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ABSTRACT 
Fractional-delay digital filter (FD-DF), implemented using the 
Farrow structure. is very attractive in providing online tuning 
delay of digital signals. This paper proposes a new method for the 
design of such Farrow-based FD-DF using sum-of-powers-of-two 
(SOPOT) Coefficients. Using the SOPOT coefficient 
representation. coefficient multiplication can be implemented with 
Limited number of shifts and additions. Design examples show 
that the proposed method can greatly reduce the design time and 
complexity of the Farrow structure while providing comparable 
phase and amplitude responses. 

I. INTRODUCTION 
Fractional-delay digital filters (FD-DF) are very useful in 

delaying signals. which is required in many applications such as 
software radio. digital modems, arbitrary sampling rate 
conversion. time-delay estimation. etc. The Farrow structure 113 is 
particularly attractive because it can provide variable signal delay. 
d i g  high-speed online tuning feasible. The basic principle of 
the Farrow structure is to approximate the impulse response of an 
ideal bctional-delay digitai filter with delay ,u by polynomial 
interpolation from the impulse responses of a limited set of 
baional-delay digital filters with delays equally spaced within a 
range usually chosen to be ,u = [-0.5.0.5]. To implement the 
Farrow structure. the signal will pass through these sub-filters and 
multiply with the appropriate powers of d to produce the output. 
Figure 1. The number of sub-filters required is equal to the order 
of the polynomial approximation used plus one. For precise 
control of the signal delay, the length of these sub-filters and the 
order of polynomial approximation will be considerable. requiring 
a large number of multipliers to implement this structure. As a 
result, higher power dissipation and larger area for VLSI 
implementation is expected. 

In this paper. a novel algorithm for designing the Farrow 
structure with sum-of-powers-of-two (SOPOT) coefficients is 
proposed. SOPOT representation of filter coefficients is an 
attractive method for VLSI or hardware implementation of digital 
fdters because multiplication of SOPOT coefficients can be 
implemented efficiently using hard-wired shifiers and adders only 
(i.e. multiplier-less). More precisely, all the coefficients of the 
sub-filters in the Farrow structure are represented in SOPOT form 
and are implemented as additions and hardwired shifts. To further 
reduce the number of adders required in this structure. a 
tmnsposed form of the sub-filters in the Farrow structure is 
employed which allows us to implement all the SOPOT 
multiplications with a single multiplier-block (MB) [3]. The 
appfication of MB to the efficient implementation of interpolated 
filters and filter banks were reported in [3]. Unfoxtunately. the 
design of such multiplier-less Farrow structure was missing. 
Using MB, the redundancy in the multiplication of the input with 
all the constant multipliers can be fuuy explored through the reuse 
of the immediate results generated. In principle, it is possible to 
remove all the redundancy found in the constaut multipliers 
leading to a significant reduction in the number of adders required 
to implement the Farrow structure. The proposed design algorithm 
consists of two Werent steps: A FD-DF filter with real-valued 
coefficients is fist designed A flexible and efficient "random 
search" algorithm is then employed to search for the SOPOT 
coefficients while minimizing some criteria such as the number of 

SOPOT terms used subjected to a given frequency specification. 
This random search algorithm is similar to the mutation of genetic 
algorithm (GA) and the random walk in stimulated annealing. 
The main Werence here is that we have limited its search space 
to a small neighborhood of the real-valued solution. This greatly 
shortens the search time to a few minutes. Our experience also 
indicates that excellent SOPOT solutions can be obtained in a 
reasonably time even when the filters involved are IJR. This is 
very difficult to achieve by GA even with design time several 
orders of magnitude longer [9]. The latter is mainly due to high 
sensitivities of the poles. Another advantage of this algorithm is 
that it can also be used to minimize directly the hardware cost 
such as adder cells of the filters. taking into account round-off and 
overflow noise 191. There are many methods for designing FD- 
DF with real-valued coefficients [1][4][8]. In this work. the 
prototype fractional delay filters for the Farrow structure are 
designed using complex Chebyshev approximation, which is 
readily available in MATLAB. They are then interpolated to 
obtain the sub-filter coefficients for generating the MB. Design 
examples show that more than half of the adders in the SOPOT 
coefficients cau be reduced with slight or negligible degradation 
in frequency responses. representing significant saving in 
hardware resources and power dissipation. 

This paper is organized as follows: the efficient Farrow 
structure with SOPOT coefficients and multiplier block is 
introduced in Section II. Its design algorithm will be described in 
Section ID followed by several examples in Section IV. Finally. 
conclusions are drawn m Section V. 

XI. THE E m C E m  FARROW STRUcruRE 
As mentioned earlier. one problem with the 

implementation of variable fractional-delay digital filters is the 
dependence of the impulse responses of the FD-DF on the delay 
parameter p .  More precisely. the output of the FD-DF, 
-4(m + ,u)T]. is given by 

where AmT] is the input signal sampled at a period T . h, ( i )  is 

the FD-DF with delay D + ,u and D is an integer constant. and N 
is the length of h, (i) . To avoid the implementation of a large 
number of filters with difFerent delays. Farrow [l] proposed to 
approximate each impulse response h, ( i )  with the following Ph 
order polynomial in delay value ,u such that the delay control is 
independent of the fdter coefficients. 

"=O 

Substituting (2) into (1) gives 

v[(m+D+,uYl=C CxI(m-i)n*b,(i) ".  (3) 
"=O [:: 4. 

Figure 1 shows the Farrow structure for implementing equation 
(3), where the input signal is passed through a number of sub- 
filters bn(i) ,  n=O ...., P .  and is multiplied by the appropriate 
powers of ,u to produce the output. Though the Farrow structure 
is very useful in providing a continuous value of signal delay. it 
still requires large number of multiplications for implementation. 
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especially when P and N are large to provide very precise control 
of the frequency characteristics of the FD-DF. One method to 
avoid the expensive multipliers is to convert the filter coefficients 
in the following SOPOT representation 

in ( i )  = A b , ,  (i). 2' , (4) 
k=l 

with bn.k(i) E {-l.l} and a, E {-I  .__.. -1.0.1 ...., I}, where I is a 
positive integer and its vaiue determines the range of the 
coefficients. L is the number of terms used in the coefficient 
approximation and is usually limited to a small number. The 
coefficient multiplications can therefore be implemented as 
limited shifts and additions. resulting in a signiscant reduction in 
implementation complexity. Very often. there is also significant 
redundancy in these SOPOT coefficients, which appears as 
common sub-expressions among d3Terent SOPOT coefficients. 
Due to the z-operator. it is somewhat diflicult to remove these 
sub-expressions without increasing much shift registers. 
Fortunately. thanks to the transposed form of the sub-filters, the 
Farrow structure can be rewritten as in Figure 2. In this new 
structuTe. the input is multiplied to a number of constant 
coefficients. Hence, the common sub-expressions within the 
SOPOT coefficients can be eliminated [5][6] using a single 
multiplier-block. which further reduces the complexity of the 
Farrow structure. 

A number of methods were proposed for designing the 
Farrow structure-based FD-DF [l]. Given these real-valued 
coefficients of the Farrow structure. it remains to determine the 
SOPOT coefficients i , ( i )  that satisfy a given specification with 
the minimum number of adders in the multiplier-block. 
Commonly used distortion measures are the least squares and the 
minimax criterion. Without loss of generality, we shall employ 
the minimax criteria in this paper. Let H(e'",p) and k ( e J " . p )  
be the frequency responses of the real-valued Farrow structure 
and its SOPOT counterpart. then the design problem can be stated 
as follows: 

Given a set of initial Farrow coefficients bn( i ) ,  the 
maximm number of terms L in each coefficient and the dynamic 
range I of the coefficients. determine the SOPOT coefficients 

in(i)  such that the maximum value of phase response error 6, is 
minimized subject to a given peak amplitude mor 6, < E ,  where 

III. DESIGN PROCEDURE 
The design of Farrow structure is first desigaing the 

prototype filters with specific fkactional delay, then through 
interpolating these prototype filters to acquire the subfilters of the 
Farrow structure. The Farrow structure prototype filters are 
designed using Complex Chebyshev Approximation which is 
readily available in Matlab as cremez. For example. if the 
interpolation order is 3. then there are 4 subfilters. That is we are 
required to design a batch of prototype filters all with equal length 
(say 10 or more) with frequency response of 
H,(eJ")=e-JA"".i=l,...10 andA, = - 0 S + ( i - 1 ) / 9 .  For the same 
impulse coefficients. these will then be interpolate using a third 
order polynomial using least-square. Repeat each prototype fdters 
coefficients for this interpolation procedure and these final 
polynomial coefficients are the initial full-precision Farrow 
stmcture filter coefficients. 

The optimization procedure consists of two stages. First, 
the SOPOT coefficients of the initial Farrow siructure such that 
the perfomance measure in (5 )  is minimized using a random 
search technique. Then, the minimum number of adders needed 
in the multiplier block is determined. The generation of the 
multiplier-block &om the SOPOT coefficients follows the 
algorithms proposed in [3]. Let b, be the vector containing the 
initial values b,,(i) 's of the Farrow structure. The principle of the 
random search algorithm is to generate random candidate SOPOT 
coefficients in the neighborhood of b, so as to search for the 
optimal discrete solution. More precisely, a new coefficient 
vector bNKF is generated by adding to it a random vector to the 
original coefficient vector b, as follows 

where a is a scale factor which control the size of neighborhood 
to be searched, bR is a vector with its elements being random 
numbers in the range [-14, and l-]sopm is the rounding 
operation which convert its argument to the nearest SOPOT 
coefficients with maximum number of terms in each coefficient 
being L and dynamic range I .  The performance measures 6, and 

6, of the new coefficients are then calculated The set that yields 
the minimum phase mor  with a given peak amplitude error E is 
the optimum solution under the constraints of L and I . As this is 
a random search algorithm, the longer the searching time. the 
higher the chance of founding the optimal solution. 

There are several advantages of this algorithm. First of 
all. with the computational power of nowadays personal computer 
(PC) the time for obtaining high quality solutions is manageable. 
In fact. for the problem considered here. the overall design time 
only takes less than 5 minutes to complete on a typical Pentium- 
400 PC using Matlab 5.3.. including both the design of SOPOT 
coefficients and the multiplier-block design. Secondly, it is 
applicable to problem with general objective function probably 
with very complicated inequality constraints. Moreover, a set of 
possible solutions representing different tradeoffs between 
computational complexity and performance will be generated 
during the search. Therefore. it helps one to achieve an 
appropriate tradeoff for a given application. It is also possible to 
combine the two stages together to improve the performance but 
the computational time will be greatly increased. 

IV. DESIGN EXAMPLES 
ExamvIe 1 
As a simple example, the famous cubic Lagrange interpolator [7], 
with coefficients shown in Table 1. is implemented using the 
proposed algorithm. The passband bandwidth under optimization 
is f?om 0 to 0 . 4 ~  . The original peak ripple error and phase delay 
mor are. respectively, 0.048769 and 0.008179. By multiplying 
all the coefficients by 6. they can be converted to simple integers. 
Using the concept of multiplier-block, the additions in 
implementing the multipliers 3 and 6 can be shared to reduce the 
total number of adders. The final Farrow structure implemented 
using the multiplier-block is shown in Figure 3. (The ">>n" sign 
in Figure 3, means a hard-wired shifi towards the LSB for n-bit. 
As for the "<<n" sign, it means a hard-wired ship towards the 
MSB for n-bit.) It requires only 3 adders including the scaling 
(116) in SOPOT coefficients at the output. 

Examvle 2 
As another example. let's consider the coefficients provided by 
Farrow in [l]. The SOPOT coefficients obtained by the random 
search algorithm are shown in Table 2. The bandwidth under 
consideration for this filter is ftom 0 to 0 . 6 ~ .  The original peak 
ripple error and phase delay error are 0.006271 and 0.0032. 
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respectively; whereas for the SOPOT Farrow structure, the peak 
ripple error and phase delay error are 0.005371 and 0.0046, 
respectively. After common sub-expressions elimination, the 
multiplier-block requires only 13 adders compared favorably with 
32 real multiplications in the original Farrow structure. These 
results show that the number of adders can be drastically reduce 
by using multiplier-block. The resultant Farrow structure filter has 
a much lower complexity than the real-valued Farrow structure 
but providing nearly the same phase delay and amplitude 
response. 

Example 3 
Our last example will be on a Farrow structure with higher 
polynomial order. The prototype filters are designed using 
complex Chebyshev approximation and interpolated by a 5’h order 
polynomial. The bandwidth under consideration is from 0 to 
0.75~. The SOPOT coefficients are shown in Table 3. After 
common-expression elimination, the sub-filters require only 18 
adders to achieve a peak ripple error of 0.026376 and maximum 
phase delay error of 0.0059. The frequency responses of the 
proposed structure and its real-values counterpart are shown in 
Figure 4. It can be seen that they are very close to each other. 
The performance and arithmetic complexity of the various 
implementations are summarized in Table 4. 

0 
1 

Table 1. Coefficients of the Lagrange-based FD-DF. 

b3(.) b, b, bo(.) 
-2-6+2‘8 2-4-2-7 0 -2-6+2-‘0 

2-4+2-6-2-8 -2-2+25+28 -2-6 24-2-7 

8 

Table 2. SOPOT coefficients for the proposed Farrow structure. 

-2-7 -2‘0 +24 2-10 

210 +2-7 
-2-5+2‘7 -2-3+2-6 2-5+2-7 2-3+2-5 -27 -2-5-2-9 

Table 4. Comparison between various implementation schemes. 

V. CONCLUSION 

A new method for the design Farrow-based FD-DF using sum-of- 
powers-of-two (SOPOT) coefficients is proposed. This method 
has the advantage of fast design time with good frequency 
response of the Farrow structure and able to reduce the no. of 
terms of SOPOT coefficient in order to reduce hardware 
complexity. Design examples show the robustness of this method 
for designing Farrow structure filters with different specifications. 
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Figure 2. Proposed implementation of the Farrow structure. 
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Figure 3. Fmow structure of Lagrange interpolator in Example 1. 
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Figure 4. Frequency and phase delay responses in Example 3. 
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