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Abstract 

A general result on identifiability for the blind source 
separation problem, based on second order statistics only, 
is presented in this paper. The separation principle using 
second order statistics only is first proposed. This is 
followed by a discussion on a number of algorithms to 
separate the sources one by one. 

1. Introduction 

The blind source separation problem [ I ]  is described as 

x(n) = As(n) (1) 

where 
(i) s(n) is a vector of unknown input signals which are 

zero mean stationary processes with unit variance; 
(ii) A is the unknown mixing matrix which is of full 

column rank; 
(iii) x(n) is the vector of measured signals, called mixtures. 

The so-called blind source separation problem is in fact a 
blind source extraction problem. The task is to extract the 
source signals s(n) from x(n). Our objective is to design an 
extractor b such that 

z(n) = bTx(n) (2 )  

is a scaled version of one of the sources. Then we design 
another extractor to extract another source. The procedure 
is iterated to get as many sources as we want. This is 
referred to a sequential approach [2] in which we extract 
the sources one by one. The sequential approach is more 
effective when there are many sources but we want to 
extract only some of them. It also leads to a simpler 
implementation. 

Usually blind source separation is done by exploiting 
higher order statistics. On the other hand, the use of 
second order statistics leads to reduced amount of 
computation and the ability to extract Gaussian sources. 

Furthermore, in practice, empirical estimates of second 
order statistics are more stable than that of higher order 
statistics. It is well known that without using temporal 
information, second order statistics itself is not enough for 
blind source separation, but recently it has been proved that 
under some assumptions the problem can be solved by 
using second order statistics only [ 1 ,  31. 

The work in this paper is based on the sequential approach. 
The extractor is designed using only the second order 
statistics of x(n). 

2. Extractability 

For blind source separation problem, there are three basic 
issues: extractability, extraction principle, and extraction 
algorithm. In this section we consider the first issue, 
extractability. The other two issues will be considered in 
the subsequent sections. 

The issue of extractability considers the problem that under 
what conditions the sources can be extracted? For non- 
Gaussian sources (or at most one is Gaussian), this 
problem has already been solved by exploiting higher 
order statistics of the signals [4]. Here we try to solve the 
problem by using second order statistics only. 

If E {  s, (n)s,, (n  - k ) ]  = 0 for any i f j and k E s2, 
the sources {si(n), i = 1, 2, ..., m) are said to be 
uncorrelated on R ,  where fi is an assembly which 
contains 0 and is included in the assembly of integer, I .  If 
C2 = I ,  the sources are also simply called uncorrelated. 

Assume that the sigcal model is described by (I) ,  where A 
is of full column rank. Denote 

Q = (O,k,,k2,--.,k1,} 
no = sz-{o} = (k*,k2,...,kL} 

The autocorrelation function of source si (n) on fi is 
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where G(k) = E{si(n)si(n - k ) }  . 

Since the sources are of unit variance, ri (0) = 1, we can 
consider the autocorrelation function on Go only, which 
is denoted as 

Let ~ ( n )  = As(n), besides the three assumptions in Section 
1, further assume that 

N N  

R ,  = rl(k,)UIUT +U2AIZUf ( 5 )  

Under this decomposition, we have 

XI (n)  == D'xo(n) = u,s, (n) (6)  

where sl(n) = Sr, (n)  is a subset of s(n) , and U, is 
an orthogonal matrix. 

If TI = (1) , then xl(n) = &s,(n), the source has 
already been extracted. Otherwise, go to next step. 

(3) Iteration 
(iv) The sources are uncorrelated on a .  

For k = k 2 ,  let 
Then, for the extractability of the source separation 
problem, we have the following theorem. 

Theorem 1: For a source whose autocorrelation 
function on is different from that of the others, it 
can be extracted by using only second order statistics 
of the mixtures x(n) . 

Prooj Here we give a constructive proof. Without losing 
generality, denote (n)  the source with the property 
specified in the theorem. 

(1) Standardization. 

Find a matrix W for which U, = WA is orthogonal. 
Note that this procedure can be easily done by various 
of ways [2]. Let 

xo(n)= Wx(n)= Uos(n) (3) 

(2) Partition. 

For k = k,  , let 

Ill=] 

where A, = d i q { r l ( k l )  r M ( k l ) } .  

(4) 

Let rlc{l,2,-.. ,M}, V i ~ r , ,  q(k , )=r , (k , ) ;  
and V i Erl, q(k,)  # r , ( k , ) .  Then the eigen 
decomposition of R, can be written as 

Similarly as in step 8(2), we have 

x2(n) -= D;x,(n) = U2s2(n) (8) 

where s2(n)  = srt (n) is a subset of s(n) , and U, is 
an orthogonal matrix. 

If x2 (n)  = +sI (U), stop. Otherwise, repeat this 
procedure for k = k3 ,. - * . Note that there must be a 
I L ,  for which x l (n )  = &sl(n). Otherwise, 
3 i f 1, ri = rl ,  which is contradict to the 
assumption made in the theorem. Therefore, we has 
proved that the source can be extracted. 

3. Extraction Principle 

If a source is proved to 'be extractable, then the subsequent 
problem is how to extract it. The problem can M e r  be 
divided into two sub-problems: extraction principle which 
considers the principle undcr which the sources can be 
extracted, and extraction algorithm which is based on the 
extraction principle. In this section we consider the 
problem of extraction principle. 

It can be proved that if the sources are uncorrelated on a ,  
then there exists c = [ c1 cL] for which the entries 

of re = E c , r ( k , ) ,  where the ith entry of r(k,) is 
L 

I=1 
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E{*i (n)xi  (n  - k , ) }  , are different from each other. 
With z(n) defined in (2), we have the following theorem. 

Theorem 2: If rc has only one maximum (minimum) 
element, then the maximizer (minimizer) of 

<(b) = x ~ , E { ~ ( n ) z ( n  - k,)} , subject to 

~ ( z ~ }  = 1, is an extractor. 

L 

I = 1  

M 

Prooj Letd = ATb, and Jc(d)  = F,(b) = ~ d ~ r , , ,  , 

where dm is the mth entry of d , and r,,,, is the mth entry 

of rc . Since A is of full column rank, the extremization 
problem described in the theorem is equivalent to 

m=l 

max/ min Jc ( d )  (9) 
dTd=l 

M M 

Note that d:rc,n, I r:” d i  = re“” , where rpm 
m=l m=l 

is the maximum value of the entries of rc . Denote m the 

index of the single entry which is equal to rc””. The 
maximun value of Jc(d)  is reached if and only if 
dm = +1 and dn = 0 for any n f  m. For this 
maximizer d we have z(n)  = +~,,(n) which is just one 
of the sources. Similarily, for the minimizer, we can also 
get this result. Therefore the theorem is proved. 

Remark 1: If all the sources have different spectra, then 
the assumption in Theorem 2 is reasonable, thus the 
extremizer will extract one of the sources. When some of 
the sources have identical spectra, the assumption will be 
invalid if the elements of r, corresponding to these 
sources are just the maximum/minimum elements, and in 
this case the maximizer/minimizer will extract a signal 
which is a combination of these sources rather than a pure 
source. Also note that if c is not properly chosen, even the 
source with autocorrelation function on 0 different from 
that of the others cannot be extracted correctly by this 
separation principle. The choice of c is problem 
dependent. In practice, for computational efficiency, c 
should be chosen with the smallest number of nonzero 
components possible. If  the sources are uncorrelated on I ,  
we can also use an AR filter to make c with an infinite 
number of nonzero components. 

4. Algorithms to Extract One Source 

The algorithms depend on the separation principle stated in 
Theorem 2 .  The extremization of F,(b) subject to 

E { z 2 )  = 1, or its equivalent, extremization of Jc(d) 
subject to d r d =  1,  is a constrained optimization 
problem. To solve the constrained optimization problem 
we can use the Projected Gradient method [5 ] .  It is shown 
that the convergence rate of Projected Gradient method is 
very slow [ 5 ] .  Here we give a more efficient method. 

First, we solve the extremization problem (9) by a special 
gradient based algorithm described below. 

Assume that rC,,,% # rc,min . Denote by m, the index I I I  I 

It means that the algorithm will converge exponentially to 
sgn(drl,,))erll,, or a limit circle (enk) ,-eq,) . In both 
cases the extracted signal is one of the sources. 

Then we can derive the equivalent algorithm to extremize 

F,(b) subject to E { z 2 }  = 1. Due to space limitation, 
the detailed derivation is omitted here. Basically the 
algorithm can be implemented in two forms. 

Algorithm 1 

(13) 

(14) 

Algorithm 2 

where 
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where A,,, is the mth column of the mixing matrix A. 

Then we let 

R, = E(x(n)x‘ (n) )  (18) 

R, = C c n , E { x ( n ) x T ( n  - 4,))  (19) 
ni 

Remark 2: %(n) = x(n) - hz(n) 

Note that (1) If R, = I ,  then the algorithm will be very simple. 

Thus in practice we let n(n) = T x ( n )  in order that 

E(Z(n)ZT(n)}  = I .  Note that this procedure is 
called prewhittening which can be done by various of 
ways such as eigen decomposition, PCA (Principle 

the Cardoso’ s adaptive approach [6]  . Then we can 

of the sources. 

Z(n)  = As(n)  - 4,sn1(n) = AX’(n) (25) 

where 

Component Analysis), Choleskey Factorization, and A = [Al .., Ajjl-l ... A M ]  
N use the following simplified algorithm to extract one S = [ $  ... %,-I s,,,+, * a -  sJ. 

Algorithm 3 
Run the one-source extraction algorithms again on the data 
x(n) in which the extracted source is already subtracted 
- 
away, then we can get another source z” different from z. 

When there are some sources whose autocorrelation 
functions on 0, are identical or c is not properly chosen, 
the iterative procedure may not always extract the correct 
source in each iteration. Fortunately this does not make 
the procedure completely invalid. For the extracted signals 
at all the iteration stag,es, any signal that is uncorrelated 
with the others on 0 

~ ( n )  = (b(k’ )Ty(n)  (20) 

b(k+l) = C a , , E { Y ( n ) z ( n  - k,J} (21) 
/!I 

b(k+l) 
b(k+l) - ~ (22) - ~ ~ b ( k + ’ ) ~ ~  

(2) The algorithms can be straightforwardly modified to 
recursive/adaptive form by stochastic approximation 
[7]. The derivation is omitted here due to space 

a correct source. 

I imitation. 

5. Extraction of the Other Sources 

If we assume that all the sources have different 
autocorrelation functions on 0, and c is properly set, we 
have derived several methods to extract the other sources. 
One method is just use the algorithm again on the 
prewhittened data but in each iteration, we project b to the 
null space spanned by all the previously obtained 
extractors. Then we obtain a new extractor and a new 
source. The second method is to modify the data so that 
they are free of the extracted sources. Then the source 
extraction algorithm is used again on the modified data to 
get a new source. Data modification can be implemented 
by Delfosse and Loubaton’ s deflation technique [2] if the 
data are prewhittened. We also have another simple 
method which can work on non prewhittened data. 

Assume that the extracted source z(n) = qjl ( n )  , then 

6. Simulation 

In the simulation, four (audio signals as shown in Fig 1 are 
used as the input sources. The sampling rate is SOOOHz, 
and the signal length is 4.375 seconds. We mix the sources 
by applying a random 4 by 4 matrix to obtain 4 mixtures. 
As shown in Fig 2, the signals used for source extraction 
are the Gaussian noise contaminated mixtures with 20dB 
SNR. Then we use Algorithm 1 in combination with the 
source substraction technique described by (23) (24) (25) 
to extract all the souraces, and the extracted signals are 
shown in Fig 3. For the purpose of comparision, higher 
order statistics based blind signal separation algorithm 
described in [SI is also used to extract the sources, and the 
results are shown in Fig 4. In the algorithms we use the 
first 1000 data (0.125 seconds) to estimate tlie required 
statistics. As one can see, Fig 3 is very similar to Fig 1 
except the order and thle sign of the signals, which means 
that our second order statistics based sequential approach 
works well in this case. Comparing Fig 3 with Fig 4, we 
find that the two methods, second order statistics based and 
higher order statistics based, have similar performance. 
Listening test shows that the result of our method is a little 
better. 

161 1 



7. Concluding Remarks 

In this paper we have proposed a sequential approach to 
blind source separation using second order statistics only. 
Algorithms were designed successfully to solve the 
problem. There are two key issues in this work. 

The first issue is the use of second order statistics only. 
Using second order statistics only is of great interest since 
it has some advantages over higher order statistics. In this 
paper we first presented a general result on the 
identifiablity using second order statistics only, as stated in 
Theorem 1. A new result from Theorem 1 is that when 
there are some sources that cannot be extracted, we can 
still correctly extract the others. 

Another issue is the sequential approach. Comparing to 
simultaneous extraction of all the sources, extracting the 
sources one by one has some advantages. Sequential 
approach to blind source separation using higher order 
statistics has been done before by others [2 ] .  Our work is 
the first that makes use of second order statistics only. 

Good performance of our approach is verified by computer 
simulation. 
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Fig. 1 The Original Sources 

Fig. 2 The Mixtures 
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Fig. 3 Extracted Sources by our approach 
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Fig. 4 Extracted Sources by HOS based method 
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