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ABSTRACT

This paper studies the design of frequency response masking 

(FRM) filters with infinite duration impulse response (IIR) 

model and masking sub-filters.  They are useful in realizing 

sharp cutoff digital filters with low passband delays.  The 

designs of the model and masking filters are carried out by 

means of semidefinite programming (SDP) and model order 

reduction.  Design results show that low complexity FRM filters 

with low passband delay can be obtained.   

1. INTRODUCTION 

The implementation complexity and system delay of a linear-

phase finite duration impulse response (FIR) digital filter with 

sharp cutoff are usually very large.  This is mainly because the 

order of the filter N is inversely proportional to the width of the 

transition band. For example, to achieve a specification of 

4.0p , 42.0s , and 01.0sp , N should be at 

least 185 according to the formula in [1]: 
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N , where p  and s  are respectively the 

maximum ripples in passband and stopband of the filter, p  and 

s  are respectively the cut-off frequencies of the filter.  The 

delay is N/2=92.5 samples. This high implementation complexi-

ty and long system delay are undesirable in many applications.   

One efficient method to reduce the implementation 

complexity of sharp cut-off FIR filters is to employ the 

Frequency-Response Masking (FRM) technique, which makes 

use of the transition bands of an up-sampled digital filter to 

realize the sharp transition band required. Jing and Fam [2] 

considered the design of narrow-band linear-phase lowpass 

filters composing of one model filter and one masking filter. 

This approach is suitable only for narrow-band filters. Later, 

Lim [3] proposed another FRM filter structure, which is not 

restricted to narrowband filters and supports arbitrary 

bandwidth. To further reduce the system delay of FRM filters, 

low-delay (LD) FIR subfilters were proposed to realize the 

model and masking filters in the FRM structure [4-6].  FRM 

filters employing an allpass-based (AP) IIR model filter and a 

linear-phase FIR masking filters were recently proposed in [7].  

The model and masking filters are first designed separately and 

nonlinear optimization is then applied to search for the optimal 

solution.  Allpass-based model filters significantly reduce the 

arithmetic complexity and to some extent the system delay.  In 

this paper, a new semi-definite programming (SDP) method for 

designing IIR FRM filters is presented. IIR-based FRM filters 

are very efficient in low-delay and high stopband attenuation 

applications, where traditional allpass (AP)-based and LD FIR 

filters are limited by the delay they can achieve and the high 

filter order.  The masking and model filters are designed in turn 

using the SDP method and model reduction technique, which 

yields high quality filters and allows linear or convex quadratic 

constraints be imposed.  

The rest of this paper is organized as follows: In section 2, 

the FRM approach is briefly introduced. The details of designing 

the IIR FRM filters using SDP are described in section 3; the 

corresponding examples are given in section 4. This paper ends 

with a conclusion in section 5. 

2. FRM FILTERS 

The transfer function of a FRM digital filter is given by:
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where )(zG  is the model filter and )(zGc  is the complementary 

filter because their transfer functions satisfy 
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c , where G  is the group delay of )(zG .

)( MzG  and )( M

c zG  are respectively the periodic filters of 

)(zG  and )(zGc . M  is some positive integer that determines 

the transition bandwidths of the subfilters. )(0 zF  and )(1 zF  are 

called the masking filters because they mask the model filters in 

the stopband of the overall filter. Basically, the masking filters 

extract several passbands of the model filters to form the 

passband of the overall filter. They also make use of the 

transition bands of the model or complementary model filters to 

realize the narrow transition band of the desired filter. There are 

two cases of utilizing the transition band of the masking and 

complementary filters: Case 1: the transition band is equal to 

one of the transition bands of )( MzG  , Case 2: the transition 

band of )(zH  is associated with one of the transition bands of 

)( M

c zG . The relationship between the cut-off frequencies of the 

overall filter and subfilters can be found in [3]. 

From (2-1), it can be seen that the passband delay of H(z)

( FG M  ) is mainly due to the passband delays of the 

model and complementary model filters when M is large.  This 

is because their z variables are upsampled by a factor of M to 

achieve a very narrow transition band.  Although the allpass-

based model filter approach considered in [7] helps to reduce 

somewhat the system delay, the delay and stopband attenuation 

of an allpass-based (AP) filter are still tied up by the order of the 

AP filters.  That is, for a given stopband attenuation, the order 

and hence the system delay of the filter are fixed.  One possible 

approach is to employ low-delay FIR filters for the model filters 

as in [6].  However, although a low-delay FIR filter can achieve 

a very low system delay, its order will increase quite rapidly 

when the specifications get tighter.  The high filter order not 

only increases the arithmetic complexity, but also increases 

pipelining and circuits delays during hardware implementation, 



giving rise to a lower operating speed.  This motivates us to 

consider the design of IIR-filter-based FRM filters.  In general, 

both the masking and model filters can be IIR filters, and they 

should be designed jointly to minimize some distortion measure 

for H(z). To avoid solving this difficult problem, we shall first 

design the masking filters, and then the model filters.  Since the 

system delay is less sensitive to the passband delay of the 

masking filter, the latter is chosen as an AP-based IIR filter to 

reduce its arithmetic complexity, although a general IIR filter 

can still be used.  In designing the model filter, a low-delay 

prototype FIR filter is first designed by compensating the 

distortion introduced by the masking filter.  Then, model 

reduction (MR) is applied to this FIR filter to obtain its IIR 

counterpart.  The performance of this IIR is quite satisfactory 

and further optimization usually does not give significant 

improvement.  In the following section, the design of the AP-

based masking filters and LD FIR prototype model filter will be 

discussed.  Due to the decoupling of the design problem, both 

can be formulated as semi-definite programming (SDP), which 

supports least squares and minimax criterion, as well as 

additional linear or convex quadratic constraints.   Due to page 

limitation, we only focus on the minimax design in this paper.   

3. DESIGNING IIR FRM FILTERS WITH SDP 

The design of the masking and model filters using semi-definite 

programming (SDP) will be described in turn in the following. 

3.1. Designing AP-based IIR masking filters  

The masking filter )(zF  is constructed from the sum of 

two allpass filters )(0 zA and )(1 zA that have the same phase 

response in the passband but a difference of   in the stopband: 

2/)]()([)( 10 zAzAzF .

To reduce arithmetic complexity, )(0 zA  is chosen as a pure 

delay. In other words, )(1 zA  should approximate the same delay 

in the passband, while providing an additional phase shift of 

in the stopband.  Here, we adopt the SDP approach in [10] for 

designing this allpass filter, because it can impose linear and 

convex quadratic constraints, together with pole radius 

constraints.  Denote the allpass filter to be designed and the 

desired response by )/()()( 00

n
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N
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N zazazzA  and 

)(d , respectively.  The problem can be formulated as the 

following linear matrix inequalities (LMIs):  
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T aaa , 2I  is an 

(2×2) identity matrix, )( kW  is the weighting function at k

and  is the tangent of the difference between the designed 

phase and the desired responses. k , Kk ,,2,1 , is a dense 

set of points in the passband and stopband, where the objective 

function will be minimized.  is called the feasibility variable 

which tells us that whether it is possible to satisfy the given 

ripple .  Using a bi-section search, we can successively 

increase or decrease the ripple  to obtain the final solution.  

Additional linear and convex quadratic constraints in the form 

0aF )()(l ,       Nl ,,2,1 ,

can be stacked along the diagonal entries of ),(aF  to form  

0aF ),(' , where )}(),...,(),,({),(' )()1( xFxFaFaF Ndiag .

(3-1) with 0aF ),('  is also a LMI, which can be solved for 

the constrained solution. Interested readers are referred to [12] 

for more details on SDP.

3.2. Design of the FIR/IIR model filter using SDP and MR 

 The transfer function of the periodic complementary 

model filter is )()( MMM

c zGzzG G , where 

nN

n
zngzG G )()(

0
, and )(ng  is the impulse response. 

Substitute jez  into (2-1), one gets the frequency response:  
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The FRM filter is designed by approximating the desired 

frequency response )(dH  over a set of disjoint intervals 

],[  using the minimax error criterion:  

min  subject to 
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Since )()( dHH  is a linear function of model filter 

coefficients )(ng , given the masking filter, it can be 

reformulated as an ordinary low-delay FIR filter design problem 

using SDP [11] as follows 
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Real(x) and imag(x) stand respectively for the real and image 

parts of x.  The constraint in (3-4) is equivalent to [11] 
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where ],[ . Digitizing the frequency variable  in 

(3-5) into a dense set of frequencies }1,{ mii  in the 

interested band, and writing it in a more compact form gives 
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Defining the augmented variable TT
][ gx , (3-6) can be 

formulated into the following standard SDP problem: 

minimize  xcT

subject to  0)(x , T]0,,0,1[c

(3-7) 

Additional linear and convex quadratic constraints can also be 

incorporated as mentioned previously.  From this prototype LD 

FIR filter, model order reduction techniques such as the ERA 

algorithm [13] can be applied to obtain the required IIR model 

filter. 

4. EXAMPLES  

We now present some design examples to illustrate 1) low-delay 

and high quality FRM filters can be realized by IIR masking and 

model filters, and 2) the flexibility (say in imposing linear 

constraints on the filter) and good performance of the SDP 

design method.    

Example 1: A lowpass filter is designed to satisfy the following 

specifications: 4.0p , 42.0s , dB2.0max , 50min

dB , passband group delay = 46. To satisfy the specification, the 

following parameters of the FRM filter is chosen : M=6; orders 

of the two AP-based masking filters are 9 and 11, respectively; 

delay and order of the FIR prototype model filter are 6 and 52, 

respectively. Figure 4-1 shows the design results, where we can 

see that the maximal ripple in the passband is 0.2dB and the 

minimum stopband attenuation is 52.5dB. It has 75 coefficients 

totally. To meet the same specifications, the order of a 

conventional direct-form FIR filter is 200. If the model filter is 

realized using an AP-based filter, instead of an IIR filter 

proposed here, it needs 77 coefficients to meet the magnitude 

specification.  However, its passband delay can only be lowered 

to 76. As mentioned earlier, both the passband delay and the 

stopband attenuation increase with the order of the AP-based 

filter.  Therefore, it is structurally impossible for the AP-based 

approach [7] in some cases to realize FRM filters with 

simultaneously very low passband delay and high stopband 

attenuation.

Example 2: As mentioned earlier and in the previous example, 

we notice that the price for achieving a low passband delay is 

the high order of the FIR model filter.  This prevents intensive 

pipelining to be used to achieve high-speed operation.  To 

shorten the filter order, the technique of model reduction is 

employed to convert this high order FIR filter to a much lower 

order IIR filter with similar frequency characteristics. This 

usually leads to slight degradation in performances of the 

resulting filters.  By model reducing the LD FIR prototype in 

example 1, we get an 15-order IIR model filter and the frequen-

cy response of the resulting FRM filter is shown in  Figure 4-2. 

Example 3: This example is used to demonstrate the flexibility 

of the SDP method in imposing linear constraints such as  zeros 

at specific locations (say ), which is desirable in realizing 

digital interpolator. In particular, example 1 is redesigned with a 

third order zero at  using the SDP method.  Due to page 

limitation, the detailed derivation is omitted.  Basically, this 

requirement is set up as linear equality constraints, which can 

either be stacked along the existing LMI, or being employed to 

eliminate some of the design variables.  From (2-1), we can see 

that the required zeros will be imposed if the same linear 

constraints on the two masking filters are imposed.   Figure 4-3 

shows the FRM filter so obtained. From the pole-zero plot, not 

shown here due to space limitation, the required zeros 

constraints are properly imposed. 

 Using the proposed SDP method, no initial guess or 

nonlinear optimization as in other approach is required. The 

design sub-programs in section 3 are all convex, meaning that 

unique global minimum is guaranteed (although their 

combination might not).  We have also compared the SDP 

approach considered here with the nonlinear optimization 

method proposed in [7], and found that they are comparable to 

each other. For example, we get 53.4dB in the stopband of the 

overall filter for M=4 in example 2 of [7].  The stopband 

attenuation in [7] is 49.4dB after nonlinear optimization but the 

phase response is better than our approach. Details are omitted 

here due to page limits.   

There are some differences with Lu’s approach [6] in 

designing this kind of filters. The model filters and masking 

filters are all FIR filters and are designed all together. But it 

needs approximation to formulate the designing problem into 

LMIs. Besides, the initial design is needed in that method. 

5. CONCLUSION 

A new SDP method for designing IIR FRM filters is presented. 

IIR-based FRM filters is very efficient in low-delay and high 

stopband attenuation applications, where traditional AP-based 

and LD FIR filters are limited by the delay they can achieve and 

the high filter order.  The masking and model filters are designed 

in turn using the SDP method and model reduction technique, 

which yields high quality filters and allows linear or convex 

quadratic constraints be imposed. 
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Figure 4-1. Design results of example 1: the magnitude response of (a) the overall filter )(zH (passband details in small figure), (b) the conventional 

direct-form FIR filter (N=200), (c) the group delay of the overall filter.
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Figure 4-2.  Design results of the FRM filter of which the model filters are model reduced form those of example 1: (a) The magnitude response of the 

overall filter. (b) The group delay of the overall filter.  
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Figure 4-3. Design results of example 3: magnitude response of (a) the overall filter with three zeros at  (passband details in small figure), (b) the 

masking filters, (c) the group delay of the overall filter.  
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