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Abstract: A new approach for identification of non-Gaussian
lincar system with time-varying parameters is addressed in this
paper. The proposed method is based on the application of
higher-order spectra (HOS) and wavelet analysis. In order to
solve the problem and identify the characteristics of the
time-varying linear system, a time-varying parametric model is
proposed as non-Gaussian AR medel. The model parameters

that characterize the time-varying system are functions of time

and can be represented by a family of wavelet basis functions,

of which the corresponding basis coefficients are invariant.
This method c¢an well track the changes of the model
parameters, and the results show its eﬁ'cctiveness of the
proposed approach.
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1. Introduction

Many of. the existing methods for system
identification and parameters estimation are
exclusively based on the stationarity assumption. In
successful épplications,
fulfill  the

nonstationary applications. Now more and more

spite  of -its many

aforementioned methods do not
growing focus is put on the nonstationary
environments, whose non- stationarity are close
related with physiologic accommodation. The
instantaneous information of those kinds of signals
‘and systems are hard to be identified and predicted.
There applied to
nonstationary physical situations.

are many useful methods

The most popular approach to estimate the
nonstationary signals is to employ an adaptive
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algorifhm and assume that the change of the signals is
shown in [2]. Marc Lavielle solved the problem by
presuming that the process is locally stationary over a
short time interval but
nonstationary, Then we look on this kind of signals as

relatively globally
piece-stationary signals and the most impdrtant thing
is to find the instants of change [3-4]. More people
construct the nonstationary models directly: Satoru
Goto  present . cumulant-based methods for
time-varying AR model parameters estimation [5,6,8],
but this method is limited in certain AR parameters. A
novel Bayesian formulation is developed.to identify

the system parameters and estimate the models, Other

* report [7] uses a wavelet basis for the identification of

time-varying (TV) system, and TV parameters can be
expanded onto a finite set of wavelet basis sequences.
Its flexibility in capturing the system’s characteristics
at different scales is at the cost of computational
complexity. Several papers [1][6][7] involve the basis
function. With the application of basis vectors such as
Legendre polynomials and Fourier series, the TV
model can be represented by a family of basis vectors,
and the basis coefficients are invaniant. We combine
wavelet basis functions and the higher-order statistics,
and propose a new method to estimate the cosfficients
of time-varying AR model, which- is beticr -than
former methods. Section 2 of this paper introduces the
parametric model of our method. Section 3 represents
the experimental results and compares the method
with Fourier method. Finally, some simulations are
demonstrated.
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2. The Proposed Model )
We build a TV linear system or TV AR(p) model

to extract the feature of the characteristics of the

nonstationary signal. When X =(X, X,,- X))

is a nonstationary real process, the TV parameters of
the model is employed, which is described by the
following difference equation:

xmy=-Samxn-B+vn) @)

where v(k) is an independent identically distributed

(i.id) stationary, non-Gaussian process, with
zero-meéan and a finite nonzero cumulant. a, (n) are

a TV parameter, which can be represented by a hinear
combination of a number of known functions:

ay(n) = Y a,u,(n) @

where # (1) is the orthonormal basis functions.

The TV AR coefficients are represented on the space
spanned by the basis functions. TV AR Coefficients
are constants in this space. The functions are all

known, so we can get a,(n) if we know the

coefficients of the functions,
The model can be described as the following:

x() = —Za* (m)x(n — k) +v(n) =
S1.a,u,(n)eln ~ k) + v(n)

¥=1 =0

€)

or

x(n); Sal X(n-k)+vn) @

T _ T
where a, =[a,,a;, ---,a,,] and

X (n) = [y (m)x(m), 1, ()X (1), o, (m)x ()]

The expression (4) can be evolved into a system of
g+l equations:

uy(m)x(n) = ~iuo(n)ai - X (n—k) +u,(mv(n)

=)

u,(n)x(n) = —iul (m)al - X (n-~k)+u (nyv(n)

k=1

u, (m)x(n) = —iuq Wal -X(n-k)+ u, (n)v(n)

k=1

where
AK) = T (m)a] , (m)a] oo, ()] T
V() = [go(n), (), oo )

We also know that the mth order cumulants
sequence of X(n) satisfies the following recursive
equation [5]:

SARC, (57, =-B=0, >0 ()

We assume m=3, then (5) can be changed into :

U (ma, | €, C
i U, (n)a: 23 C s -0
= 2 O
U (M, €)1 €

where ¢, = E[x;(mx,(n+7)x (n+7-k)]
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and x (1) is the jth element of X(n)

3. Wavelet Basis Function
A wavelet orthonormal basis of the usual

Lebesque square integrable function space I’
satisfies the following formula:

<Wk‘n:y/,’,m >= 6ki :5””,, k,n,l,m (= Z

it fel*(R), we canget:

- fx)= ch,ij’,k(x) ©)]

J.keZ

So we can choose some kinds of wavelet basis to
represent the AR coefficients, such as Harr and
Daubechies basis, because of their good performance
in transignt change,

4. The Results and Discussion
We assume that the AR order p=2, then:

x(n) = a, (M) x(k =1} + a, (W)x(k = 1) + v(n)

where v(k) is an independent identically distributed
stationary, non-Gaussian process, whose variance

EV (K)]=Q and EV'(R)]=B#0 . ayk),
a,(k)} are TV AR(2) model parameters c.hanging
abruptly in the folowing manner:
a,(k)=-15a,(k)=08
ke[LN/4JO[N/2+1,3N /4],
a,(k)=-09,a,(k)=0.2

ke[N/4+LN/2JU[N3/4+1N],

The TV process 1s generated with N=6000 samples
in Fig.1 and 2, which are shown by the rectangle blue
wave. Both Fourier basis and Harr basis are used to

‘estimate the model parameters, and compare the

results with the original values.

real a1{k) and its.
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Fig. 1 The estimated result of the TV a,(k). The

estimated result of Fouricr basis is shown as the
dotted line, and the estimated result of Harr basis is
shown as the solid line.
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Fig. 2 The result of the estimation of the TV a, (k).

The estimated result based on Founer basis is shown
as the dotted line, and the estimated result based on
Harr basis is shown as the solid line.

Both Fig.l1 and Fig.2 depict the true AR(2)
parameters @,(k) and a,(k), and the estimated

results based on Fourier basis and Harr basis,
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respectively. We can see from the results that Harr
basis is much better than Fourier basis and we can get
the same result by the error criterion. The error is
estimated by minimizing a penalized contrast function
of the form [3]

do(xuxz:' X Ay -a,,) =

X, -Yax TN ®

i=P+1

~ The error of wavelet basis with o, =1.7332 is

less than the error of Fourier basis with

d, = 2.0256 , which reflect that the wavelet basis is

more suitable than the conventional method in the
identification of the TV linear systems.

5. Conclusion

The aim of the proposed method was to investigate
the problem of the identification of the time-varying
linear systems described by an non-Gaussian AR
model. The model parameters that characterize the
time-varying system are functions of time and can be
represented by a family of wavelet basis functions. A
comparison between wavelet basis and Fourier basis
of cumulants-based method is also given. The results
in the presented method show the applicability and the
effectivencss of the procedures, while some signal
processing techniques is needed to apply to minimize
the estimated error.
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