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Abstract - In this paper, the investigation of the nonlinear 
dynamics of an adjustable speed switched reluctance motor 
(SRM) drive with voltage PWM regulation is carried out. The 
corresponding bihrcation diagrams and chaotic Poincar6 
sections are presented. It shows that the system generally 
exhibits a period-doubling route to chaos. 

I. INTRODUCTION 

Subharmonics and chaos in switched mode power 
supplies have been actively investigated for a number of 
years [ l ] ,  [ 2 ] .  Chaos in induction and brushless dc motor 
drives have recently been discussed [3] ,  [4] .  Very recently, 
subharmonics and chaos in industrial dc motor drives have also 
been analyzed [5] ,  [6] .  It is the purpose of this paper to 
investigate the nonlinear dynamics (including subharmonics 
and chaotic behaviors) of SRM drives using voltage PWh4 
regulation. Firstly, nonlinear iterative mappings based on 
nonlinear and approximately linear flux linkage models are 
derived. Then, the corresponding computer simulation is 
carried out to study the subharmonics and chaotic behaviors. 

11. MODELING OF SRM DNVE SYSTEMS 

As shown in Fig. 1, an adjustable speed SRM drive 
system is used for exemplification, where speed control is 
achieved through PWM control of motor phase voltage. The 
ramp voltage v, is a function of the instantaneous rotor 
displacement B( f )  : 

( 1 )  
where v, and v,, are the lower and upper bounds of the ramp 
voltage, 0, = (8, -e,, ) / no its period, e,  and 0, are tum-on 
and turn-off angles, and n, an integer. As the op-amplifier 
OA has a feedback gain g, the speed control signal v, ( t )  is: 

where w(t) and qef are the instantaneous and reference 
speeds. Ignoring the mutual inductances with other phase 
windings, the system equation based on the nonlinear flux 
linkage model is given by: 

vr (W)) = VI + (v,, - v, )Q(t> / 4 

v,(t) = d d t )  - Wref 1 (2) 

(3)  
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where u t ,  ik , yk(B, i k )  are the kth phase voltage, current, 
and flux linkage, respectively, WL (e, il , . . . , i,,,) co-energy of 
all m phases, R phase resistance, L phase inductance, B 
viscous damping, J load inertia, T, load torque. 

Due to the switching operation, the system given by ( 3 )  is 
in fact a time-varying nonlinear state equation. Thus, this 
drive system is a higher-order non-autonomous dynamic 
system. Let X = (B,w,i , , . . . , i , , , ) ,  ( 3 )  can be rewritten as: 

Then, its solution in continuous-time domain is given by: 
x = f ( X , t )  W O  1 = xo (4)  

4, (XOJO) = ( W O  7~0)>~(XOJO),il (XO ,to),..., im (XO ,to)), ( 5 )  

111. DEIUVAT~ON OF POINCAa MAP 

Focusing on the investigation on subharmonics and 
chaotic behaviors in drive systems, the most attractive 
approach has been the iterative nonlinear mapping so-called 
Poincare map [2] ,  [7 ] .  Since SRM phase windings are 
alternatively conducted, the dc-link current id = i, +. + i,,, 
is selected as a new state variable. The new state vector is: 
Y = (f9,w,ik) 

(6 )  

which will be used to describe the dynamics of the drive 
system. A plane is defined as: 

The trajectory of Y under observation repeatedly passes 
through C when e increases monotonically. The sequence of 
C crossing defines a map: 

= ( @ ( X o , f o ) , 4 X o , t o ) ,  i , (Xo , to )  + ... + i,,,(Xo, to)) ,  

C:={Y:(emode,)=o)  (7)  

p 912 + 912 (U, id L , + l  = P((W idL I,,) (8) 
The Poincare map (8) is a two-dimensional mapping, but 

it is based on the solution ( 5 )  of the (m+2)-dimensional non- 
autonomous equation (4).  For the sake of simplicity, when 
the drive system operates in a lighter load and lower speed 
condition an approximately linear flux linkage model can be 
represented as L(8)i where: 

L"tbf o<e,se  1 'ma e2 < e s z i N ,  
L(Q) = L",i,, + e, < e I e, (9) 

The intervals of (0, el and ( 0, , x I N ,  ) are the unaligned and 
the aligned overlap section, respectively. N ,  is the number of 
the SRM rotor. For each phase winding, selecting that 
0 ,  = e,, 8, = e,, and 8, - 8, equals to the phase-shift angle 
e,, , the electromagnetic torque in the conduction interval 



8, - C!, always is K,ii / 2  . Assuming that ik gradually 
becomes zero in period of L,,,, , there is no electromagnetic 
torque produced by this phase winding in this period. Thus, 
ik in this period can be ignored since the initial value of the 
successive phase current must be zero. Therefore, (4) can be 
deduced as: 

d e  
dt 
-=#  

(10) 
1 
2 

- (- K,i2 - Bw - TL) /  J 

di u-Ri-K,wi I“: L m i n  + K P  

(a, &,+I = P((4 i),J 
The Poincar6 map based on the solution of (10) becomes: 

(1 1) 
It is important to note that this map, based on the 

approximately linear flux linkage model, facilitates the 
investigation of the nonlinear dynamics mainly caused by the 
switching nonlinearity. Since (IO) can be expressed as an 
analytical formula, it not only takes less computational time, 
but also enables the qualitative analysis of nonlinear 
characteristics. 

IV. COMPUTER SIMULATION 

To illustrate the derived modeling, computer simulation is 
carried out. Practical component and parameter values of the 
SRM drive system are selected: m = 3, N ,  = 12, Nr = 8, el 
= 5 9 ,  e, = 20.5” e,, = 15”, R = 0.1 R, L,,, = 0.34 mH, K,  
= 7.8 mWrad, B = 0.0005 Nm/rads-’, J =  0.025 Nmlrads-’, T, 
= 1 Nm; v,, = 4 V vI = 0 V, ST = 7.5”, g = 10 Vlrads-’, U = 

100 V, wref = 100 rads. 
By employing standard numerical techniques [7] to 

compute the Poincare map (1  1) based on the approximately 
linear flux linkage model of SRM drive systems, the 
bifurcation diagrams and chaotic waveforms and Poincar6 
section can be obtained. Since that 8, = (0, -@,) I2  , the 
stable steady solution will be period-2 whose frequency for 
wrer == 100 rads  is about 382 Hz. The period-2 waveforms of 
vc and vr for g = 10 Vlrads-’ are shown in Fig. 2. The 
chaotic waveforms of vc and vr for g = 20 Vlrads-’ and the 
corresponding Poincar6 section are shown in Figs. 3 and 4. It 
indicates that there is cycle skipping when the system 
operates in chaos. The bifurcation diagrams of the speed w 
and current i versus gain g from 10 to 20 V/rads” are shown 
in Figs. 5 and 6, respectively. It can be found that there are 
coexisting attractors between 15.5 and 17.5 Vlrads-‘. 
Changing wre, to 50 rads,  the bifurcation diagrams of w and 
i versus g from 2 to 6 Vlrads-’ are shown in Figs. 7 and 8, 
respectively. All of bifurcation diagrams show that the 
system exhibits a typical period-doubling route to chaos. 

Comparing Figs. 7 and 8 with Figs. 5 and 6, it can be found 
that the structure of bifurcation diagrams depends highly on 
the choice of the parameters that remain fixed. The value of 
bifurcation parameter g bifurcating to chaotic behavior for 
ore. =50 rads  is much less than one for are, =lo0 rads. It 

seems that higher g and lower w is prone to subharmonics 
and chaos. When the drive system operates in the 
subharmonics and chaos, the oscillating magnitude of the 
phase current rapidly increases from about 30 A to 40 A and 
even more. This is one of key reasons that the chaos should 
be avoided. 

v. CONCLUSION 

In this paper, the Poincar6 map of the SRM drive system 
with voltage PWM regulation has been derived. Based on the 
derived map, the characteristics of subharmonics and chaotic 
behaviors have been investigated by computer simulation. It 
reveals that the system exhibits a typical period-doubling 
route to chaos. The Poincar6 map can greatly facilitate the 
identification of the desired stable operating ranges during 
different system parameters and conditions. 

Although the investigation has been focused on a typical 
SRM drive, the proposed approach and derived equations can 
readily be applied or extended to other SRM drives. 
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Fig. 1 Schematic diagram of SRM drive system. 
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Fig. 2 Period-2 waveforms of v, and v, . 
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Fig.5 Bifurcation diagram of w versus g for wrel =loorads. 
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Fig. 6 Bifurcation diagram of i versus g for ore, =loorads. 
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Fig. 3 Chaotic waveforms of v, and v, . 
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Fig.7 Bifurcation diagram of w versus g for w,, =50rad/s. 
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Fig. 4 Chaotic PoincarC section of i versus w .  
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Fig. 8 Bifurcation diagram of i versus g for w,, =SOrad/s. 
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