
Channel Adaptive Fair Queueing for Scheduling
Integrated Voice and Data Services in Multicode

CDMA Systems
Li Wang, Yu-Kwong Kwok, Wing-Cheong Lau, and Vincent K. N. Lau

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract— CDMA (Code Division Multiple Access) systems
are critical building blocks of future high performance wireless
and mobile computing systems. While CDMA systems are very
mature for voice services, their potentials in delivering high
quality data services (e.g., multimedia messaging services) are
yet to be investigated. One of the most crucial component in an
advanced wideband CDMA system is the judicious allocation of
bandwidth resources to both voice and high data rate services
so as to maximize utilization while satisfying the respective
quality of service requirements. Specifically, in a multicode
CDMA system, the problem is to intelligently allocate codes
to the users’ requests. While previous work in the literature
has addressed this problem from a capacity point of view, the
fairness aspect, which is also important from the users’ point
of view, is largely ignored. In this paper, we propose a new
code allocation approach that is channel adaptive and can
guarantee fairness with respect to the users’ channel conditions.
Simulation results show that our approach is more effective
than the proportional fair approach.

Keywords: wireless, multicode, CDMA, scheduling, rate
allocation, fairness, channel adaptive.

I. INTRODUCTION

CDMA (Code Division Multiple Access) systems are the
major infrastructures for the next wave of innovative wire-
less information applications. CDMA techniques have already
proven themselves to be highly effective (both in cost and
service quality) for voice and short messaging applications.
Multimedia messaging Services (MMS), which require a much
higher data rate (e.g., at least 5 times the basic rate used by
a voice channel), are widely envisioned to be the next “killer
applications” in the wireless world. However, the question of
how to efficiently allocate the packet channels in a wideband
CDMA system is still largely unanswered because of several
technical difficulties. Firstly, the spreading process in the
physical layer limits the permissible data rates in limited
wireless spectrum. Nevertheless, from an information theoretic
point of view, the efficiency of utilizing the allocated spectrum
could be increased in order to support packet data services
and, in fact, this is the major motivation behind the wideband
CDMA systems. Secondly, law of large number does not hold
for the relatively small number of packet data users. Thus,
the intrinsic advantage of perfect statistical multiplexing in
CDMA systems does not apply to high speed packet data

users. In other words, packet data transmissions from data
users have to be coordinated carefully and to achieve this
goal we need to devise an intelligent rate allocation scheme
that works under realistic constraints such as considering both
the downlink (from the base-station to the mobile device) and
uplink (from the mobile device to the base-station), channel
adaptation, as well as the soft handoff effects.

Liu et al. [9] proposed a unified bandwidth-on-demand
fair-sharing platform together with the Maximum Capacity
Power Allocation (MCPA) criterion. The principle of MCPA is
that the maximum capacity power allocation is realized when
the assigned power to each code among multi-rate mobile
terminals is minimized at the same time of fulfilling the target
signal-to-interference ratio (SIR) at the base station. From the
results of the maximum capacity power allocation, the system
capacity (the number of basic rate mobile terminals that the
system can accommodate) of a multicode CDMA system is
defined to be:

S =
γ0 + 1.5G

γ0
(1)

where γ0 is the target SIR at the base station; G is the spread-
spectrum processing gain. If a mobile terminal is assigned to
transmit at a higher rate (e.g., m times the basic rate), it will
occupy the following amount of the system capacity:

Sm =
m × (γ0 + 1.5G)
m × γ0 + 1.5G

(2)

Thus, the remaining system capacity S′ after this mobile
terminal is scheduled is given by:

S′ = S − Sm (3)

After this mobile terminal gets its packet transmitted, it will
return this part of system capacity back. Most importantly,
for a system with remaining capacity S′ after some of the
capacity has been assigned, the maximum multi-rate mmax
which a mobile terminal can be permitted to transmit at is
given by:

mmax =

 1.5G (S′−D)
γ0

[γ0+1.5G
γ0

− S′ + D]

 (4)

where D is the system capacity reservation factor.

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 1651

While the framework introduced by Liu et al. [9] is rigor-
ously formulated and has stimulated a number of important
research work [3], [8]. Their algorithm (and subsequent ones)
fails to make use of the channel state information to make
more accurate scheduling decisions. Furthermore, fairness is
largely ignored in that only round robin sharing is imple-
mented in the code distribution (i.e., bandwidth allocation)
algorithm. In this paper, we propose a channel adaptive
fair queueing approach which can be incorporated in Liu et
al.’s framework for more efficient allocation of bandwidth
resources in a fair manner. In Section II, we provide a detailed
description of our Channel Adaptive Fair Queueing (CAFQ)
algorithm. We then present the performance results of the
CAFQ algorithm for three different scenarios: pure voice, pure
data, and integrated voice and data systems. We also compare
the performance of CAFQ and proportional fairness (PF) [6],
which is widely considered to be a good metric and has been
implemented in the CDMA HDR services (for the downlink)
[2], [5]. The last section concludes the paper.

II. CHANNEL-ADAPTIVE FAIR QUEUEING

We propose a new notion of fairness to be maintained
in the short term, called channel-adaptive fairness (CAF).
Specifically, a scheduler is channel-adaptive fair if in the
short term the difference between the normalized throughput
(normalized with respect to the channel capacity) of any two
backlogged sessions i and j is bounded as follows:

∣∣∣∣
Ti(t1, t2)
rif(Φi)

− Tj(t1, t2)
rjf(Φj)

∣∣∣∣ < ε (5)

where Φi denotes the channel state (e.g., one of the five classes
A, B, C, D, and E), and f(Φi) = M(Φi)η in which M(Φi) is
the effective throughput factor (0 ≤ M(Φi) ≤ 1). The effective
throughput factor is channel state dependent: M(Φi) = 0.75 if
Φi is channel state B, and so on. Note that the values of M(Φi)
are determined by a channel adaptive physical layer which
consists a variable throughput channel modulator of a variable
throughput channel coder (i.e., one which uses different levels
of FEC protection—more FEC for a poorer channel condition)
and of a variable throughput channel modulator (i.e., one
which uses BPSK, QPSK, 16QAM, etc. for different channel
conditions). In our study, we use the ABICM (Adaptive Bit-
by-Bit Interleaved Coding and Modulation) method suggested
in [7]. It should be noted that using ABICM is just for
illustration only and other schemes (such as [10]) can also
be used with our proposed CAFQ approach. Here, η is the
punish factor, which can help to decide between to make use
of the bandwidth more efficiently and to treat every session
more fairly. When a larger value of punish factor is used,
we punish the non-perfect channel state session that transmit
packets more seriously, and prevent it from wasting too much
bandwidth. In effect, the bandwidth is used more efficiently,
and the average delay of the total system is decreased and the
throughput is increased. But if there is a session that is more
unlucky than the others and have a higher probability of having
a bad channel state, its average delay and throughput may

be very bad, because it is punished seriously and prevented
from occupying the bandwidth. When a smaller punish factor
is used, this kind of unlucky sessions will be punished only
moderately, so the average delay and throughput of these
sessions are improved. But as they have more chance to access
the bandwidth and hence incur a larger wastage of bandwidth,
the total throughput and average delay of the system will be
adversely affected. Thus, there is a trade-off and the punish
factor can be used to tune the utilization of system resources.

As in existing algorithms, we associate the scheduling
system with an error-free system to account for the service lost
or gained by a session due to errors. A session is classified
as leading or non-leading depending on the difference of the
service it received between the error-free system and the real
one. A session is leading if it has received more service in the
real system than in the error-free one, while it is non-leading
if it has received less or the same amount.

We simulate SFQ (Start-Time Fair Queueing) [4] in the
error-free system in our study for the reason of simplicity
because it is hard to schedule according to the finish times
of the packet in the wireless environment. In the SFQ, when
packet k of session i arrives, it is stamped with a virtual start
time S(Pik

), computed as:

S(Pik
) ← max{V ((A(Pik

)), F (Pik−1))} (6)

F (Pik
) ← S(Pik

) +
lik

ri
(7)

where Pik
is the k-th packet of session i, F (Pik

) is the virtual
finish time of packet Pik

, V (A(Pik
)) is the virtual clock of the

system at the arrival time A(Pik
) of the packet, ri is the pre-

allocated service share of session i, and lik
is the length of the

packet. The virtual time of the packets are initialized to zero. In
the error-free system, a session i is selected in the increasing
order of the sessions virtual starting times among sessions
that are backlogged. Since it is possible that the packet of
another session instead of session i will be transmitted in the
real system, a session’s virtual time only keep track of the
normalized service received by the session in the error-free
system.

Another parameter, ∆, is used to keep track of the difference
of the service a session received in the real system and in the
error-free one. The ∆ of a session is initialized to zero. A
session is non-leading if ∆ is greater than or equal to zero,
while it is leading if ∆ is less than zero.

In CAFQ, fairness is maintained in two aspects: in the short
term, CAF is maintained among the leading sessions and non-
leading sessions separately unless the sessions have the worst
channel state (cannot transmit). In the long term, outcome fair
is ensured with the help of a virtual compensation session.

We introduce two parameters N and L to implement the
channel-adaptive fairness in the short term. Ni keeps track of
the normalized amount of services received by session i which
is proportional to its channel state function when it is non-
leading. When a session i becomes both non-leading and not
suffering from the worst channel state, Ni will get initialized

1652

as follows:

max{Ni,min k ∈ Ψ{Nk|lagk ≥ 0}} (8)

where Ψ denotes the set of sessions that are backlogged and
for a non-leading session chosen to transmit packets in the
real system, the Ni is updated as follows:

Ni ← Ni +
li

rif(Φi)
(9)

and Li is defined similarly. Here, Li keeps track of the
normalized amount of services received by session i which
is proportional to its channel state function when it is leading.
When a session i becomes both leading and not suffering
from the worst channel state, Li will get initialized in a way
analogous to (8).

In the real system, selection is made among the non-leading
ones first. The session with the minimum Ni will be selected,
and the packet at the head of the waiting queue of this session
will be transmitted and Ni will be updated accordingly. If
there is no such kind of session which is non-leading and
backlogged, the system will select from the leading ones in
the increasing order of the sessions’ Li, and then Li will
be updated accordingly. If all sessions are not backlogged (a
very unlikely situation in a mobile computing system with a
reasonable number of active users), dummy packets will be
sent. If the session j selected in the real system is not the
one chosen in the error-free one and it is that is selected in
the error-free system, the ∆ of i and j will both be updated:
∆i ← ∆i + li, ∆j ← ∆j − lj ; otherwise, the ∆ will not be
changed. When a session with a comparatively bad channel
state transmits packet, the Ni or Li will increase more rapidly
than a session with a better channel state. As the punish
factor changes, we can decide how serious we should punish
a session which does not have a perfect channel and transmits
packets. The larger the punish factor is, the more serious we
punish the unlucky sessions.

Nonetheless, there is still one issue to be considered:
although the sessions, which do not have perfect channel states
but get packets transmitted, are punished, they are given some
chance to transmit, and part of the bandwidth of the system is
wasted and can never get compensated. Because the scheduler
will not schedule a leading session to transmit if there is
a lagging one which is backlogged and is not in the worst
channel state (i.e., state E), the scheduler will not save the
effort of the system as most of the other scheduling algorithms
do. So, we assign a service share to a virtual compensation
session to help in the long term. This pre-allocated service
share is used to help the lagging ones with perfect channel
state, because only when a session has a perfect channel state,
it can get compensation most efficiently. When a lagging
session exits from non-perfect channel states, its session ID
will be queued in the virtual compensation session. Sessions
that are queued in the virtual compensation session are in the
decreasing order of their ∆. So we give bonus service to the
lagging sessions if it has perfect channel state, and the session

which lags most will get it first so that it can be helped to
catch up, and thus, long term outcome fair can be maintained.

In the error-free system, we select a session i among all
the backlogged sessions and the virtual compensation session
in the increasing order of the virtual time. If it is the virtual
compensation session that is selected and there is session ID
waiting in the queue, the session with the ID at the head of
the virtual compensation queue will be scheduled to transmit
in the real system. The ∆ of this session will be decreased as
∆i ← ∆i − li. If it is not the virtual compensation session that
is selected or there is no session ID waiting in the queue, the
system will select a session to transmit in the real system from
the non-leading ones according to Ni, then from the leading
ones according to Li if there is no non-leading one to take the
service as we have mentioned above.

In CDMA networks, multiple mobile terminals can transmit
at the same time. Using a multicode approach, multiple packets
from a certain mobile terminal can transmit at the same
time. However, as governed by the power and interference
budgets, the number of simultaneous transmissions of packets
is limited. We use the multicode CDMA framework proposed
by Liu et al. [9] (i.e., equations (17) to (22) in [9]) and the
method of calculating the optimal power allocation given the
code/rate allocation.

In applying the proposed CAFQ algorithm in a multicode
TD-CDMA systems, we refer to resource as the number of
codes that the base station can support or the number of
channels that the base station can transmit packets at the same
time given the target SINR value. Assuming perfect power
control, the resource of the cell can be calculated as given by
the following equation [9]:

N =
G

γb
+ 1 (10)

Packets from the same mobile terminal can be delivered
simultaneously to reduce the interference level of the system,
but the number of them is limited by the BER requirement of
their traffic types. For a certain mobile terminal transmitting
packets of service type T , the allowed number of code chan-
nels is bounded by MT . For voice service mobile terminals,
only 1 packet need to be transmitted at a time. However,
for data service mobile terminals, several packets can be
transmitted together, depending upon the channel condition
and the interference/power budgets.

At the beginning of a frame, the system resource is initial-
ized as (10), so there is full resource available to schedule.
Then the flow with the highest priority according to CAFQ
algorithm is selected to receive service, and the number of
codes which is allocated to this flow is determined using
equation (4). After the scheduling, the remaining resource
is updated accordingly. When a flow is selected, the system
will compare the effective service share r̂i of this flow and
the remaining resource C. The smaller one is the number of
codes assigned to it: Ci ← min(r̂i, C). The lagging, non-
lagging definitions, the updating of Ni, Li, ∆ and the virtual
compensation flow are manipulated as described earlier. For

1653

a lagging flow chosen to transmit packets in the real system,
Ni is updated as follows:

Ni ← Ni +
Cili

rif(Φi)
(11)

where Ci is the number of codes assigned to flow i. When a
flow i becomes both non-lagging and not suffering from the
worst channel state, Li gets initialized in a way analogous to
Ni.

When there is remaining system resource, the algorithm
works as follows. When it is a normal flow that is selected
in the reference system (round robin runs in the reference
system when MT �= 1, because the system allocates the codes
according to service shares in the real system), a backlogged
lagging flow with the smallest Ni will be selected in the real
system to get service. It will allocate Ci codes to mobile
terminal i, and after this, the resource is decreased by Ci.
If there is no such kind of lagging flow available, the service
chance goes to the non-lagging flow with the least Li. If all
flows are not backlogged, scheduling will be done in the next
frame. If the flow i selected in the real system is not the flow
j which is selected in the error-free one, the ∆ of i and j will
both be updated: ∆i ← ∆i − Ci × li, ∆j ← ∆j + rj × lj ;
otherwise, the ∆ values will not be changed.

When it is the virtual compensation flow that is selected
in the reference system and there is a flow ID waiting in
the queue, the flow with the ID at the head of the virtual
compensation queue will be scheduled to transmit in the real
system. The ∆ of this flow i will be decreased as ∆i ←
∆i −Ci × li. Flow i must be the one which is currently having
a perfect channel state and lags most seriously.

III. PERFORMANCE RESULTS

We simulated the performance of CAFQ and PF with the
realistic channel model as described earlier (i.e., an accurate
channel model and the ABICM scheme are used in a com-
pletely integrated simulation environment in that the physical
layer is combined with the MAC and scheduling layers). The
parameters used in the simulation scenarios are listed in Table I
(the parameters we used are based on those presented in [1]).
We run each test case for 1000 seconds of simulated time and
average the results of 10 runs to obtain the performance data.
The virtual compensation flow has the same service share as
the other flows.

A. Test Scenario 1: Data Sources

Assuming perfect power control, the system can support
2 codes transmitting at the same time for data source with
SINR of 17.985 dB. In fact, different kinds of power control
algorithms can vary the number of packets that the base station
can transmit at a time, but in our study a fixed number after the
power control algorithm is selected. We simulate data sources
using Poisson arrivals. All the six data sources have the same
arrival rate of 60 kbps, which is 6 times higher than the basic
voice rate.

First, we try to find whether both of the algorithms work
fairly to the flows if they have the same channel error mode.

TABLE I

SIMULATION PARAMETERS.

Parameter Value
Path loss exponent 4
log-normal shadowing variance 8 dB
Channel bandwidth 5 MHz
Cell radius 800 m
Chip rate 7.7328 Mcps
Average adjacent cell load 75%
Modulation QPSK modulation

with quadrature spreading
MT (voice) 1
MT (data) 4
processing gain 30.3
frame length 16 msec
basic transmission rate 165 kbps
channel bandwidth 5 MHz
number of slots in each frame 10
window size of PF 5 sec

We simulate both CAFQ and PF when all the flows have the
same error mode 1, and find that CAFQ performs as well as
PF. All the flows have almost the same throughput when both
of the algorithms run as shown in Figure 1.

1 2
0

10

20

30

40

th
ro

ug
hp

ut
 (

kb
p

s)

1: PF; 2:CAFQ

 session 1
 session 2
 session 3
 session 4
 session 5
 session 6

Fig. 1. Both of the algorithms treat the flows with the same channel state
fairly.

Then, how do they perform when flows have different error
modes? We consider the situation when flow 1 and 2 have
error mode 1, flow 3 and 4 encounter error mode 2, and flow
5 and 6 meet error mode 3. That means flows 1 and 2 have the
best overall channel state, flow 3 and 4 have poorer one, and
flow 5 and 6 meet with bad channel states with the highest
probability.

The throughput and the average delay of the system are
shown in Figure 2 and Figure 3, respectively. For x = 0 on
the x-axis, the value on the axis shows the throughput and the
average delay when PF works respectively. For x = 1, 2, 3, 4, 5
on the x-axis, the value on the y-axis shows the throughput
and average delay when CAFQ works and is the value of the
punish factor. These two figures show that CAFQ outperforms
PF, and as the punish factor increases, the throughput increases
and the average delay decreases. This is because CAFQ tries
to use the resource more efficiently at the expense of short
term fairness with a larger punish factor. With a big punish
factor, the system will punish the flows that have bad channel
states and use the resource. Flows 5 and 6 have the highest
probability to have bad channel states, so they have least

1654

chance to access the resource. Thus, the resource is used more
efficiently, and the performance is improved.

0 1 2 3 4 5

250

260

270

280

290

300
 CAFQ
 PF

sy
st

e
m

 t
h

ro
u

gh
p

u
t(

kb
p

s)

punish factor

Fig. 2. The system throughput of the data users.

0 1 2 3 4 5
11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5
 CAFQ
 PF

a
ve

ra
ge

 d
e

la
y

(s
)

punish factor

Fig. 3. The average delay of the data users.

However, the improvement of the performance is at the
expense of the fairness when the punish factor increases. In the
short term, CAF is maintained, but it is more and more unfair
in the sense of outcome fairness with a larger punish factor.
With a larger punish factor, the channel utilization efficiency
is improved, so the performance is better. However, it tends
to treat flows with various channel states differently. Thus,
the flows with better channels have better performance than
those with poor channels. These are indicated in Figure 4 and
Figure 5.

1 2
40

41

42

43

44

45

46

th
ro

ug
hp

ut
(k

bp
s)

1: PF ; 2: CAFQ (pun=1)

 session 2
 session 4
 session 6

Fig. 4. Throughput comparison.

Figure 4 shows the throughput of flows 2, 4, and 6 of
both algorithms when the punish factor is 1 in CAFQ. We do
not show the throughput of the other flows because we have
shown in Figure 1 that both of the algorithms treat the flows
with the same channel error mode equally. CAFQ has better
overall performance than PF, and it still ensures better outcome

2 4 6

42

44

46

48

50

52

54

 PF

 CAFQ(pun=1)

 CAFQ(pun=2)

 CAFQ(pun=3)

 CAFQ(pun=4)

 CAFQ(pun=5)

th
ro

u
g

h
p

u
t(

kb
p

s)

session No

Fig. 5. The fairness property changes with the punish factor.

fairness property than PF. With the same system resource,
CAFQ can have both better performance and better outcome
fairness property than PF, this shows CAFQ makes use of the
resource more intelligently.

Figure 5 also serves to show the fairness properties. The
line when the punish factor is equal to 1 is flatter than
that of PF. But as the punish factor increases, the lines are
less and less flat, which means the long term outcome fair
property is poorer and poorer as the punish factor increases.
As we mentioned, the desirable fairness notion should have
a balanced consideration of fairness and channel utilization
efficiency. The punish factor in CAFQ can adjust the weights
of fairness and channel utilization efficiency in the trade-off.

B. Test Scenario 2: Voice Sources

We simulate 30 voice sources as constant bit rate of 32
kbps, and a voice packet will be thrown away if it has not
be delivered 2 frames after it arrives. For voice source with
SINR of 4.75, the system can support 7 codes at the same
time. Figure 6 and Figure 7 show that CAFQ outperforms PF
again in both throughput and packet loss rate.

0 1 2 3 4 5
860

865

870

875

880

885

890

895

900
 CAFQ
 PF

sy
s

te
m

 t
h

ro
ug

h
pu

t
(k

bp
s)

pun ish factor

Fig. 6. The system throughput of the voice users.

C. Test Scenario 3: Integrated Voice and Data Services

To investigate the performance of the CAFQ algorithm
for integrated voice and data services, we also performed
experiments with varying numbers of voice and data users
that are active simultaneously in the system. The results are
shown in Figures 8 to 11. We can see that as in the cases of
homogeneous systems (i.e., voice users only and data users
only), the CAFQ algorithm consistently outperforms the PF
approach.

1655

0 1 2 3 4 5

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5 CAFQ
 PF

p
a

ck
e

t
lo

ss
 r

a
te

 (
%

)

punish factor

Fig. 7. The packet loss rate of the voice users.

10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10 CAFQ
 PF

pa
ck

e
t

lo
ss

 r
a

te
 (

%
)

No. of voice users

Fig. 8. The packet loss rate of voice users when there are 5 data users.

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

11 PF
 CAFQ

pa
ck

e
t

lo
ss

 r
a

te
 (

%
)

No. of voice users

Fig. 9. The packet loss rate of voice users when there are 10 data users.

10 12 14 16 18 20 22 24 26 28
200

250

300

350
 PF
 CAFQ

sy
st

e
m

 t
h

ro
u

g
hp

u
t(

kb
p

s)

No. of data users

Fig. 10. The system throughput for various number of data users when there
are 5 voice users.

10 12 14 16 18 20 22 24 26 28 30

180

200

220

240

260

280

300
 PF
 CAFQ

sy
st

e
m

 t
h

ro
u

g
hp

u
t

(k
bp

s)

No. of data users

Fig. 11. The system throughput for various number of data users when there
are 10 voice users.

IV. CONCLUSIONS

In this paper, we describe the CAFQ (Channel Adaptive Fair
Queueing) algorithm that can be applied in a multicode TD-
CDMA system. To schedule the transmissions in each frame,
the CAFQ algorithm keeps on allocating codes until the whole
bandwidth resource is used up (subject to the interference
budget as controlled by the power allocation). The CAFQ
algorithm selects flows and allocates codes to them in a way
that short-term fairness is guaranteed and long-term fairness
is heuristically achieved. The simulation results show that
CAFQ outperforms the proportional fair algorithm in terms
of throughput, average delay, and fairness property.

ACKNOWLEDGMENTS

This research was supported by the Hong Kong Research
Grants Council under project number HKU 7024/00E.

REFERENCES

[1] I. F. Akyildiz, D. A. Levine, and I. Joe, “A Slotted CDMA Protocol
with BER Scheduling for Wireless Multimedia Networks,” IEEE/ACM
Transactions on Networking, vol. 7, no. 2, pp. 146–158, Feb. 1999.

[2] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and
A. Viterbi, “CDMA/HDR: A Bandwidth Efficient High-Speed Wireless
Data Service for Nomadic Users,” IEEE Communications Magazine,
July 2000, pp. 70–77.

[3] S. Choi and K. G. Shin, “An Uplink CDMA System Architecture
with Diverse QoS Guarantees for Heterogeneous Traffic,” IEEE/ACM
Transactions on Networking, vol. 7, no. 5, pp. 616–628, Oct. 1999.

[4] P. Goyal, H. M. Vin, and H. Chen, “Start-time Fair Queueing: A Schedul-
ing Algorithm for Integrated Services,” Proc. ACM SIGCOMM’96, pp.
157–168, Aug. 1996.

[5] A. Jalali, R. Padovani, and R. Pankaj, “Data Throughput of CDMA-
HDR: A High Efficiency High Data Rate Personal Communication
Wireless System,” Proc. VTC’2000.

[6] F. Kelly, “Charging and Rate Control for Elastic Traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, 1997.

[7] V. K. N. Lau, “Performance of Variable Rate Bit-Interleaved Coding for
High Bandwidth Efficiency,” Proc. of VTC’2000, vol. 3, pp. 2054–2058,
May 2000.

[8] S. J. Lee, H. W. Lee, and D. K. Sung, “Capacities of Single-Code and
Multicode DS-CDMA Systems Accommodating Multiclass Services,”
IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp. 376–
384, Mar. 1999.

[9] Z. Liu, M. J. Karol, M. El Zarki, and K. Y. Eng, “Channel Access
and Interference Issues in Multicode DS-CDMA Wireless Packet (ATM)
Networks,” Wireless Networks, vol. 2, pp. 173–193, 1996.

[10] M. Zorzi and R. R. Rao, “The Role of Error Correlations in the Design of
Protocols for Packet Switched Services,” Proceedings of the 35th Annual
Allerton Conference on Communications, Control, and Computing, pp.
749–758, Sept. 1997.

1656

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

