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ABSTRACT 
In this paper, a transform domain normalised partially 
decoupled LMS (TP-LMS) algorithm is proposed based on the 
partially decoupled transform domain Volterra filter. It is 
formulated by applying an orthogonal transform to the first 
order of the partially decoupled Volterra filter, in which the 
filter weights of a given order are optimised independently of 
those in the higher order. This approach results in solving the 
minimum mean square error (MSE) filtering problem as a 
series of constrained optimisation problem and the modular 
structure order by order. Simulation of a system identification 
application indicates TP-LMS algorithm provides a trade-off 
between convergence speed and computational complexity. 

1. INTRODUCTION 
Nonlinear adaptive filtering techniques employing truncated 
Volterra series model have become a powerful tools in some 
important applications. Adaptive Volterra filters have been 
developed for echo cancellation [2], system identification [4], 
interference and noise reduction [3]. With the Volterra 
expansion, the nonlinear filter weights can be treated in a 
fashion analogous to linear filtering problem since there is a 
linear relationship between its filter output and filter weights. 
The widely used linear adaptive algorithm such as stochastic 
gradient descent (SGD) algorithms and recursive least square 
(RLS) algorithms can be directly applied to Volterra filter. 
However, the convergence speed of Volterra filter is 
exacerbated not only by the input signal statistic but also by 
the nonlinearity itself [5,12]. Although RLS algorithm is 
insensitive to the condition number and has fast convergence, 
it has complexity of O ( N 6 )  in direct implementation and 

O ( N 3 )  in fast form implementation [6] for the quadratic 
Volterra filter realization with N-sample memory. The general 
lattice implementation of the Volterra filter suffered from the 
over-parameterised problem [4]. Another fast RLS algorithm 
for adaptive quadratic Volterra filter has been developed with 
O ( N 3 )  [6] by exploring the forward predictor error and 
backward predictor error. All of these fast algorithms suffer 
from the numerical unstable problem [IO]. Recently, a time 
domain partially decoupled Volterra filter has been proposed 
in [7], in which its filter weights of a given order are 
optimised independently of those in the higher order. The 
Volterra filtering problem is formulated as a series of 
constrained optimization problem. The advantage of this 
approach is its possibility to increase the convergence speed 
by using different adaptive algorithm for different order. In 
[7], a new normal equation is derived and the partially 
decoupled LMS (P-LMS) algorithm is also developed which is 
with the similar form of the LMS algorithm but the stepsize 
bound can be computed straightforward. 

In this paper, we propose a modification to the partially 
decoupled Volterra filter. We apply an orthogonal transform 
to the first order Volterra filter input signal as shown in Fig.1. 

A transform domain normalised partially decoupled least mean 
square (TP-LMS) algorithm is then derived. The proposed 
approach improves the convergence rate over time domain 
approach with little increase in computational complexity. Some 
performance analyses are presented. Simulation results on system 
identification and comparison with RLS and P-LMS algorithms 
are given. 

2. BASIC THEORY 

2.1 The Volterra Filter Theory 
A nonlinear system can be modelled as a N-memory and the Z- 
order Volterra filter with the input-output relationship, 

y ( n )  = H;[ZIX,(n,Z) . (1) 

where, Xv ( n , Z )  = [Xr(n) ,..., Xy(n), . . ., X; (n)lT denotes the 
Z - order Volterra filter observation vector and 
HL[Z] = [HF ,..., Hy ,..., Hg] denotes the corresponding filter weight 

vector; n , j are time and order index respectively; 
X(n)=[X,,X2;..,XNIT,x, = x ( n - i + l )  is the input vector of the 
system. X J ( n )  , H, denote the jrh -order input vector containing 

all the jrh-order products of the elements in X(n) and the 

corresponding filter weight vector, respectively; y (n )  is the 
output of the system. For example, the second-order filter input 
vector can be described as, 

x, (n) = rX2,L 7 ' ' '&,N, I' = [x: > ' ' ' X i  7 XI x2, ' ' 'XI XN > ' ' 'X.&-iX.& 1' > (2) 

where, N ,  = N ( N  t 3)/2 with corresponding weight vector 
H,(n).  Based on the Volterra expansion, X,(n) consists of 

N ,  = [ N + : - * ]  elements, so does H J ( n ) .  Therefore, there are 

M z  = E N ,  elements in X,(n,Z) and H,[Z]. The input 

correlation matrix and cross-correlation vector of the Z -order 
Volterra filter can be defined as, 

z 

J= I  

R, [Z] = E[X, (n,Z)XL (n,Z)] = [R: ::I "'1 (3) 
%I ... %z 

P,[Zl=E[d(n)X,(n,Z)1=[P~ ,..., PZTIT. (4) 

where, R,.J =E[X,(n)X:(n)] is a correlation matrix of X,(n) and 

X,(n),  P, = ~[d(n)X,(n) ]  is cross-correlation vector of d(n)  and 

X,(n) . Here, the Volterra filter problem can be solved as a linear 

filtering problem since there is a linear relationship between its 
output and the filter weights as shown in (1). The minimisation 
of the MSE results in the Wiener normal equation, 

R, [ZIH,,[Zl= Pv [ZI 7 ( 5 )  
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and the minimum mean square error (MMSE) is given by [lo]: 

J,, =d -P$[ZlH,.,,[Zl=~: - ~ ~ ~ ~ ~ l ~ ~ , , , I ~ I ~ T ~ ~ , , , ~ ~ l  
=oi - P$[Z](Rv[Z])-IPv[Z] (6) 

where, HY,op,[Z] is the optimal solution of the Volterra filter 

in MSE sense; 0: = E[dz(n)] is the desired signal variance. 

2.2 Partially Decoupled Volterra Filter [7] 

The partially decoupled Volterra filter was proposed in [7], 
which optimises the given order filter weights independently 
of the higher order filter. For Z = 1 , the first order filter 
weights HI is optimised independently of the higher order 
filter without any constrained condition. The MSE is defined 
as J,[H,] = E( [ d ( n )  - HrX, (n)]'} and the optimal filter weights 
can be obtained by HI,,, = R;:P, . The quadratic Volterra filter 

is constructed by adding the second order filter on top of the 
first one. So, the Volterra filter weights H,[2] can be 
optimised by minimising the constrained MSE cost function, 

J21H,, H, ,Cl 1 = E[eZ (n)l+ C: (R,.,H, - PI) (7) 

Here, e (n)  = d(n )  - H;[2]Xv(n,2)] . C, is N x 1 the Lagrange 
constant vector. The constrained minimum is obtained by 
taking partial gradients with respect to H,,H, and C, in (7) 
and let them to zeros which results in a new normal equation 

From (8), we can see that HI is decoupled from X,(n) and 
H, . Similarly for the z -order Volterra filter, the constrained 
normal equation can be obtained [7]: 

R6[ZlH,,,,[Zl= P,[Zl (9a) 

Note that, the upper triangular entries of Rt[Z] vanish due to 
the Z -1 sets of constrained conditions and compared with 
(31, 

R,[Zl=R$[Zl+(R$[Z])T -Q . (10) 

where Q = diag[diag(R,[Z])] , is a block-diagonal matrix. 

2.3. Partially Decoupled SGD and LMS 
algorithm 

In general, the direct solution of (9a) for higher order Volterra 
filter in may applications is formidable [6,7,10]. Obviously, 
many adaptive algorithms can be applied to get the solution of 
(9a). Without loss of generality, we choose Z = 2  as an 
example. The stochastic gradient descent (SGD) algorithm for 
the quadratic Volterra filter is [lo], 

(12) 

where, v, (n)=R, , ,H, (n) -P,~  V,(n)=R,,,H,(n)-P, +Rz.,H,(n) 

are the gradient vector. p ,  ,p2 are two stepsizes. The range of 
the stepsize p j  to guarantee convergence for the j th order 

Volterra filter has been proved to be [7]: 

ocp,c2/ ;1 , ,  . (13) 

where, 1,- is the maximum eigenvalues of the submatrix 

in Rt[Z].  From ( l l ) ,  (12), we can see that, for quadratic 

Volterra filter, the SGD algorithm needs O(N4) operations in 
each iteration to update H I ,  H , .  In order to reduce the 
computational complexity, the LMS algorithm has been 
suggested[7], and gradient vectors 9, ( n )  = e(n)X, (n)  , 

?,(n)=e(n)X,(n) replace gradient vectors V,(n) and V,(n) in 
(1 l), (12) respectively. The filter weights can be updated by 

H,(n+l)  = H , ( n ) + p , G ' , ( n )  =H,(n)+p,e(n)X,(n), (14) 

H , ( n + 1 ) = H , ( n ) + ~ 2 ~ 2 ( ~ ) = H , ( n ) + ~ 2 e ( n ) X 2 ( n ) .  (15) 

Equation (14), (15) are called the partially decoupled LMS (P- 
LMS) algorithm to distinguish the conventional WMS algorithm. 
Analysis also shown that the stepsizes satisfy the same conditions 
as showed in (13) for convergence of the algorithm [7]. 

3. TRANSFORM DOMAIN PARTIALLY 
ECOUPLED LMS (TP-LMS) ALGORITHM 

The main problem of LMS and P-LMS algorithm is their slow 
convergence rate. In the present work, we focus on improving the 
convergence rate of P-WMS algorithm by a transform approach 
with power normalisation. The block diagram of transform 
domain adaptive Z -order Volterra filter is shown in Fig. 1. 

(16) 

where, Zk =f:X(n)=Cf,.kx,, k=1,2, . . .N and f,' =[fl.k,...,fN.kl is 

the kth row vector of the orthogonal transform matrix F of rank 
N .  In particular, variables with the over bar represent the 

transform domain variables. Obviously, the transform domain 
Volterra filter weights can also be adapted by the P-LMS 
algorithm, 

H I ( n + 1 ) = ~ , ( n ) + ~ , . ? ( n ) ~ , ( n )  , (17) 

H,(n + 1) = E2(n) + &e(n)z,(n) . (18) 

where, z l ( n + 1 ) , z 2 ( n + l )  are the first and the second order 
weight vector at time (n  + 1) . F(n) = d(n)  -8;[2]&(n,2) is the 

error signal. ??,(n) =??(n) , z , ( n )  contains all the second-order 
products of the elements in %). ji,,Tt, are two different 
stepsizes which satisfy the condition 

- 
~ ( n )  = FX(n) =[Fl....,TNlr . 

N 

,=I 

- 

- 

- 
O < j i ,  e2/LJ2,,,  j =1 ,2 ,  (19) 

where, A,- is the maximum eigenvalues of the 

R, , = az,(n)??:(n)] . The transform approach in Fig.1 will result 
in an equivalent non-orthogonal transform for the Volterra filter 

- 
- 
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observation vector X,(n,Z) . Considering the case Z = 2 ,  the 

prh element in ?Z,(n) can be computed as: 

N N  

.i&=X,Xk =CCf,,fk,xmx, I S i , k S N  , i S k , p = l ; . . N ,  .(20) 

From (16), (20), we can get the relationship between Xv(n'2) 
and X,(n,2), 

m-ll=l 

- 

- 
X,(n,2) = BX, (n.2) = 

where, B is a new equivalent linear transform matrix. Each 
element of F, can be computed from (20) according to the 
corresponding sequence order of X,(n) . It is easy to derive 
the following equation, 

In (22), E,, is approximately diagonalized by orthogonal 
transform F ,  R2,2 is a band matrix resulting from non- 

orthogonal transform F2. With the power normalized 
approach, the transform domain partially decoupled 
normalised LMS (TP-LMS) algorithm can be directly derived 
from (17), (18) 

- 

- 

- 
H,(n+ I)=H,(n)+li,i\; 'e(n)'ji,(n), (234 

H2(n+l)  =H,(n)+&I~e(n)X,(n) .  ( 2 3 ~  
- _ - _  
- 

where, A;2 = d i a g ( Z ~ ~ ( n ) , . . . . , Z ~ ~ ~  (n)],j = 1,2 are diagonal 
matrixes. We can estimate the signal power by a single-pole 
low pass filter as following in a recursive way [l I], 

Zl:,(n) =aC:,(n - 1) + (1 -a)Zf, i  = 1 ,___, N . (24) 

C;, (n)  = ac;., (n  - 1) + (1 - a)?i,,,i = I ,..., N ,  . (25) 

where, 0 <CL 2 1 is a forgetting factor. 

4. PEFORMANCE ANALYSIS 

4.1 The Convergence Performance 

The convergence conditions for P-LMS algorithm in time 
domain have been explored in [7]. For P-LMS algorithm, the 
stepsize need to satisfy the sufficient condition in (13). For 
TP-LMSA, it is well-known that the convergence speed can be 
improved over time domain approach by using the data 
dependent stepsize fi,,, =ji,/C,?, in (23a), (23b) and ji, 
satisfies (19). 

4.2 The Minimum Mean Square Error (MMSE) 

Firstly, in this section, we will investigate the MMSE of the 
constrained approach comparing to the unconstrained one. We 
assume that the tape-input vectors of the different order of the 
Volterra filter and the desire signal are jointly stationary. 
Based on the definition, the constrained MMSE of Z - order 
Volterra filter can be obtained when H,~,,[ZI = (Rt[ZI)-'P,[Zl 

[lo], 

Comparing (6) to (26), we can see that J,, is determined by the 
R,[Z] which contains all information of X,(n,Z) , but J &  is by 

R;[Z] which loses some information between the cross- 
correlation between the different order. Only when the input 
vector is fully decoupled that means the R,[Z] is a diagonal 
matrix, we have J,, =.I;, , otherwise, there exist some 
performance degrade for partially decoupled approach. 

Secondly, we consider the transform domain TP-LMS algorithm. 
It is easy to get the relationship between time domain and 
transform domain without the power normalisation, 

R,[Z]=E[?i,(n,Z)X:(n,Z)] =BR,[Z]B' , 

P, [Zl = E[d(n)%, (n,  Z)I = BP, P I  , 
Hv[Zl=(B')~lHv[Zll  

- 
- 

- 

- 
R,d[Z] = BR; [ZIB' . (27) 

Based on the definition, we can compute the MMSE as, 
- -  Ti>" =a: - P ~ [ Z l H , , [ Z l + ~ ~ ~ , ( ~ ~ [ Z - I ] ~ , , [ Z - 1 l - ~ , [ Z - I I )  

=a; -F;[z](ii;[z])-lP" [Z] . (28) 
=a,' - P~[ZI(R~[ZI)"Pv[Z1 

Comparing (28) to (26), 7;" = J i n ,  it means the transform B 
does not change the MMSE just like the orthogonal transform 
does. The power normalisation process in orthogonal transform 
always increase the steady error [9,12]. So, it can be predictable 
that the normalised non-orthogonal transform will also increase 
the steady error. 

4.3 Computational Complexity 

Finally, for TP-LMS algorithm, we discuss the computational 
complexity of quadratic Volterra filter. Fast recursive transform 
algorithm in general would require complexity O ( N )  [l I]. The 
estimation of A;, j=1,2 in (23a), (23b) requires N ( N + 5 )  

multiplications, N ( N  + 3)/2 additives and N ( N  + 3)/2 divisions. 
The update of the filter weights in (23a), (23b) needs 
N ( N  + 3) + 2 multiplications and N ( N  + 3)/ 2 additions. The total 
computation requirement is therefore of order O ( N 2 )  which is 
the same as the number of Volterra filter weights. 

5. SIMULATION RESULTS 
In this section, we present simulation studies using a system 
identification application to demonstrate the speed of 
convergence and MSE of TP-LMS algorithm. The adaptive filter 
has the same nonlinear structure as that of the unknown 
nonlinear system which can be described as 

y(n) = [4.7 &(n) - 1.4&.(n - 1) + 1.39x(n - 2) +O.O4x(n - 3) 
+0.54X2 (n)-1.63rZ (x-l)+ 1.4hZ(n -2) -0.1 3' (n -3)+ 
+3.72r(n)x(n-l)+l.86xfn)x(n-2) -0.76xfn)x(n-3)+ 
0.76xfn-1)x(n-2)-0.12r(n-1)x(n-3)-1.52r(n-2)x(n-3)~ 

. (29) 

The coloured input signal x(n )  satisfies the input-output 

relationship: x(n )  = bx(n - 1) + J l -  b2v(n) [5], where v ( n )  is 
Guassian process with zero-mean, variance unit, b=.9 is a 
constant parameter which decides the level of correlation 
between adjacent samples of x(n)  . The output SNR is defined as 
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S N R = 2 0 1 0 g ( a : / ~ s ~ )  and is chosen equal to 20 db; pl,p2, 

p , , p 2  are chosen equal to .04,.02,.06,.02 respectively and F 
is chosen as DCT. The performance is evaluated by MSE and 
the normalised squared norm of the weight error (NSWE) [6], 

- -  

where, M 2  = 14 , is the ith unknown system coefficients in 

(29) and h,(n) is the corresponding adaptive filter weight at 
time . The ensemble average MSE and the NSWE obtained 
by averaging over 20 independent runs are plotted in Fig.2 
and Fig.3 respectively. Simulation results in Fig.2 and Fig.3 
demonstrate that the proposed TP-LMS algorithm has a better 
convergence rate than that of P-LMS algorithm, but slower 
than that of RLS algorithm. In particular, from curves (21, (3) 
in Fig.2 and Fig.3, we can see that the steady error of TP-LMS 
algorithm is a slightly greater than that of P-LMS algorithm. 

6. CONCLUSION 
A new transform domain partially decoupled normalised LMS 
(TP-LMS) algorithm is derived in this paper. By applying an 
orthogonal transform on the first order filter, we constructed 
the so-called partially decoupled transform domain Volterra 
filter, where the optimal weights satisfy the constrained 
normal equation. Based on this structure, the equivalent 
transform matrix is formulated from the elements of the 
orthogonal transform following the Volterra expansion. Power 
normalisation is applied to improve the convergence speed. 
The advantage of this constrained approach lies on the 
modular filter structure and the possibility of applying 
different adaptation algorithm to different Volterra filter 
order. Simulation results indicated that TP-LMS algorithm has 
better convergence speed than that of P-LMS algorithm but 
with small increase in complexity. It can be viewed as a trade- 
off between the convergence speed and complexity. 
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