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Abstract 
The robust H, filtering problem is considered for 
discrete-time systems subject to norm-bounded parameter 
uncertainties in both the state and the output matrices of the 
state-space model. Sufficient conditions for the filter to 
satisfy prescribed H, performance and steady-state 
estimation error variance constraints are given in terms of 
two discrete algebraic Riccati inequalities. The filter 
obtained does not depend on the perturbation parameter 
which is assumed to be unmeasured. An example is 
provided to illustrate the use of the results for filter design. 
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1. Introduction 

In Kalman filtering, the variance of the estimation error is 
minimized under the assumption that the spectral densities of 
noise processes are known (e.g. see [l]). In contrast, H, 
filtering provides a bound for the worst-case estimation error 
without the need for knowledge of noise statistics (e.g. see 
[9]). There have been attempts to combine the performance 
requirements of the Kalman filter and the H, filter into a 
mixed H J H ,  filtering problem [ 14,151. Earlier works on 
filtering theory often assume that an exact model is known 
for the system whose states are to be estimated. In most 
practical problems, an exact model of the system may not be 
available and the robust performance of the filter in the face 
of system parameter uncertainties becomes an important 
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issue. The robust filtering problem of state estimation for 
systems with norm-bounded uncertainties has been 
considered in the context of both Kalman filtering 

[7,8,10,11,12] and H, filtering [2,3,6,13]. 

In this paper, we will consider the problem of robust filtering 
with mixed H2/H, performance requirements for a discrete 
linear time-invariant system subject to parameter 
uncertainties. Our problem formulation is similar to that of 
Wang et a1.[14], except that we do not require any 
assumption on the measurability of the perturbation. 
Although the Riccati equations given in the solution of [ 141 
do not depend on the perturbation parameter, the robust 
H21H, filter is based on a model of the uncertain system and 
hence requires the perturbation to be measurable. Although 
our filter design is derived from an H ,  criterion, provisions 
are given for error variance constraints to be verified as part 
of the filter specifications. Our results differ from those of 

[ 141 in that our filter has a more general form independent of 
the perturbation parameter and hence does not require the 
perturbation to be measurable. Consequently, the sufficient 
conditions given in this paper for robust filtering is more 
involved requiring the solution of two unilaterally coupled 
discrete algebraic Riccati inequalities (DARI). 

The paper is organized as follows. In Section 2, the robust H ,  
filtering problem with error variance constraints for 
discrete-time systems subject to norm-bounded parameter 
uncertainty is formulated. Sufficient conditions for solving 
the robust H, filtering problem are developed in Section 3.  
An example is provided in Section 4 to illustrate the use of 
the sufficient conditions for the design of a robust filter. 
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Some concluding remarks are given in Section 5. 

2. Problem formulation 

Consider the following class of uncertain systems 
(Wang et al. 1997): 

x ( k  + 1) = (A + AA)x(k) + D, ~ ( k )  
y ( k )  = (C + AC)x(k) + D,w(k) 
z ( k )  = Lx(k )  

(1) 

where x(k) E R" is the state, y(k)  E R" is the measured output, 
z(k) E R" represents an unmeasured output to be estimated, 

w(k) E R" is a zero mean Gaussian white noise process with 

variance bounded by I ,  and A,  C, D I ,  D2, L are known 
constant matrices describing the nominal system, whereas 

AA and AC are perturbation matrices representing parameter 
uncertainties. We will assume that AA and AC are 
time-invariant of the form 

where M I ,  M2 and N are known constant matrices of 

appropriate dimensions, and r E R"' is a perturbation 
matrix which satisfies 

P T < I  (3) 
The uncertainties AA and AC are said to be admissible if they 
satisfy conditions (2) and (3). The following assumptions 
will be made throughout this paper. 

Assumption 1: The system (1) is stable for all admissible 

perturbations AA and AC. 0 

eigenvalues, i.e. A is nonsingular. 0 
Assumption 2: The matrix A of the system (1) has no zero 

Assumption 1 is necessary for the robust filtering problem to 
be meaningkl. If Assumption 2 is not satisfied, we can 
always perturb A to a nonsingular matrix and absorb the 
perturbation into AA.  Hence Assumption 2 can be made 
without loss of generality. 

Now consider the following filter for the system (1) 

i ( k  + 1) = F i ( k )  + G y ( k )  
z ( k )  = L i ( k )  

(4) 

where ?(k)  E R" is the estimated state, i ( k )  E R"' is an 

estimate for z(k), and F and G are the filter parameters to be 

determined. In Wang et al. (1997 ), the filter is modeled on 

the system (1). As a result, F and G will depend on AA and 
AC and this requires the uncertainties to be measurable. In 
this paper, we will however considered the robust filtering 
problem under the assumption that AA and AC are unknown. 

Define the state estimation error e (k )  and the output 

estimation error eZ ( k )  by 

e (k )  = x(k) - i ( k )  

eZ ( k )  = z ( k )  - i(k) 
( 5 )  

(6) 
A state-space model describing the augmented system 
formed from the system (1) and the filter (4) can be 

expressed in terms of the state vector 

as 

where 

Our objective in this paper is to design a filter (4) such 
that for all admissible perturbations AA and AC, the 
following three requirements are simultaneously satisfied: 

(F1)  The filter (4) is asymptotically stable. 
(E) Given y > 0 , the H, norm of the transfer function 

H ( z )  =C, (zZ - A ,  - AAe)-' B, 

from w(k) to e: ( k )  satisfies 

(9) 
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(F3) The state estimation error has a positive definite solution X, > O  such that 

e(k)  = [eI ( k )  e ,  ( k )  . . . e,, (k)]T has variances y 2 1  -C,X,C,' > 0 , then the augmented system (7) is 

satisfying 
asymptotically stable and (iH(z)li, < y . 0 

The inequality (13) depends on the unknown perturbation r 
var [e ,  1 = ~ i m  E [e ,  (k)e ,  7 (it)] < 0,' (10) 

k- tx  

for some o , ~ >  o ( i =  1 , 2 ,  ... , n). 
through AA and AC and is therefore not readily applicable. 
This dependency can be eliminated by means of Lemmas 1 

A filter satisfying these conditions will be referred to as a 

robust H, filter with error variance constraints. 

and 2 yielding a sufficient condition for (FI) and (n), as 
stated in the next result. 

Theorem 1 : Suppose there exists a> 0 such that the D A H  

A,(X,-' - y-'C,'C, - - a - ' N e 7 N C ) - '  A,' - X ,  + 
BEB,' +aM,M,'<O 

3. Robust H ,  filtering with error variance constraints (14) 

In this section, we will show how one may construct a has a positive definite solution x, > 0 such that 

- a - ' N , ' N ,  > O ,  then (F l )  and (E)  are 
robust H, filter with error variance constraints. The next two 
lemmas will be required for developing the main results. 

Lemma 1: For any matrices x and y of appropriate 
dimensions and any constant a > 0, 

X,-' 

satisfied for all admissible perturbations AA and AC. 
Prooj 
Under the assumption of the Theorem and using Lemma 1 

(x-' -a- 'Y 'y ) - '  = x + x y ' ( a ~ - y x y 7 ) - ' y x  ( I 1 )  andLemma2, theexpressionon the leftof(13)can be 
written 0 

Lemma 2: For any matrices A, ,M, ,N ,  of appropriate ( ~ + A A , ) X , ( A , + L L ~ , ) ~  -X, + ( A ,  +AA,)X,C,I 
dimensions and r such that r7 5 I , ifthere exist a constant 
a> 0 and a positive definite matrix X such that = ( A ,  + M,)(x;' - y - 2 ~ ~ ~ c ) - l ( ~ ,  + MJ - x, + 5,~: 

( Y ~ I  - c~~c:)- 'c,x,(A~ + A A , ) ~  + B,B~ 

aI - N,XT\I,r > 0 ,  then = (A,  + hlJN,)(XL;' - Y-~C,'C,)-'(A, + hl,TN,)r - X, + B,BT 

I A,(x;'-~-~c~c,-~~-'NIN,)-'A~ +~M,MI-x,+B,B,T < o 

Hence, Lemma 3 implies that the augmented system (7) is 

asymptotically stable and llH(z)l'= < y for all AA and AC. 

(12) 

This implies that (F l )  and (F2) are satisfied for all 
admissible perturbations and completes the proof of 
Theorem 1. 

Now we present our main result. The following theorem 
provides a filter which ensures that the prescribed H, 
performance is satisfied along with the steady-state error 
variance constraints. 

0 
In the next lemma, we establish a condition to guarantee the 
asymptotic stability as well as an H, norm bound for the 

inequality. The Lemma can be proved in a way analogous to 
that given in Lemma 1 of Geromel et al. [4]. 

Lemma 3: Given y >  0. If the discrete algebraic Riccati 
inequality ( D A H )  

augmented system (7) in terms of a discrete algebraic Riccati 0 

Theorem 2: Consider the uncertain system (1). Suppose 
there exists a >  0 and y>  0 such that the following two 
discrete algebraic Riccati inequalities (1 5 )  and (16) have 

( . ~ ~ + A ~ ' , ) , ~ ~ ( ~ = + ~ ~ ) '  - x ~ + ( A , + A A , ) x , s . "  

( Y ~ I - C , ~ , C , ' ~ ) - ' C , ~ , ( . ~ , + A A , ) '  + B,Be7 < O  
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positive definite solutions Q, > 0 , Q, > 0 satisfying (1 7): 

AQ,Ar-Q,+AQ,NT(al-NQ2N")~~NQ,AT+Rl, < O  (16) 

where 

R,? =D,Dl  + & , M i ' ,  RI =(e;' - a - ' N T N ) - ' A 7  (18b) 

Then, the filter (4) with 
F = A, -GC, (19) 

G =[A,(Q,'  - Y - ~ L / L ) - ' C [  +R,,R,R,, +R,,]R-' (20) 

satisfies (Fl)  and (E) for all admissible perturbations AA 

and AC. Furthermore, (F3) is satisfied provided 

C T , ~  2 [e,],,  ( i =  1 , 2 ,  ... , n ) .  

Prooj 
By Theorem 1, a sufficient condition for (F l )  and (F2) is 

- X, + B , B ~  + aM,Md < o 
where the partitioning of S is compatible with that given in 
(8), and X, > 0 satisfies 

x*-' - Y - ~ c ~ ' c ~  - ~ - ' N , ' N ,  > o  (22) 

If A'', is assumed to be block diagonal, i.e., 

then, substituting (Sa), (Sb) and (23) into (21), we have 

s2, = A(Q;' -n-'NTN)-'AT -Q2  +DID:  +&,M: (26) 

A sufficient condition for (21) is SI, = O  , SI, < O  and 

S,z < 0 . Setting SI, = 0 in (25), we obtain 

F = A - GC + [DID: + &,M; - G(D2D: + d 2 M [ ) ] R I - I  
= A l  - GC, 

(27) 
Denoting 

GI = (e,-' - y - 2 ~ ' ~ ) - l  

and substituting (27) into (24), we have 

= A , ~ , A ;  -Q,  + R , ,  +R,,R,R:, +G[c,Q,c; + R;;R,R,, 

+R,,]GT -G[C,e ,A:  +RLR,R; +R:;]- 

[A,G,C:' + R,,R,R,, + R,,]G' 

can be written as 

which is (15). Applying Lemma 1 to (26), the condition 
S,, < 0 can be written as (1 6). In terms of Q, and Q, , the 

condition (22) can be written as (1 7). It follows that (1 5),  (1 6) 
together with (17) imply that the conditions of Theorem 1, 

and hence (F1) and (n), are satisfied. 
Next, consider the steady-state error variance of the 
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augmented system (7) defined as 

e ( k ) e ' ( k )  e ( k ) x 7  ( k )  

P12 P?2 x ( k ) e 7  ( k )  x ( k ) x T ( k )  
[ P': ''2 ] := lim [ P =  

Since A,  +AA, is asymptotically stable, P exists and 

satisfies the Lyapunov inequality[5] 

(A,+AA,)P(A,+AAt,)7 -P+B,B: 2 0  (3 1) 

where we have made use of the fact that the variance of w(k)  
is bounded by I .  Combining (14) and (3 1) yields 

(A, + U, )(X, - P ) ( A ,  + AA, 1' - (X, - P) + 

A C e  (X - ' - Y - ~ C ~ C ~  - a - ' N e ' N , ) - ' A f  + (32) 
aM,M'!  - ( A e  + A A , ) X , ( A ,  +AA,)7 < O  

Note that 

In view of (33 )  and (34), (32) implies that 

( A ,  +AA,)(X, - P ) ( A ,  +AA,)' -(xc - P )  < 0 (35)  

Since A,  + AA, is asymptotically stable, we conclude from 

(35) that X ,  > P , which in turn implies 

Thus, under the assumption that o,* L [e,],, 
( i = 1 , 2  ,..., n ) ,  

var[e,l = [plI1,, [e,],, cr,* (37) 

which proves (n). This completes the proof of Theorem 2. 

U 

Theorem 2 provides a sufficient condition for solving 

the robust H ,  filtering problem with the steady-state error 
variance constraints for systems with parameter uncertainty. 
Since the two discrete algebraic Riccati inequalities (1 5) and 
(16) are unilaterally coupled, we can solve for Q2 from (16) 

first, and then Q, from (1 5). 

4. Numerical example 

Consider linear discrete-time system described by (1) with 

0.5 0.01 0.5 0 

0.1 0 0.5 0 

subject to admissible perturbations given by 
M = M w = [  0.1 0.5 ]r[ 0.5 0 

-0.2 0.1 I ] ,  

where is a perturbation matrix satisfying T''T<: I . We 

wish to design an asymptotically stable H, filter such that 

jH(z)Il, < y  =0.3 , and var[e,] 2 0: = O S  and 

var[e2] 2 0,' = 0.5 . Selecting a = 0.1 , the discrete 

algebraic Riccati inequalities (1 5 )  and (1 6) subject to 
constraints (1 7) can be solved using LMI techniques, giving 

1 0.1367 0.0016], [ 0.0985 - 0.0 180 
" = -0.0180 0.2515 

By (19) and (20), the H ,  filter parameters are given by 

1 F =  10.2148 -0.00641, =[ 0.43 14 - 0.2052 
0.0470 - 0.0801 0.0467 - 1.3341 

L 1 L J 

The above example shows how Theorem 2 can be used to 
design an asymptotically stable filter such that the prescribed 

H, performance is satisfied for all admissible perturbations. 
The steady-state estimation error variance constraints are 

5. Conclusion 

In this paper, the problem of robust H, filtering with 
error variance constraints is considered for discrete-time 

systems subject to unmeasured parameter perturbations. 
Sufficient conditions for the filter to satisfy steady-state 
estimation error variance constraints as well as prescribed 
H, performance are given in terms of two unilaterally 
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coupled algebraic Riccati inequalities which can be solved 
using LMI techniques. The filter is independent of the 
unknown perturbation, but its performance is robust against 
all admissible uncertainties. An area for further work is to 

extend the results of this paper to discrete time-varying 

systems with parameter uncertainty. 

Acknowledgement 
This work has been supported the Hong Kong Research 
Grants Council, the National Natural Science Foundation of 
China (6997401 0) and the Fujian Provincial Natural Science 
Foundation (F97009). 

References 
B.D.O. Anderson and J.B. Moore, Optimal Filtering. 
Englewood Cliffs, N J:  Prentice-Hall, 1979. 

C.E. de Souza and L. Xie, Robust H, filtering, Control 

[lo] U. Shaked and C.E. de Souza, Robust minimum 
variance filtering, IEEE Trans. Signal Processing, vol. 
43, pp. 2474-2483, 1995. 

[ I  13 L. Xie, and Y.C. Soh, Robust Kalman filtering with 

uncertain systems, Systems & Control Letters, vol. 22, 
pp. 123-129, 1994. 

[12] L. Xie, Y.C. Soh and C.E. de Souza, Robust Kalman 
filtering with uncertain discrete-time systems, IEEE 
Trans. Automat. Control, vol. 39, pp. 1310-1314, 1994. 

[13] L. Xie and C.E. de Souza, H, filtering for linear 
periodic systems with parameter uncertainty, Systems 
& Control Letters, vol. 17, pp. 343-350, 1991. 

[14] Z. Wang, Z. Guo and H. Unbehauen, Robust H21H, 
state estimation for discrete-time systems with error 

variance constraints, IEEE Trans. Automat. Control, 
vol. 42, pp. 1431-1435, 1997. 

[15] Z. Wang and H. Unbehauen, Robust H21H, state 

estimation for systems with error variance constraints: 
the continuous time case, IEEE Trans. Automat. 
Control, vol. 44, pp. 1061-1065, 1999. 

& Dynamic Systems, vol. 65, pp. 323-377, 1994. 

M. Fu, C.E. de Souza and L. Xie, H, estimation for 
uncertain systems, Int. J. Robust Nonlinear Contr., vol. 
2, pp. 87-105, 1992. 
J.C. Geromel, P.L.D. Peres and S.R. Souza, H, control 
of discrete-time uncertain systems. IEEE Trans. 
Automat. Control, vol. 39, pp. 1072-1075, 1994. 
H. Kwakemaak and R. Sivan, Linear Optimal Control 
Systems, New York, Wiley, 1972. 
H. Li and M. Fu, An LMI approach to robust H, 
filtering for linear systems, Proc. IEEE Con$ Decision 
Contr., New Orleans, LA, pp. 3608-3613, 1995. 
R. S. Mangoubi, B. D. Appleby and G. C. Verghese, 
Robust estimation for discrete-time linear systems, 
Proc. American Control Con$, Baltimere, Maryland, 
pp. 656-661, 1994. 
I.R. Petersen and D.C. McFarlane, Robust state 
estimation for uncertain systems, Proc. IEEE Con$ 
Decision Contr., Brighton, pp. 2630-263 1, 1991. 
U. Shaked and Y. Theodor, H,-optimal estimation: a 
tutorial, Proc. IEEE Conf: Decision Contr., Tucson, AZ, 

pp. 2278-2286, 1992. 

640 


