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ABSTRACT
Antimonide(Sb) is said to be an emerging optoelectronic material for both high speed and long wavelength electronics
devices. Recently, there has been much research activities on antimonide based system. Among Group V elements,
antimonide is of particular interest as its lattice parameter matches solid solutions of various ternary and quarternary
III — V compounds whose band gap cover a wide spectral range from absorption in antimonide based superlattices,
detection oflonger wavelength of 8 to l4pm is possible. With the technique of interdiffusion applying to an antimonide
based quantum well, we will be able to obtain devices which are bias tunable. This technique of interdiffusion is a
thermal process which induces an interdiffusion of the constituent atoms across the heterointerfaces of an as-grown
quantum well, and results in modification of the composition and confinement proffles of the quantum well structures.
Hence, the optical properties of the material can be modified to desire values. In this presentation, an antimonide
based interdiffused quantum well structure is carefully examined including experimental results, with strong emphasis
on its tunable properties and summerized with focus on its device applications and future development.
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1. INTRODUCTION
The search of suitable materials for infrared (IR) detection has been carried out since 1800, right after the initial

discovery of infrared radiation by Herschel.' From time to time, materials such as T12S, PbS, InSb, and HgCdTe
have become a research target for infrared detection applications. The HgCdTe infrared detector is one of the most
commonly used and most commercially available detectors today.2 Although these detectors have been around
for a long time and many paper were published on them, they still, like all bulk material detectors, suffer from a
disadvantage due to the limitation of their achievable wavelengths. The latter is defined by the band gap of the
detection material. Since the material band gap cannot be adjusted for a bulk material with a defined composition,
the operating wavelength of such detectors can only reach a certain value.

Because of the availability of infrared detectors, two atmospheric windows have been identified to be useful
in some applications. The two atmospheric windows are defined as medium wavelength infrared region ( MWIR,
3 — 5zm), and long wavelength infrared region (LWIR, 8 — 12pm). It is known that when an object heated to around
300K will have an emission peak at about 10pm in the LWIR. As the temperature of an object increases to around
700K and 800K, the emission peak will be shifted to the MWIR. Because of this, both the biomedical and military
sectors have put a huge effort in developing and improving infrared detection system. Research of infrared technology
for peace-time military applications in terms of surveillance and for environmental sensing has grown tremendously
over the past few years. This is due to the following advantages of infrared properties. Firstly, thermal radiation
of non-zero temperature objects lies in the infrared region. This is particular useful for target detection in cluster
environment. Secondly, infrared systems are not easily counter-detected. Both of this properties are ideal for target
tracking and surveillance applications. This detection scheme can work in a noisy environment. There has been a
third atmospheric detection window found, which lies at around 2Om. It is very useful for aerospace applications
in remote sensing and space telescopes.

As the development of quantum well (QW) is becoming more and more mature, one of the successful application
of these quantum structure is QW infrared photodetector (QWIP). Currently, two types of QWIP are used. One is
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based on the intersubband absorption and the other is based on the interband absorption. The operating principle of
intersubband transition detectors is based on the optical transition within the same energy band, also known as inter-
subband transition.3 Another type is the one base on coventional interband transition from valence to conduction
bands. Hence, the band gap of the detecting material is no longer the limiting factor of longer wavelength detector.
For the intersubband absorption system, both type I and type II QW structures can be used. The transition energy
is determined by the first and the second energy levels. Common design is to construct a QW where the second
energy levels is either near the top or just above the barrier. Interband absorption can occur in type I QW (valence
band to conduction band vertical transition) or in type II QW (via phonon exchange). The interband transition
energy of the type II structure is determined by the band gap between the first valance energy level in the barrier
and the first conduction energy level in the well. These energy levels can be tailored by carefully designing the QW
structural parameters. Ideally speaking, both of these systems are unlimited in their operating wavelengths.

In this paper, we present a model of all the subband bound states and a number of continuum states in an
undoped AlIni_Sb/InSb interdiffused single quantum well, with emphases on its infrared detection applications.
In section 2, we briefly describe the model that we used to obtain our subband energy levels. Section 3 presents the
results and a discussion on the implication of its applicaiton in QWIPs. Finally, the main results of this paper are
summarized in the conclusion.

2. THEORETICAL MODEL
The quantum well structure modeled in this paper is an AlIni_Sb/InSb single quantum well. The QW is

assumed to be undoped, and the effects of unintentional impurities are also ignored. For numerical efficiency, the
barrier width of the quantum well is assumed to be infinitely thick and is approximated by a large finite barrier
width.

The diffusion process is characterized by a diffusion length Ld, which is defined as4:

Ld=(Dxt) (1)

where D and t are the diffusion coefficient and the annealing time, respectively. In the model presented here, we
assume an isotropic interdiffusion of Al with a constant diffusion coefficient independent of Al concentration, i.e.,
according to Fick's second law of diffusion.5

The Al composition profile, ti3(z), across the quantum well structure is given by6

- I 1 fL+2z\ fL—2z\1)w(z) =
Wo1

erf 4Ld ) erf 4Ld ) i I ' (2)

where W iS the as-grown Al mole fraction in the barrier, L is the as-grown width of the quantumwell, z is both the
quantization and the growth axis and erf() is error function.7 Equation (2) is used to obtain the Eg ,the well-barrier

discontinuity LE9, and the well depth iEr, which are defined as follows:

E9(z) = E9(w =
zE9 = E9(wo) — E9(z = 0),

LE QrX1Eg,

where the subscript r denotes either the electron in the conduction band (C), or heavy or light holes in the valance
band (V = H or L). The interdiffusion-induced quantum well confinement profile Ur(Z) is defined by

Ur(Z) = Q[E9(z) — E9(z = 0)]. (3)

We have defined the zero potential to be at the bottom (z = 0) of the interdiffused QW and positively up in both
bands except for valence subband mixing, which is taken to be negative down; the absolute position of this zero
potential varies with diffusion length, Ld and the band offset splitting, Qr. The crossover point (COP) potential
UCOP. is defined as

UCOP.r = Qr[Eg(z = L) — E9(z = 0)], (4)
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which is the potential at the two identical intersections ofthe as-grown and the diffused potential profiles at z =
and is measured positively up from the bottom of the confinement profile for both bands.

The valence subband structure is described by a multiband effective-mass approximation based on the k p
method of Lüttinger and Kohn.8 The low lying conduction subband states are assumed to be almost purely s-like
and nondegenerate, while the low lying under subband states are almost purely p—like and four fold degenerate.
The slowly varying part of the subband states are described by the envelope function scheme. The non-interacting
electron and hole states are thus described by

'C(k!I,Z) = Wc(z)uoc(fleivh11 (5)

and
I(k11, z) = 'I'(kj,z)uov(I)eutv1I, (6)

respectively, where the u0's are the zone-center Bloch functions for the bulk materials; 'P's are the envelope functions
for the quantum-well confinement; k11 = (k , k) is the transverse (in-plane) wave vector which is in the direction
parallel to the plane of the quantum-well layer and perpendicular to the z axis; r =r(x,y, z), and p = p(x,y).

Using Ben-Daniel and Duke model,9 the electron and holes at the zone center of r6-.lley symmetry can be
calculated separately, with a z-position dependent effective mass on the interdiffused composition proffle. The one-
dimensional Schrödinger-like equation, for the envelope function 'I'rj(Z), j5 then written as follows:

h2 d I 1 dIrj(Z)1
—---;i— I * A I + Ur(Z)'Prj(Z) = Eri1ri(Z), (7)z Lm±r) z

where 1 = 1, 2, . . . are the quantum-well subband levels for either the electrons (Cl) or holes (Vl), respectively;
mir(iui(z)) is the carrier effective mass in the z direction; En Eri(kjj 0) is the subband-edge energy, and the
origin of the potential energy is taken at the bottom of the error function profile quantum-well. Equation (7) is solved
numerically using finite difference method with the confinement profile defined in Equation (3) and the boundary
conditions are taken to be zero at the end of a finite and large barrier (±z1) = 0]; in other words, the error
function profile quantum-well (EFQW) is embedded in a well of width L1 =2z1 with an infinitely high barrier to
approximate the thick barrier.

For finite k11 0, the electron non-parabolic in-plane dispersion can be modeled by a fourth-order expansion with
the coefficients (ao and j3) determined using a 14 band k .p calculation.'° Neglecting the spin-orbit splitting term
and keeping only an anisotropic fourth-order term, the dispersion energy can be expressed as

E(k) = cx0k + -(k + k) + (2 + 0)kk. (8)

Two anisotropic quantum-well masses in the confinement and in-plane directions can be derived and expressed as

mic(Ecj, w) =m(w){1
(1 - 4aEcz)]

(9)
2cxEcz

and
mjc(Ecz, w) = m(w){1 + (2cr + f3)EcjJ, (10)

respectively.
It is more difficult to solve the valence subband dispersion, since coupling mixes the heavy and light hole states

for k1 0, thus preventing the diagonalization of the fourfold degenerate Lüttinger Hamiltonian which can be solved
using an effective Hamiltonian developed by Chan.'1 This approach is based on the analogous application of the k p
method to the subbands. Equation (5) is an approximation of the coupled envelope fucntion 'I'(kj1, z) in Equation
(6) at k11 = 0. It is sufficient for a small range of k11 at near 0 to study the properties of the quantum-well, as the
quantum-well effects only manifest themselves near to the zone-center subband edge. The basis for the expansion is
defined as follows: N 3/2

'I'(k11,z) = dv,1(k11)'I'v,1(z), (11)
11 V=—3/2
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where V is running over the lifted fourfold degenerate holes states and N is the maximum number of bases taken in
each V, and the effective Hamiltonian is

E312 C B 0
c* E_112 0 BT

12B* 0 E112 CT
0 B* C* E_312

where
131 h2

Gil, = I I —'-y2(k — ik)2J dzb_3,i2,j(z)iI'1121i(z), (13)
L&*J m0 0

ih2 fLf
B111 = 3 —'y2(—k — ik)J dz1312,j(z)—4_112,1, (14)m0 0 uZ

E312 ss' = öSS'EHS
h2

k, (15)
2m1,H

E112,331 = 688'ELS
21Tt(LV

(16)

'y2(w) is the Lüttinger parameter, and Lj is the width of a square quantum well with infinitely high barriers which
contains the EFQW. The introduction of this larger well is to numerically determine the continuum levels above the
top of the EFQW. It should be noted that, in the absence of an applied electric field or any other mechanism that
will distort the inversion symmetry assumed here, the symmetric EFQW confinement potential proffle causes the
valence subband to exhibit a twofold Kramer's spin degeneracy.

3. RESULTS AND DISCUSSIONS
The model which has been used to calculate the subband edge energies of our QW structure has already been

discussed in the last section. The parameters used in our subband calculations are presented in Table 1. The material
parameters of binary Sb-based compounds were obtained from experimental results, and the AlInSb ternary material
parameters were obtained from linear interpolation of the InSb and A1Sb parameters. Only room temperature data
were considered in the model.

In our model, we consider a AlIniSb/InSb QW with Al-mole fraction varing between x =0.08 and x = 0.25.
The QW width is fixed at 70A, no electric field were applied, and the entire structure is undoped. In Table 2, we
present the subband energies of Alo.251n0.75Sb/InSb QWs. As it can be seen, the subband level is increasing initially
as diffusion length increases and then decreases at larger diffusion lengths. This is due to a narrower effective well
width created in the beginning of interdiffusion and a widening of the well at a more extensive stage of interdiffusion.
Bulk band gap at well center also increases, and the well depth for both conduction and valences band decreases. In
the case of Ld —÷ oo, the quantum well structure becomes a bulk material.

The interband transition energy, E11H, of a interdiffused QW is defined by E11H =E9 + Ei + where E9
is the bulk band gap of the well material, Ei and E1H is the first subband energy of conduction and heavy hole
respectively. It is noted that the heavy hole and light hole were split apart. This is due to both the QW confinement
and the strain induced by the lattice mismatch between these barrier and the well materials. The compressive strain
induced is in the QW structure causing the heavy hole to move towards the the conduction band and light hole moves
in the opposite direction. The lattice constant of InSb is larger than that of Al025In075Sb and the QW is grown
on the top of a GaSb substrate, which is one of the common substrate used for antimonide-based QW. However, the
lattice of GaSb does not match that of the barrier material. Therefore, we introduce a buffer layer region in between
the barrier and the substrate to accomodate the lattice mismatch. This buffer layer is made up of InGai_Sb, as
it is shown in Figure 1. InGa1.Sb and AlIn1_Sb can, at certain x and y values, be grown one another lattice
matched. Hence, we this buffer layer can be introduced in a form of a grading with the In concentration gradually
increasing from the zero at the GaSb substrate to that of the barrier material. The QW structure is then grown on
top of the buffer layer, this will induce a compressive strain in the well material. The schematics of the QW structure
is presented in Figure 2.
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Parameters AlIni_Sb Unit Reference
Q : Q, 0.76 : 0.24
E9 (x)
i0(x)

0.17 + 1.7x + 0.43x2
0.81 — 0.06x

eV
eV

12,13

14,15

Q
dp

71 (X)

15.7 — 17.3x
35.08 — 30.93x

lO6eVkg'
m0

13,16

17,16

'72(X) 15.64 — 14.63x m0 17,18

'•y3(x) 16.91 — 15.16x m0 17,16

m(x)
mflL(x)
m11H(x)

€(x)

0.0135 + 0.0965x
0.015 + 0.108x
0.263 + 0.073x
17.76 — 6.548x

m0
m0
m0

CO

13,14
19,20

21,19

16,15

c(x) 1.8x — 7.7 eV 22,16

$(x) 0.6x—2 eV' 23,16

cii 6.669 + 2.lx 10"dyncm2 16,19

c12 3.645 + 0.696x 10'1dyncm2 16,19

ao 6.47937—0.34337x A 16,19

Table 1. Material parameters of AlIn1Sb; m0 and €o are respectively the electron mass and static dielectric
constant of the free space.

Subband
Level

Subband-edge energy (meV)
Ld 0 Ld 5 Ld = 10 Ld 15 Ld = 20 Ld 25 Ld 30 Ld 35

Cl
C2

Depthc

108.2

276.7

104.6

276.7

110.6

273.4

101.8

252.1

85.3
219.3
222.3

70.0
183.8
194.5

57.7
153.7
171.2

48.2
129.8
152.1

H1
H2
H3

DepthH

17.8
68.5
137.1
142.9

19.8
72.2
133.5
142.9

25.8
79.9
127.6
141.0

25.7
74.1

112.1
129.2

21.9
62.1
93.3
113.0

1'7.9
50.9
76.9
98.1

14.7
42.0
64.0
85.8

12.3
35.1
53.9
75.8

L1
Depth

19.7

24.9__

19.7
24.9

18.0
24.8

17.1
24.3

15.6
23.2

14.0
21.6

12.4
19.9

11.0
18.4

Table 2. Subband—edge energies, measured from the bottom of the interdiffused A1o.251n0.75Sb/InSb quantum-well
structure. The well width is 70A, and Ld varies between zero and 35A.

This QW structure is highly strained, since the lattice mismatch between barrier and well materials is relatively
high. A Lattice mismatch of less than 2% is generally accepted for QW structures without strain relaxation and
creation of defects. Because of strain, the well thickness of a QW is also an important factor to be considered, since
this thickness determines the limit of strain relaxation. In table 3, we present the percentage of lattice mismatch,
critical layer thickness, well material bulk band gap and interband transition energy of square QWs with different Al
mole fractions. Interdiffused QW is not considered in this table, since interdiffusion can reduce the lattice mismatch
between barrier and well, and critical layer thickness increases in value. The well material bulk band gap has changed
over different Al mole fractions at the barrier. The main reason for this is due to the compressive strain induced in
the well. The compressive strain will cause a widening of the band gap. Therefore, the band gap changes even for
the same QW material structure.

The interband transition energy determines the peak interband absorption, and which then defines the operation
wavelengths of the QWIP. The interband absorption wavelength versus diffusion length for different Al mole fractions
are shown in figure 3. The effect of interdiffusion on the change of transition energy is much more obvious at higher
Al mole fractions. It gives a high tunnability of such QWIPs. However, the transition energy of square QWs is much
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Figure 1. Band gap as a function of lattice constant for Sb-based materials.

larger than that at small Al mole fractions. Vice versa at small Al mole fractions, a smaller interband transitions
energy can be achieve, but the interdiffusion does not give a good tunability.

As we can see from Figure 3, the modeled QW structure covers the MWIR. Hence, it demonstrates the feasibility
of medium infrared detectors design based on the Sb-based material system. The use of the intersubband transitions
in type-I QW offers the advantage of direct absorption with a wide mid-infrared wavelength range. By carefully
designing, an interdiffused QWIP array can be built to detect infrared wavelengths between 3 —5pm. We have also
determined the QW absorption coefficient for A10.251n0.75Sb with different diffusion length under both TE and TM
polarization. The corresponding results are respectively presented in Figures 4 and 5. However, absorption of bulk
material at the barrier and the substrate were not considered, since the bulk material absorption energy is much
higher than that of the QW. No account has been taken of the excitonic contribution to the absorption. It is expected
the exciton binding energies should be small due to the low electron mass in InSb.
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Figure 2. Schematic diagram of the AlIni_Sb/InSb quantum well structure.



Al mole_fractions
Al0.08 Al0.10 Al0.15 Al0.20 Al0.25

Lattice Mismatch (%)
Critical Layer Thickness (A)

Well Material Bulk Band Gap (meV)
Interband Transition Energy (meV)

0.42 0.53
301 228

180.4 182.9
251.4 264.2

0.79
136

189.6
290.1

1.06 1.32
94 69

195.8 202.3
310.8 328.3

Table 3. Percentage of lattice mismatch, critical layer thickness, well material bulk
transition energy at different Al mole fractions of a AlIn1Sb/InSb square QW.

2.0
0.0

band gap and interband

Figure 3. Interband absorption wavelength for various Al concentration of the AlIni_Sb/InSb QW.

In addition to the interband absorption wavelengths between 3 — 5jm, there are others intersubband wavelength
ranges. These are based on the same QW structure with A10251n0.75Sb barrier (gives ..\ between 8 — 12jm) and
Al015In0.85Sb barrier (gives A around 20jm). In both cases, the second conduction subband level is just above the
QW. After some QW interdiffusion, the second conduction subband level will be pulled down to just underneath the
top of the barrier. The third conduction subband level is always high above the barrier in the system that we design.
Hence, with the same material system, a long wavelength far-infrared photodetector can be realized.

In this analysis, we have proposed using AlIn1_Sb/InSb for the QWIP to operate at 3 — 5gm. However, the
major purpose of our model is to calculate the subband edge energies level and other absorption coefficients for
an interdiffused QW. Before fabricating any QWIP from this material design, it is essential to construct another
model to fully examine the detector performance. This includes factors like photoconductivity gain, responsivity,
dark current and noise.

4. CONCLUSION
This paper has presented a study on the subband edge energies level for AlIn1Sb/InSb interdiffused QW.

The results show that by using such QW structures, the subband levels can be controlled. Due to the narrowness of
the InSb band gap, it is also possible to design a type-I interband QWIP via direct transitions between the valence
and conduction bands. As it is shown in our calculation, by applying the interdiffusion technique to the QW, it
is possible to tune the QW interband transition energy to a desired value. In our results, we have shown that, by
varying the Al concentration from 0.08 to 0.25, interband absorption wavelengths in the medium infrared region can
be obtained. This type of QW can also be used for a type I intersubband absorption QWIP schemes. With careful
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Figure 4. TE Absorption Coefficient for different diffusion lengths.
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Figure 5. TM Absorption Coefficient for different diffusion lengths.

design, detection of 8 — 12jm and 2Opm radiation can be achieved. However, many factors affecting the performance
of detectors have not been considered here. It is necessary to construct a model to calculate these factors in order
to confirm the advantage of using AlIni_Sb/InSb interdiffused QWIP.
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