
51 1 

A PARALLEL RENDERING APPROACH TO THE A:DAPTIVE 
SUPERSAMPLING METHOD a 

SAM LIN, RYNSON W. H. LAU t, XIAOLA LIN, P. Y. S. CHEUNG 
Department of Electrical and Electronic Engineering, 

The University of Hong Kong, Horog Kong 
E-mail: wslin@eee.hku.hk 

t Department of Computing, 
The Hong Kong Polytechnic Universaty, Hong Kong 

Original z-buffer method is a very efficient method for image generation. The limi- 
tation is that it introduces aliases into the output image. Although many methods 
have been proposed to address this problem. Most of them suffer from requiring 
a large memory space, demanding for high computational power, or having some 
other limitations. Recently, we presented a simple anti-aliasing method based on 
the supersampling method. Instead of supersampling every pixel, we supersample 
edge pixels only. In this paper, we discuss various approaches for parallching the 
method and their effects on memory usage and performance. 

1 Introduction 

Real-time image rendering become more common dlue to the popularity of vi- 
sual applications such as computer games and virtual reality. Various parallel 
rendering methods have been proposed. However, for a high quality image ren- 
dering applications, anti-aliasing may be required which seriously increases the 
amounts of data transferred between processors. Hence, the rendering perfor- 
mance may be degraded due to the network contention. Recently, we presented 
a scan-conversion method called the adaptive supersampling method '. The 
method requires minimal extra computational and memory costs; to do anti- 
aliasing. We have simulated the algorithm and measured the memory usage 
among processes. In this paper, we consider different approaches to  parallelize 
the adaptive supersampling method. We look at  how these approaches affect 
the overall memory usage and performance of the method. 

2 The Adaptive Supersampling Method 

Image rendering based on the original z-buffer algorithm 
only the color value and the depth value of the closest object at  each pixel. 
However, having these two values alone produces ali ased images. This aliasing 
is the result of the point sampling nature of the z-buffer method as shown in 

requires to  store 

aThis work was supported in part by the Hong Kong CRlGC grant F163-C. 

(0-7803-4229-1/97/$10.00 1997 IEEE) 



512 

figure la .  There are many methods proposed to solve the aliasing problem. 
The supersampling z-buffer method supersamples the scene and then filters 
the image down into the output resolution shown in figure lb .  The problems 
of this method are that high memory and computational costs are required 
to generate the image. Another anti-aliasing method is called the A-buffer 
method '. This method basically breaks polygons into pixel fragments. The 
visible fragments are accumulating in a temporary buffer for hidden surface 
removal and anti-aliasing. Memory usage of this method depends on the com- 
plexity of the scene and hence there's no theoretical upper limit. As such, this 
method normally requires run-time memory allocation, which makes real-time 
image generation difficult. As the traditional supersampling method allocates 

Figure 1: (a) Aliased Image. (b) Anti-aliased image. 

memory to store the depth and color value of each sub-pixel, a lot of memory is 
needed and the actual memory usage is directly proportional to the sub-pixel 
resolution. However, we have notices that the aliasing problem occurs around 
polygon edges and lines where surfaces intersect with each other. Since these 
edge pixels only contribute to a small portion of the total number of pixels in 
the image (not exceed 20% for most of our tested images), our idea here is to 
do supe r sampl ing  on ly  when w e  need to 6 .  Figure 2 shows the difference be- 
tween the two methods. This may result in a considerable amount of saving in 
both memory and processing time compared to the traditional supersampling 
method. To achieve this, when scan-converting a polygon, if the polygon covers 
the whole pixel, we sample the pixel only once. If the polygon partially covers 
the pixel, we perform a supersampling of that pixel. This requires a buffer 
that can handle the information generated from either of the two sampling 
resolutions. Here, we apply a technique similar to the one used in the A-buffer 
method. A standard 2D buffer is used for normal z-buffer scan-conversion (one 
sample per pixel). When a polygon edge is encountered, a large memory block 
is allocated to the pixel for storing the high-resolution samples. By using this 
method, there is at most one memory block allocated to a pixel no matter 



513 

how many polygon edges found in the pixel. So, there is no need to traverse 
through a possible long list of fragments as in the A-buffer method. 

Figure 2: ( a )  Traditional Supersampling Method. (b) Adaptive Supersampling Method. (c) 
Resultant image after filtered down the supersampled pixels from (a) and (b). 

3 Parallel Rendering Algorithms 

In parallel rendering, we concern the common issues in parallel computing, such 
as the method for data decomposition, task granularity, scalability, and load 
balancing. Data decomposition in parallel rendering attempts to split data into 
multiple streams and computing the individual rendlering units simultaneously 
5,7,8 

3.1 Screen Subdivision Scheme 

Screen subdivision scheme is one of the data-decomlposition methods by which 
data are divided according their geometric description of the scene. In most 
cases, processors are assigned to handle a group of subdivided screen regions, 
geometry primitives are transferred to the corresponding processor to do raster- 
ization. However, apart from the issue of data-decomposition, the strategies of 
partitioning the image-space would affect the load balance between processes. 
We can classify the strategies for dealing load imbalance as either static or 
dynamic. 

3.1.1 Static Load Balance Scheme 

The static partitioning approach subdivides the im,age space regardless of the 
location of the polygon data set in the image. Experiments show large area 
of partition regions usually result in poor load balancing while the smaller 
the partition regions, the better the load balancing between processes 3,5,7. 
However, fine-grained computations generally incur more overheads for task 



514 

scheduling, communication, redundant calculations and more data replication 
among processors. Therefore using the coarsest granularity for tasks, which 
allows reasonable load balance, may be the best way for achieving good parallel 
timings. It is shown that the granularity ratio fixed at eight or twelve would 
give an optimal performance, but different scenes may give different results. 
The image size we use in testing is 512x512 pixels with 24 bits per pixel. We 
have constructed several data files to  test our algorithm and load distribution 
among processors. For the data file that contains 4,000 polygons randomly 
distributed on the screen. The size of each polygon is 50 pixels. Figure 7a 
shows the output of the data file and figure 3 presents the completion time 
and the average idle time of processors when we divide the screen into 64 tiles 
with 64x64 pixels in each region and assign them to 8 processors. We set the 
granularity ratio to 8 and found that the load distribution was not as good 
as using a higher granularity ratio. The average completion time using the 
scheme was 0.53s and the average idle time was 0.19s. Hence, the percentage 
of average idle time to the completion time is about 35%. 

completion time with completion time with 
o'8 1 static load balance load scheduling 

Y 

0.4 1 ~q;*- '- . ' iverage idleime with average idle time with 
I static load balance load scheduling a 

U 

10 20 30 40 o ' " ' " " " ' ' " " " " " " " " " ' ' ' " " " " ' ' ' ' '  

Frames 

Figure 3: The completion time and average idle time during 50 frames of animation. The 
output of test case is shown in figure 7(a). 

3.1.2 Dynamic Load Balance Scheme 

We have adopted a simple load scheduling method to forecast the loading 
among processors. We perform scheduling between the animation frames, but 
the screen regions are not reassigned to the processors. Instead, we adjust 



515 

the sizes of the regions based on the loading of the processors in the previous 
frame. Our scheme depends on the frame-to-frame coherence property in the 
distribution of polygons over the screen. Figure 3 shows the improvement of 
using the load-scheduling algorithm with the same granularity ratio as above. 
The average completion time is about 0.47s and the average idle time is about 
0.12s. Hence, the percentage of average idle time to completion time is about 
25%. Experiments show that our method of load scheduling will give good 
result when the granularity ratio is low. Figure 4 shows the effect on screen 
partitioning when load scheduling is activated. The size of a region with higher 
loading in the previous frame will be decreased. The area of a region is calcu- 
lated according to the ratio of load between processors. 

Figure 4: Screen partition: (a) without load scheduling, and (b)with load scheduling. 

3.1.3 Memory Usage 

Memory usage in generating an image is an important issue, especially in 
parallel computing. As the bandwidth of data communication aflects the per- 
formance of the parallel algorithm greatly, and in order to produce anti-aliased 
images, we have to use more memory resulting in a higher demand for data 
transmission bandwidth in the image generation process, many parallel algo- 
rithms for rendering anti-aliased images suffer from lower performance. Ac- 
cording to the results from our method, the total number of supersampled 
pixels is less than 20% of the total pixels in the image. One of the test cases 
containing 4,000 polygons consumes about 7.5MB of memory. Comparing with 
the 29.3MB memory usage in traditional supersampling methods, tremendous 
memory saving has been achieved in our method. Figure 5 shows the range 
of memory usage among 8 processors during the process. The range between 
minimum and maximum usage is narrow.The average memory usage by each 
processor is about 0.95MB. Figures 7c and d show the outputs df other test 
cases. The supersampled pixels used in these cases are below 1046, which con- 
sumed less than 4.6MB of memory. Figure 7b shows a test case that has a very 



516 

high complexity. The test file contains more than 32,000 polygons randomly 
distributed on the image. The supersampled pixels created in this case are still 
less than 50%, consuming 18MB memory. Note that this is an extreme example 
and is not likely to happen in most applications because in most applications, 
polygons are clustered to form objects, instead of randomly distributed around 
the screen space resulting in a lot of edge pixels being created. Figure 6 depicts 
the memory usage all our test cases. 

L 

5 10 15 al go%! ' . ' . ' ' ' - . . ' - ' . ' - ' ' 

CTI 

Frames 

Figure 5: The  maximum and minimum memory usage among 8 processors during 50 frames 
of animation. 

4 Results and Discussion 

From the results of our simulation, the memory usage of thP supersampling 
method is very high and would greatly affect the parallel process. The adaptive 
supersampling method can maintain the memory usage in a lower level. In the 
tests shown in the previous section, the usage of supersampled pixels for most 
of the images do not exceed 20%, which require less than lOMB of memory to 
generate an image. This is much less than the amount of memory used in the 
supersampling method. The load-scheduling method also shows a significant 
improvement in load balance. The percentage of average idle time over the 
completion time is 25% and the originaP one is 35%. Although the method 
cannot produce a precise load adjustment between processors, it can minimize 
the overheads in the adaptive approach' in maintaining and retrieving non- 
local status, partitioning tasks, and data migration. 



517 

w**----.lc, 
- II -*-- (I --+---,---- -(I 

g i  
3 !  -- 
m i  ---* 

i 
1 

~ 3 * " " " " ' " " " "  5 10 15 M 
Frames 

Figure 6 :  The usage of supersample pixels for all test cases shown in figure 7. In the case of 
rendering 30,000 small polygons, less than 50% of total nurriber of pixels in the image need 
do supersampling. The other three cases have lower usage of supersampling pixels. 

5 Conclusion 

In this paper, we have described a scan-conversion inethod called the adaptive 
supersampling method. This method produces anti-aliased images but requires 
less memory than the supersampling z-buffer method. We have also presented 
the load distribution and scheduling method. The load scheduling provides a 
simple way to improve the load balance between processors so that the memory 
usage is kept roughly the same amount different processors. 

References 

1. L.Carpenter, "The A-buffer, an Antialiased Hidden Surfat-e Method," 
ACM Computer Graphics, 18(3), pp.103-108, July 1984. 

2. E.Catmul1, "A Subdivision Algorithm for Computer Display of Curved 
Surfaces," Ph.D. Dissertation, Computer Science Department, University 
of Utah, 1974. 

3.  T.Crockett, "Para l le l  Rendering," Technical report 95-31, Institute for 
Computer Applications in Science and Engineering, NASA Langley Re- 
search Center, 1995. 

4. F.Crow, "The Aliasing Problem in Computer-Generated Shaded Im- 
a g e ~ ~ ' ~  Communications of the ACMl 20(11), pp.799-805, Nov.1977. 



518 

5. D.Ellsworth, "14 New Algorithm for Interactive Graphics on Multicom- 
puters," IEEE C o m p u t e r  Graphics and Applications,  14(4), gp.33-40, 
July 1994. 

6. R.W.H.Lau, "An Adaptive Supersampling Method," Image  Ana lys i s  A p -  
plications and  C o m p u t e r  Graphics,  LNCS 1024, Springer-Verlag, pp.205- 
214, Dec.1995. 

7. S.Whitman, Multiprocessor Methods f o r  C o m p u t e r  Graphics Rendering,  
AK Peters, 1992. 

8. S.Whitman, "A Task-Adaptive Parallel Graphics Renderer]" IEEE Com- 
p u t e r  Graphics and Applications,  14(4), pp.41-48, July 1994. 

Figure 7: Sample test files:(a) contains more than 4,000 polygons, (b) contains more than 
30,000 polygons. Each polygons has about 50 pixels in size distributed randomly on the 
screen.(c) contains very large polygons; screen is divided dynamically according to the load 
distribution of the image. (d) The output images of a 'shuttle'. 


