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ABSTRACT — In this paper, a novel carrier frequency offset 

(CFO) estimation algorithm is proposed for OFDM applications. 
The maximum likelihood estimator (MLE) for the CFO is 
derived, which reveals the relationship between the CFO and 
the periodogram of the received signal. Theoretical analysis 
shows that the proposed MLE is statistically efficient. To realize 
this MLE in practice, a sub-optimal estimator is also introduced 
in which zero-padded FFT is invoked for implementation. For 
the objectives of reducing the implementation complexity and 
broadening the estimation range, a preamble structure 
comprising nonuniformly−spaced pilot tones is presented. Based 
on this preamble, the CFO estimation is split into two phases: 
the coarse estimation is obtained through the correlation 
between the received spectrum and the original pattern of the 
preamble; whereas the fine estimation is obtained by comparing 
the relative magnitude attenuation in the vicinities of those 
CFO-shifted pilot tones. Both analytical investigations and 
computer simulations indicate that the accuracy of this 
simplified sub-optimal estimator is proportional to the oversize 
ratio of zero-padded FFT, and its estimation range is equal to 
the bandwidth of OFDM signal. When the oversize ratio is 
sufficiently high, the performance of the proposed sub-optimal 
estimator approaches that of the proposed MLE. 

  

I.      INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) is an 
efficient modulation scheme for the transmission of high-bit-
rate data. However, OFDM is vulnerable to the carrier 
frequency offset (CFO) arising from transeceiver oscillator 
mismatches and/or Doppler shifts [1]. Depending on the 
application, the CFO may amount to many tens of the 
subcarrier spacing. However, even the CFO of a fraction of 
the subcarrier spacing can cause serious performance 
degradation. Frequency synchronization is therefore one of 
the most important tasks performed by an OFDM receiver. 
Generally, the estimation of CFO is split into a coarse phase 
and a fine phase, and different algorithms are used in these 
two phases to accommodate their different requirements [2-7].  

As for the coarse estimation of CFO, algorithms presented 
in [2-4] involve the use of a differentially-encoded PN 
sequence whose overhead is two OFDM symbols. Besides, 
the CFO must be partially corrected beforehand in [2] and [3] 
as they can only deal with CFO being an integral multiple of 
the subcarrier spacing. The techniques in [5-6] are based on 
an OFDM preamble with periodic time-domain structure, and 
their estimation range is proportional to the number of 
periods. Although the estimation range can be broadened by 

increasing the number of periods, this is achieved at the cost 
of decreased estimation accuracy. Regarding the fine 
estimation of CFO, the majority methods are based on the 
CFO-induced phase rotation. As angle evaluation is 
unavoidable for these methods, their implementation relies on 
the use of a lookup table and trade off must be made between 
the desired precision and the table size.  

In this paper, we propose a new CFO estimation algorithm, 
which employs only one OFDM symbol as the preamble but 
achieves large estimation range as well as high estimation 
accuracy. Starting from the likelihood function of the 
received signal, the close-form expression for the maximum 
likelihood (ML) estimate of CFO is derived, which reveals 
the relationship between the CFO and the periodogram of the 
received signal. Then, the practical realization of this ML 
estimator (MLE) is discussed and a sub-optimal estimator is 
presented, which can be implemented by invoking zero-
padded FFT. In an attempt to reduce the computation burden, 
a preamble structure similar to [7] is introduced, and binary 
PN code is utilized in the configuration of the preamble. 

The rest of this paper is organized as follows. In the next 
section, the problem of CFO estimation is formulated in an 
OFDM receiver and the MLE is derived. The practical 
realization of this MLE is discussed in section III.  Theoretical 
performance analysis is presented in section IV. Computer 
simulation results are given in section V.  Section VI  
concludes this paper.  

 

II.    PROBLEM   FORMULATION 

We start with the system model of the OFDM signal, 
which is shown in Fig.1. Let P=[p0  p1 …  pM-1]T denote the 
data block to be transmitted, where (.)T is the transposition 
operator. OFDM modulation is implemented by invoking N-
point IFFT. Usually, due to the need to avoid adjacent 
channel interference (ACI), virtual carriers are used. Without 
loss of generality, we assume subchannels numbered from 0 
to M−1 are employed for data transmission and define 
WM=[w0  w1 … wM-1] as the submatrix of the IFFT matrix W, 
where wi is the ith column of W. Using matrix representation, 
the vector of time-domain samples is given by 

S=WMP.       (1) 
To cope with the inter-symbol-interference induced by 
multipath fading, a cyclic prefix (CP), whose length is longer 
than the multipath delay spread, is inserted before S. Then, 
the baseband samples are pulse-shaped, up-converted to the 
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radio frequency (RF) and transmitted over the multipath 
channel. Additive white Gaussian noise (AWGN) is also 
introduced in this channel. At the receiver, the signal is down 
converted by a local VCO and fd is assumed to be the actual 
CFO normalized by the subcarrier spacing ∆f. Symbol timing 
synchronization (represented by "Timing Sync." block in 
Fig.1) is performed next and the CP is removed. Finally, the 
received samples can be given by 
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                        (2) 

where Ω(fd)=diag{1, exp(j2πfd/N) … exp[j2π(N-1)fd/N]} is a 
diagonal matrix, Hf=diag{h0 h1 …hM-1} is a complex matrix 
with hi reflecting the channel frequency response at the ith 
subcarrier, and ξ=[n0  n1 … nN-1]T  is a vector of  complex 
white Gaussian noise with zero mean and covariance matrix 

N
H IEC 2}{ σξξξ == ,    (3) 

where (.)H denotes Hermitian transposition and IN is an N×N 
identity matrix.   

Matrices Ω(fd) and Hf are both unknown but deterministic. 
For the convenience of discussion, let Ξ=Ω(fd)WM and Γ=HfP. 
Given P, Γ is a linear function of Hf ; while Ξ is a nonlinear 
function of fd, which can be rewritten as Ξ = [e0   e1  …  eM-1], 
with ei={1 exp[j2π(i-1+fd)/N] … exp[j2π(i-1+fd)(N-1)/N]}. 
For a fixed pair of ( fd,Γ ), the probability density function of 
R conditioned on Ξ  and Γ  is given by 

{ }222 exp)(},|{ −− ΞΓ−−=ΓΞ σπσ RRf N ,          (4) 

where ||.||2 is the Euclidean norm. Taking  Λ(fd,Γ)= f{R|Ξ,Γ} as 
the likelihood function of fd and Γ [8], their joint ML 
estimates can be obtained through 
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where #
df  and Γ# stand for the ML estimates of fd and Γ, 

while df̂  and Γ̂ denote the trial values of fd and Γ, 

respectively. Since fd and Γ are decoupled, this is a separable 
estimation problem which can be solved in two steps [9-10]. 

Firstly, df̂ is regarded as a constant and it is found that (4) 

reaches its maximum when 

RHΞΓ =ˆ .           (6) 

Secondly, (6) is substituted into )ˆ,ˆ( ΓΛ df and the likelihood 

function becomes 
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As the right-hand side of (7) is independent of ,Γ̂ it coincides 

with the marginal likelihood function of df̂ . Obviously, 

maximizing (7) is equivalent to maximizing the inner term of 
RHΞΞHR. Thus, the ML estimate for fd can be expressed as 
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f
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where PΞ=ΞΞH. Due to the very form of ei, different columns 
of Ξ are mutually orthogonal. Hence, PΞ can be decomposed 
into 
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Additionally, we define the periodogram of signal R as  
21
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Substituting (9) into (8) yields 
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where fd,i

∆
= i+ df̂ . The relationship between the periodogram 

of the received signal and the maximum likelihood estimate 
of fd is clearly established. Since ρ(f)≡ρ(f+N), in the sequel 
we shall consider the scenario where fd∈ (−N/2, N/2] only and 
introduce a practical realization for (11).  

 

III.   REALIZATION  OF  ML ESTIMATOR 

A.    Sub-optimal ML Estimator 

Although (11) gives the close-form expression for the ML 
estimate of fd, its evaluation is not straightforward. 
Nevertheless, it is worth noting from (10) that (11) can be 

implemented through FFT when Ζ∈df̂ , where Z denotes the 

set of integers. Moreover, the technique of interpolation can 

be employed to approximate ρ(fd,i) when Ζ∉df̂ . Considering 

this, a sub-optimal MLE is presented in this section. First of 
all, we construct a zero-padded sequence {r' m}: 
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where the oversize ratio L=2l' and the design parameter l'  is a 
positive integer. Next, we invoke LN-point FFT over {r' m}, 
yielding 

Fig.1    System model of the proposed CFO 
estimation method for OFDM applications 
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The sub-optimal MLE of fd then takes the form of 
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Using (2) and ignoring the term ξ, ℜ (k) can be rewritten as 
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where ωl=π(LN)−1[L(fd+l)-k]. When fd=λ/L and λ∈ Z, it turns 
out that  
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In this case, the sub-optimal estimator (14) agrees with the 

optimal estimator (11), i.e. ##~
dd ff = . When fd≠λ/L, (16) no 

longer holds but (14) is still able to give the best 
approximation to (11) from the set of {−N/2+1/L, −N/2+2/L, … 

N/2}. As a result, we have 1# )2(
~ −≤− Lff dd . Evidently, the 

estimation accuracy is proportional to L. On the other hand, 
increasing L also means increasing the size of FFT, which is 
undesirable for practical implementation. Thus, there is a 
trade off between the desired precision and the computation 
simplicity, and (14) can be utilized to provide a coarse 
estimate of fd when L is limited. 

B.   Preamble Design and Simplified Sub-optimal Estimator 

Considering the sensitivity of the OFDM system to 
frequency error, we introduce a fine estimation scheme to 
recover the part of CFO that cannot be accomplished by (14). 
In the foregoing discussions, symbol P is presumed to be 
known by the receiver. Practically, it can be regarded as the 
preamble. For simplicity, we assume P is a binary sequence 
with pm∈ {0,1}. Under such circumstances, P corresponds to 
the assignment of the pilot tones. For the objective of 
achieving a large estimation range, the ambiguity about fd 
should be avoided and the maxima of the likelihood function 
should be unique within the desired range. Moreover, to 
suppress the ACI caused by neighboring tones, the distance 
between two adjacent pilot tones should be sufficiently wide. 

Taking both requirements into account, we propose to 
employ a binary PN code C={c1 c2 … cK} in arranging P, 
which satisfies the condition of K+K'Q1=M, where K'

 is the 
size of the subset {c'm | c'm∈ C and c'm=1}, and Q1>1 is a positive 
integer. The desired P is then obtained by inserting Q1  
consecutive zeros after each c'm . Supposing fd=λ/L+ν, where 
|ν|≤(2L)−1, for λ+L(mi-1)<k<λ+L(mi+1), the module of (15) 

can be approximated by ,)sin()sin()( iim Nhk
i

ωω≈ℜ  where 
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noise, a more robust estimator for ν takes the form of 
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Besides, as a result of the proposed P, we have  
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where )ˆ()( 1
ˆ kLfLN dk

−= −πϖ . Therefore, the square operator 

involved in calculating the periodogram can be dropped, and 
(14) is simplified into 
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The CFO estimator presented by [7] agrees with (19), 
which is a special case of the general formula (14) under the 
above assumptions about P. Eventually, the estimation of fd 
can be obtained by combining (17) and (19):  

ν~
~~ # += dd ff .     (20) 

IV. PERFORMANCE ANALYSIS 

A.   Estimation Range of the Proposed Algorithm 

It is evident from (11) that the maximum range within 
which no ambiguity occurs is limited to a period of length N. 
Because of the auto-correlation properties of the PN code that 
is used in arranging P, the solution of (19) is unique as far as 
the range (−N/2, N/2] is concerned. Therefore, the estimation 
range of algorithm (20) equals (−N/2, N/2].  

B.    Statistical Properties of the ML Estimator 

For the simplicity of analysis, here we only investigate the 
statistical properties of the MLE given by (11). Letting 

dd ffd RPf ˆ

2
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and variance of #
df  can be approximated by                                     
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where T=diag{0,1,…N-1} and ∑
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(23) and (24), (21) and (22) can finally be reduced to 
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where Θ=2TPWT-PWT2-T2 and ζζ )( df−Ω= . When SNR is 

sufficiently high, the first term in the bracket of (26) is 
negligible, yielding 
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In [9], the general formula of computing the Fisher 
information matrix is given, which can be used to derive the 
CRB for the estimation of a vector parameter. As the CRB 
places a lower bound on the variance of each element to be 
estimated, it can be applied as a benchmark in evaluating the 
performance of the unbiased estimators. For this reason, we 
define the vector parameter of (6) as α=[Re(Hf), Im(Hf), fd]T, 
where Re(.) and Im(.) denote the real and imaginary parts of 
the enclosed quantity, respectively. Then the Fisher 
information matrix F can calculated via 
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where []
21,. ii represents the element on the i1th row and the i2th 

column of the inner matrix. The CRB of fd should be 

12,12
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Employing the approach in Appendix B of [8], (29) is found 
to be 

ΓΘΓ= −
M

H
M

H
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Obviously, (30) coincides with (27), indicating the variance 
of the proposed MLE approximates the CRB and is 
asymptotically efficient. 

 

V.     SIMULATION RESULTS 

Following assumptions have been made in the conducted 
computer simulations: the pulse shaping is performed through 
a raised cosine roll-off filter and the roll-off factor is 0.5; 
symbol timing synchronization have been accomplished 
already; the channel is modeled as a typical urban channel 
with six paths, and the channel response is the same as that 
appearing in [8]; the PN code used for pilot tone allocation is 
generated from the m-sequence; the SNR is defined by 

22 −σΓ .  

Assuming SNR=10dB, Table.1 gives the coarse estimation 
results of (19) for fd={0.63, -9.5, 20.44, -58.185, 100.773, -120.099, -255, 
256} and L={2,4,8,16}. The other parameters used in this 
simulation are: N=512, M=500, Q1=3, K=200 and K'=100. It 
can be obtained from this table that the estimation range is (-
N/2, N/2]. Besides, for each pair of {L, f d } being considered, 

the relationship of 1# )2(
~ −≤− Lff dd  always holds. Therefore, 

the validity of the simplified coarse estimator given by (19) is 
demonstrated. 

Once the coarse estimation #~
df  has been obtained, the 

remaining part of #~
dd ff −  can be estimated by the use of  (17). 

To measure the accuracy of the integral estimation given by 
(20), we introduce two new variables: the average bias η and 
the mean square error γ, which are defined by 
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NS denotes the number of simulations and idf )
~

(  represent 

the outcome of the ith run. As functions of SNR, η and γ  are 
illustrated in Fig.2 and Fig.3, respectively, with L as a 
parameter. The CFO is set to fd=−58.185 and NS =103. The 
other system parameters used in these simulations are the 
same as those used in obtaining Table.1. It is clear from these 
two figures that the accuracy of the proposed algorithm is 
proportional to the oversize ratio L. When L is not large 
enough, notwithstanding the high level of SNR, it is noted 
from Fig.2 that the CFO estimation is biased and the error 
floor also occurs in the curve of mean square error in Fig.3. 
This is due to the quantization effects of FFT, which can be 
overcome by raising L. When L is sufficiently large, it is 
found that the estimator (20) is asymptotically unbiased and 
its variance approaches the CRB closely.  
 

VI.    CONCLUSION 

In this paper, a MLE for the CFO has been presented for 
OFDM applications. The derived likelihood function has 
revealed the relationship between the CFO and the 
periodogram of the received signal. Theoretical analysis has 
shown that the presented MLE is unbiased and its variance 
approximates the CRB. To realize this MLE in practice, a 
sub-optimal estimator has been developed in which zero-
padded FFT is invoked for implementation. To broaden the 
estimation range as well as to reduce the implementation 
complexity, a preamble structure comprising nonuniformly- 
spaced pilot tones has been introduced and PN code has been 
employed for the assignment of pilot tones. Based on this 
preamble, the estimation process has been split into two 
phases: the coarse estimate has been obtained by the 

TABLE 1     
COARSE   ESTIMATION  RESULTS  FOR  DIFFERENT  L AND  fd 

  

    fd 

L 
0.63 -9.5 20.44 -58.185 100.773 -120.099 -255 256 

2 0.5 -9.5 20.5 -58 101 -120 -255 256 

4 0.75 -9.5 20.5 -58.25 100.75 -120 -255 256 

8 0.625 -9.5 20.5 -58.125 100.75 -120.125 -255 256 

16 0.625 -9.5 20.4375 -58.1875 100.75 -120.125 -255 256 
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correlation between the received spectrum and the original 
pattern of the preamble; while the fine estimate has been 
obtained by investigating the magnitude attenuation of the 
frequency bins around those CFO-shifted pilot tones. Both 
theoretical analysis and computer simulations has indicated 
that the accuracy of this simplified estimator is proportional 
to the oversize ratio of zero-padded FFT and its estimation 
range equals the bandwidth of OFDM signal. When the 
oversize ratio is sufficiently high, the performance of the 
proposed sub-optimal estimator approaches that of the 
proposed MLE.   
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