, the simulation and practical 
results are presented to illustrate the capability of the 
proposed algorithm. The paper is then ended with 
Section 6, the discussions and conclusions part. 
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2. NOTATIONS 

Consider the general K-class segmentation problem. 
The image to be segmented is a representation of a scene 
having K-1 objects in a background, i.e. there are totally 
K constituent sub-images with each sub-image 
generating a class of image pixels. Each class of pixels 
is characterized by a probability density function (pdf). 
An image pixel is denoted as X. A class parameter x is 
defined to denote the fact that X belongs to class k by 
x=k, k=1,2;..,K . If the gray level value of X is g,  it is 
denoted as X=g, g=O,l;..,L, i.e. the gray level is 
quantized to L+1 values uniformly spaced in unit steps. 
The pdf of the krh sub-image is denoted asfk(g): 

fk(g) = P(x=g I s k )  k = 1, 2, ..., K (1) 

For each image pixel X ,  a collection of M pixels 
bearing a fixed spatial relationship to X are defined as 
“neighborhood pixels” of X . These neighborhood pixels 
are denoted as X(’), X(2), ..., X(m. Such a fixed spatial 
relationship is usually defined in a neighborhood 
scheme. As an example, Fig. 1 below shows the nearest 
4-neighbors scheme as defined in [9]. 

Fig. 1 Nearest 4-neighbors neighborhood scheme 

The class parameter of the neighborhood pixel X(m) 

is denoted as x ( ~ ) .  The M class parameters of the 
neighborhood pixels when taken jointly are defined as 
“neighborhood configuration” N = ( ~ ( ‘ 1 ,  x(*), ..., x(w ). 
In a similar manner, the gray level value of the 
neighborhood pixel X(m)  is denoted as g(m) and the M 
gray level values of the neighborhood pixels are taken 
jointly as G = g(2),  -, g(w). 

3. THEORY 

To segment an image pixel X ,  the joint observation data 
(g,G) will be utilized. Based on this observation data, 
the aposteriori probability that pixel X belongs to class 
k is denoted as Pk and can be expressed as a conditional 
probability: 

Pk = P( s k  I g,G ) k = 1, 2, ..., K (2 )  

Applying Bayes’ rule [lo] to Eq. (2) ,  the a posteriori 
probability Pk can be written as: 

The most probable class that X belongs to is class k* 
where Pk’ is the maximum among all the Pk values 
described in Eq. (3). If pixel X is segmented into class 
k*, the probability of segmentation error will be 
minimum. To determine the maximum Pk value, there 

is no need to consider the denominator P(g,G) in Eq. (3) 
since this term is independent of k. Only the products of 
P( g,G I x=k) and P(x=k) need to be computed and 
compared. 

On account of the extremely large dimension of 
P( g,G I s k ) ,  a confident estimation of their values 
could be quite difficult. For instance, with an image of 
65,536 pixels, a 4-pixel neighborhood and 8 bits of gray 
leve l  quant iza t ion ,  t he re  are  va lues  of 
P( g,G I x = k )  to be estimated. It is impossible to make 
the estimation with only 65,536 image observation data 
available. Such a dimensionality problem has 
challenged many segmentation algorithms intending to 
incorporate spatial information. Possible solutions that 
have been reported earlier include simulated annealing, 
iterated conditional modes (ICM) or maximizer of 
posterior marginals (MPM) [l 11. 

To overcome the dimensionality problem associated 
with the estimation of the P( g,G I x=k) values, it is 
proposed to retain only the class inter-dependence 
feature among the image pixels and to neglect the gray 
level inter-dependence feature. In essence, the following 
two assumptions are made: 

(i) the probability that a pixel has a gray level value g 
only depends on its class parameter, and does not 
depend on the gray level values of its neighborhood 
pixels, 

(ii)the probability that a pixel has a neighborhood 
configuration N only depends on its class parameter, 
and does not depend on its gray level value. 

For  a K-class segmentation problem with M 
neighborhood pixels, there are KM possible neighbor- 
hood configurations each of which may be denoted as 
Ni, i=1,2,...,KM . Each Ni will be denoted as ( xi’), xi2), 

..., xim), 1.‘) xiw ) where each .xim) is a class parameter 
which value ranges from 1, 2, ..., K. Due to assumption 
(ii),  if it is known that pixel X belongs to class k ,  then 
the probability of its neighborhood configuration being 
Ni will be given by the conditional probability 
P(Ni I x=k). Since all the possible neighborhood 
configurations Ni are mutually exclusive, the total 
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probability theorem [ 101 may be applied and the value 
of P(g,G Ix=k) is given as: 

KM 
P(g,Glx=k) = P(Njlx=k) x P(g,Glx=k,Nj) (4) 

i= 1 

Since the observation data is (g,G) where G is (g('), 
g@) ,  -., g(m),  with assumption (i) the  term 
P(g,Glx=k,Ni) in Eq. (4) can be expressed as a product: 

By substituting Eq. ( 5 )  into Eq. (4), P(g,Glx=k) can be 
written as: 

I? M 
P ( g , G l p k ) = C  P(N+k)Xfk(g> nf(,) (g'")) (6) 

m=l 'i i= 1 

To calculate all the values of P(g,Glx=k) according 
to the right hand side of Eq. ( 6 ) ,  the values of 
P(Nilx=k) andfk(g) need to be known for all i, k and g. 

There arc KM+' values of P(Ni I x=k) and k(L+1) values 
offk(g) to be estimated. These numbers are usually not 

very large for most practical images. For instance, in the 
case of binary segmentation of an image ol65,536 pixels 
and 256 gray levels employing a 4-pixel neighborhood 
scheme, only 32 values of P(Ni I x=k) and 512 values of 
fk (g )  are to be estimated. The dimensionality problem is 
now solved. The specific estimation procedures for a 
practical segmentation algorithm will be described in 
Section 4. 

It may be shown that the proposed segmentation 
method degenerates to a purely pdf-based thresholding 
method when the image does not have any spatial 
inter-dependence feature.  In this case all the 
P(N, I x=k) terms in Eq. (6) are identical and the 

determination of the iiiaxiiiiuiii P( g , G  I n=k)x P(x=k) 
value is equivalent to determining the maximum 
fk(g)xP(x=k) value. This is equivalent to the purely 
pdf-based maximum likelihood thresholding scheme 
where no spatial information of the image is taken into 
account [12]. 

4. IMPLEMENTATION 

A binary iterative segmentation algorithm, known as the 
ITSEG algorithm, is implemented with the same nearest 
4-neighbor neighborhood scheme as that defined in 
Fig.1. The  ITSEG algorithm is initialized by  
thresholding the gray-scale image with Otsu's method 
[ 141. This method is chosen for its popularity and its high 

speed of operation. It will be shown that the final 
segmentation result is fairly insensitive to the initial 
thresholding result and hence any good thresholding 
method may be used. 

Based on the initial thresholded image, the values of 
P(x=k),fk(g) and P(Nilx=k) are estimated. The value of 
P(x=k) for k=l,  2 is estimated by counting the number 
of pixels segmented into class k and dividing it by the 
total number of image pixels. To estimate the values of 
fk(g) for  k = l ,  2, it is assumed that fk (g )  has  a 
quasi-Gaussian form parameterized by its mean pk and 
standard deviation ok [12, 131, as in the following: 

With this assumption, the estimation of fk(g) will be 
replaced by estimating pk as the sample mean, and ok as 

the sample standard deviation, of the pixels that have 
been segmented into class k. It will be shown that even 
if the actual pdf's &(g> are not quasi-Gaussian, this 
method of estimation is still applicable. Finally, consider 
all those pixels that have been segmented into class k. 
The value of P(Nilx=k) can be estimated as the portion 
of these pixels that have a neighborhood configuration 
Ni . 

With all the values of P(x=k), &(g) and P(N,lx=k) 

estimated, for each pixel with observation data (g,G) the 
maximum value of P( g , C  1 x=k )x P(x=k) is determined 
and the pixel segmented accordingly. After all the pixels 
have been segmented, a new segmented image is 
obtained and the segmentation procedure is repeated. 
This iterative proccss will come to a termination when 
no pixel classification change is resulted in a particular 
run. A series of segmented images would have been 
produced in the course of iteration. To identify the best 
segmented images from the series, the entropy measure 
N is calculated for each segmented image: [ 161, as in the 
following: 

L L 
H = -cP(gll)logP(gll) - cP(gl2)logP(gl2) (8) 

FO g=o 

wherc P(glk) is the pdf of the pixels that have been 
segmented into class k, k=l,  2. The segmented image 
that has the maximum H value is taken to be the best 
segmented image, and hence the final result. A 
flww-chart describing the ITSEG algorithm is as shown 
in Fig.2. 
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5. 

Step No. 

I Threshold the image by Otsu’s method 1 

ITSEG Err (%) Step No. ITSEG Err (%) 

LI 

O(0tsu) 8.82 3 0.21 
I 

11 2.95 4 10.1 

For all i and k, estimate: 
P ( x = ~ )  P ( N i k k )  ~k pk 

I 
Segment all image pixels 
Calculate entropy measure 

Record segmented image as result 

Fig.2 Flowchart of ITSEG algorithm 

SIMULATION RESULTS 

To evaluate the performance of the ITSEG algorithm, a 
simulation study is carried out. In this study, images of 
some scenes are generated and then segmented by the 
ITSEG algorithm. Each image has a size of 256x256 
pixels and the gray level value of each pixel is quantized 
to 8 bits, i.e. from 0 to 255. The pixel gray level values 
are generated by a random number subroutine following 
some pdf, such as Gaussian or exponential [15]. For 
performance comparison purpose, each synthetic image 
is thresholded by the ideal minimum-error thresholding 
(IDTR) method. The IDTH method makes use of the 
individual pdf‘s and the relative sizes of the constituent 
sub-images to derive the minimum-error threshold 
value. This is the best thresholding result obtainable and 
hence is an upper bound of the performance of all, 
known or unknown, thresholding algorithms. All the 
investigations are carried out in an IBM compatible 
personal computer with a 75MHz Pentium CPU. 

/I I I I II 

2 0.81 5 (ME) 0.09 

The gray-scale image, its pdf, the Otsu-thresholded and 
the ITSEG-segmented images are shown in Fig.3 for 
illustration. This example illustrates clearly the 
capability of the ITSEG algorithm. 

(a) Gray-scale image 

(c) Otsu’s result 

0 gray level 2.5.5 

(b) Imagepdf 

(d) ITSEG result 

Fig.3 Segmentation results 
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To investigate the sensitivity of the ITSEG algorithm 
to the choice of initial threshold value, the same image 
is segmented once again with an initial threshold value 
of 150 instead of the Otsu threshold value of 135. This 
results in an initial segmentation error rate of 23.91%. 
After six iterations of the ITSEG algorithm, the best 
segmented image  i s  obtained and the ITSEG 
segmentation error rate is 0.09%. This is the same value 
as when the initial threshold is set at the Qtsu threshold 
value of 135. This case together with many other cases 
studied suggest that the ITSEG algorithm performance 
is fairly insensitive to the initial thresholding result. 

To evaluate the ITSEG algorithm more thoroughly, 
a set of synthetic images are segmented. The synthetic 
images are characterized with a relative object size of 
0 .2 ,  0,=02=20 and pl=lOO. By combining these 
parameters with a value of 160, 140, 130 and 120 in 
turn, a set of images with means separation equal to 3, 
2, 1.5 and 1 standard deviations have been generated. 
Images with Gaussian and exponential pdf’s are 
generated. The scenes include single circle, double 
circles, triple circles in a background. The ITSEGresults 
are compared against the IDTH results by plotting the 
ITSEG segmentation error rate against the IDTH 
segmentation error rate as shown in Fig.4. 

/ 
/ 
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e / 

/ 
/ 

/ 
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all practical thresholding methods, knovvn or unknown, 
will lie. From the results in Fig.4, it is seen that the 
ITSEG algorithm performs much better than all 
thresholding methods. 

To assess the performance of the ITSEG algorithm 
on real-life images that cannot be described by simple 
models, some practical images are segmented. A case 
for illustration is an image of a screw. The original gray 
scale image, its pdf, the Qtsu-thresholded and the 
ITSEG-segmented images are shown in Fig.5. It can be 
seen that the ITSEG algorithm removes the “holes” in 
the Otsu-thresholded image, thus making the segmented 
image more suitable for object recognition, object 
identification or size determination. 

(a) Gray-scale image 

0 gray level 255 

(b) Imagepdf 

/ 
/ 

/ ” e  

(c) Qtsu’s result (d) ITSEG result 

e 
* e  

/ 

,’ . p m  % - , , 
10 20 30 

IDTH segmentation error rate (%) 

Fig.4 Overall performance of ITSEG 

In Fig.4, each dot in the plot represents the 
segmentation results from one synthetic image. A dotted 
line representing the locus of ITSEG segmentation error 
rate being equal to IDTH segmentation error rate is also 
drawn. The region below the dotted line represents 
superior performance to the IDTH method while the 
region above it represents inferior performance, and 
hence it is in this upper region that the performance of 

FigS Real image segmentation results 

7. DISCUSSIONS AND CONCLUSIONS 

An iterative image segmentation algorithm that 
segments an image on a pixel-by-pixel basis utilizing 
spatial information has been implemented successfully. 
The spatial information to be utilized is the joint gray 
level values of the neighborhood pixels and the pixel to 
be segmented. The inter-dependence between the gray 
level values of the image pixels is neglected but the 
inter-dependence between their classes is retained. This 
results in a computationally feasible iterative 
segmentation algorithm. Segmentation results of 
synthetic images illustrate that the proposed algorithm 
performs substantially better than the thresholding 
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for real-life images. In general, this algorithm is worthy 
of consideration for segmenting images where long 
computation time can be tolerated. 

approach. Good segmentation results are also obtainable [9] Besag, J., ‘Spatial interaction and the statistical 
analysis of lattice systems’, Journal of the Royal 
Statistical Society, series B, 1974,36, pp. 192-236 
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