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ABSTRACT

In this paper, a new 8-channel integer-valued lapped
transform, called the Integer Lapped Orthogonal
Transform (ILOT), is proposed. The new transform can
be implemented using simple integer arithmetic and has
very low implementation complexity. Using 5-bits to
represent its transform kemel, it was found that good
coding gain and stop band attenuation, similar to the
LOT, could be achieved. The multiplier-less fast ILOT
requires only 106 additions and 42 shifts and can be
implermented in 32-bit integer arithmetic [13].

1. INTRODUCTION

Perfect Reconstruction (PR)  critically decimated
quadrature mirror filter banks (QMFB) have many
important applications in speech, audio and image
processing. The theory and design of M-channe! PR
maximally decimated uniform filter bank has been
extensively studied {7). The cosine modulated filter banks
(CMFB) [9] and the lapped transformos {2}, [4], [6] are
two efficient classes of filter banks with low
implementation complexity and good performance. The
lapped orthogonal transform (LOT) is an M-channel
linear-phase PR filter bank with filter length 2M. The
LOT has slightly higher arithmetic complexity than the
DCT but the coding gain is significantly higher with much
less blocking artifacts.  Recently, therc is increasing
interest in designing filter banks with low implementation
complexity. Approaches based on the sum of power of
two (SOPOT) coefficients [3] or integer cocHicients {12]
have been proposed. Due to the use of SOPOT,
coefficient wmultiplications can be implemented with
simple shifts and additions. In [12], a subspace approach
was proposed to design CMFB with integer coefficient
prototype filter. Since integer coefficient filter banks
require only integer arithmetic (additions and possibly
mulitiplications), the implementation of the filter banks are
greatly simplified. Also, if sufficient word length is used
w represent the intermediate data, round off error can
completely be eliminated.

In this paper, a new lapped orthogonal transform
with integer coefficients, called the integer LOT (ILOT)
is developed. It can be implemented with simple integer
arithmetic and possess very fast implementation
algorithm. A multiplier-less implementation has also been
developed which requires a total of 106 additions and 42
shifts {13]. Using S-bits to represent the transform kernel,
the ILOT is found to have similar coding gain and image
coding performance as the LOT. The paper is organized
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as follows. Section 2 reviews the design of 1CT, which
was originally proposed by Cham [1]. Construction of the
Integer Lapped Orthogonal Transform (ILOT) is
described in section 3. The design and the performance of
the 1LOT are given in section 4. Finally, the results are
summarized in section 5, the conclusion.

2. INTEGER SINUSOIDAL TRANSFORMS

According to Wang {10}, there are four types of DCTs
and DSTs (type I to 1IV). DCT-II and DCT-III are the
common discrete cosine transform (DCT) and the inverse
DCT (IDCT). In this paper, the integer version of the
DCT-II (DST-II) and the DCT-IV (DST-IV) are
developed to construct the integer lapped orthogonal
transform (ILOT). The definition of the DCT-1I. DCT-
1V, DST-II and DST-IV are given as follows,

DCT
[c;;]= V21 Mg, costk(n + Y2)m I M},
k=01, M—1.
[c;}']:ﬂ {€. cos(Ck + 1f2)Xn+ Y2)m 1 M},
k,n=0l1,...,M~1.
DST
[s::]= V27 M e, sink(n~ Y2z M} .
k=1l,.., M.
[s5]=v27 M {e, sinik + Y2)n+ Y2m s M}
k,n=01,... . M~—-1
Where s,:{ll‘ﬁ (=0 or M )
1 otherwise

Here [A], ; represents the (i, /) -th clement of matrix A.

The subscript and the superscript of C and § denote,
respectively, the length and the type of the transform.

The typeIl intéger cosine transform (ICT), 7.7,
proposed in [1] has the following matrix form,

Cc-t _ prc- c-u
Pu "Ku ‘TM » (2)

where K57 is a real diagonal matrix and PS5 is an

orthogonal matrix. The superscript and subscript denote,
respectively, the type and the length of the transform. For
example, C— 17 means the type II cosine transform and so
on. Using the concept of dyadic symmetry, Cham [1}]
constructed an order-8 ICT of the following form,



k k k k k k
b c d -d -¢ ~b -a
S - e ~e -f f e
-d -~a ~c¢ ¢ a d -b
-k -k k k -k -k k
~a d b6 -b -d a -c
- € ~f —-f e -e f
ld ~¢ b ~a a -b ¢ -df
To satisfy the orthogonality properties, a, b, ¢, and d must
satisfy the following condition,

a-b=a-ctb-d+c-d. “
Also, in order to make the basis vectors of the ICT
resembie those of the DCT-IL, a, b. ¢, d, e, and f must
satisfy the conditions,

a2b2c2d and e2f (&)
In (1], the constants g, b, ¢, d, e, £, and k are chosen to be
8-bit integers. The (i,/)-th entry of matrix K5, k,, is
used 10 normalize the i-th row of TS so that PS5 is
orthogonal. If 7, is the 2,-norm of the i-th row of T ™7,
then

=~
;

-4
7,77 =

3

L NG TN S NN

& ={rrf. (6
An exhaustlive search is then performed to maximize the
coding gain for common AR(l) process. The
multiplication with &, ’s are usually absorbed into the
quantization process 10 rcduce the complexity. The
inverse of the ICT is given by,
PN =PI =K T
=TENET™ 0
The scaling (K5 ") can also be absorbed into the
dequantization process.

3. INTEGER LOT (ILOT)

The transform matrix of an M-channcl LOT is given by
121

P = P,.['“" L, }

’ oufl (CIHISMIZ )

_[nx - Do Jun(Dg - D,) :I (8)

D. ~-D, '-’un(Dc -D,) ’

where D, and D, arc (M/2x M) matrices containing the
even and odd basis functions of DCT-H, respectively.
P, is a permutation matrix which permutes the k th and
the (k+M/2)throws o tbe 2k thand the (25 +1) th
(k=0 M /2 ~1) rows, respectively. Fig. 1 shows
the flow graph of an 8-channel LOT. It is natural to
consider replacing the 8-poiat DCT in the LOT by PS5
to construct an integer LOT. Unfortunately, the scaling
matrix, K{ ™", is real-valued. Therefore, it is necessary to
perform real multiplications immediately after 7,777
beforc subsequent additions in the LOT can be
performed. A method to avoid this problem is to design
an integer cosine transform with all the scalings being
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identical. In this case, the scaling constant can be moved
o the end of the wansformation and absorbed in the
quantization process. The remaining problem is to find
similar integer teansform for the 4-point DCT-H and the
4-point DST-IV. Using the same concept in [i]. we
proposc the following form for the order-4 type-1I integer
cosine transform,

T § 14 £
a b -b -a
& —-¢ -¢& £

b —a a -—p

c-n
T, =

. ®)

where a,, b, and ¢ are integers to be determined. Like
™", a, and b, have to satisfy,
a,2b,. [$10)]

Similarly, the order-4 type-IV integer sine transform is
defined as follows,

a, b <y d,

TS = b, 4, a4; =G an
o a -—dy b
d, ~¢; b =~a

To satisfy the orthogonal properties, a,.b,.c,.d, must
satisfy the following condition,

¢ -dy=a,-b, +b,-d, +c,-a,. (12)
In addition, they have to satisfy the following condition to
resemble the DCT-IV,

a,2b,2¢,2d, an
For simplicity the scaling constants for the matrix
product, @Ers™yY, are designed (o be identical.

Finally, the transform matrix of the order-8 ILOT is
obtained as follows.

ko1 0, I /)

Lor = L} 4 4 4
I)t PM[ 04 kl’(ioa (T‘C-IIT‘.'C-JV )T]
{00 JD =D | gy

M —14(D¢"Da)

where D, and D, are (4x8) matrices containing the even
and odd basis functions of T,5" | respectively. The
scaling constant for T, is k,. For odd-indexed
outputs, the scaling of 77" and (Z5"T5 ™)™ are merged
together to form &, . These multiplications can readily be
absorbed into the: quantization process. Fig. 2 shows the
flow graph of the 8-channe! integer LOT. The ILOT is
parameterized by a st of integers and is referred to as
ILOT(a,b,c,d,e, f.k,a,b,.¢,8,.b,,¢,,d,).  As an
cxample, 1L07(24,20,12,6,23,7,17.17,7.13.3,6,10,12)
refers to the 8-channel length-16 ILOT with
2=24 .b=20, c=12,d=6,e=23, f=T7 k=17 ,4,=17,
b,=7,1=13 .a,=3,b,=6, c,=10 and 4,=12 .

AR~
v

4. DESIGN OF THE ILOT



We now proceed to the design of the ILOT. An important
issue in transform and subband coding is the efficiency of
the transform or filter bank employed. The coding gain is
frequently used as an effective measure of transform
efficiency. For orthogonal transform, the coding gain,
Gy . 15 given by:

L= - (15)

where o is the variance of the output at the i-th analysis

filter. For subband coding, the general coding gain
formula is given by [11],

i

Gisc == 7w > (16)
M[HA,Bk)
=0
N=1 Nt ] v
A, = Zz'hk(j)h‘t (,')pl-—il and B, =_1‘723:(j) . an
j=0 ia =i

ky(n) and g,(n) are the impulse responses of the k-th
analysis and synthesis filters of length N. Here the input is
assumed o be a first-order auto-regressive process with
correlation coefficient p.

To reduce the wordlength for the integer
implementation, the kernel for 7,7, 77" and 7)™ are

chosen to be S5-bits. Exhaustive search is performed 1o
optimize the coding gain of this ILOT and the optimal
solution is 1L.OT(24,20,12,6,23,7,17,17,7,13 ,3,6,10,12).
The coding gain of this ILOT is 9.16 dB for AR(1)
process with correlation coefficient of 0.95. This is close
to the coding gain of the LOT, which is 9.22 dB. Fig. 3a
and Fig. 3b show respectively the frequency responses of
the 1LOT(24,20,12, 6,23.7,17,17,7,13,3,6,10,12) and the
LOT. The diagonal scaling values k, and k, are 0.0104

and 0.00002353, respectively. A multiplier-less
implementation of this ILOT has also been developed in
{13] which requires 106 additions and 42 shifts. Image
coding experiments also confirm that its performance is
very close to the LOT[131.

5. CONCLUSION

In this paper, a ncw 8-channel integer-valued lapped
transform, called the Integer Lapped Orthogonal
Transform (ILOT), is presented. The new transform can
be implemented uvsing simple integer arithmetic and has
very fow implementation complexity. Using 5-bits to
represent its transform kernel, it was found that good
coding gain and stop band attenuation. similar to the
LOT, could be achieved. The multiplier-less fast ILOT
requires only 106 additions and 42 shifts and can be
implemented in 32-bit integer arithmetic [13].
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Fig. 2 Flow graph of 8-channel ILOT
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Fig. 3a Frequency response of 8-channel ILOT
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Fig. 3b Frequency response of 8-channel LOT



