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Abstract: Focusing on a general wireless network where 
a wireless link can be at any link along the sender-to- 
receiver path, a new TCP enhancement scheme, called 
Generalized-Snoop (G-Snoop), is proposed. Since many 
existing applications are built on top of TCP, it is 
essential that any TCP enhancement scheme should be 
transparent to the end-systems as well as the faed  
networks. To achieve this;G-Snoop only needs to be 
implemented at the wireless gateways, no other parts of 
the network require modifications. With G-Snoop, TCP 
senders are shielded from non-congestion packet loss 
and thus no unnecessary congestion control mechanisms 
will be performed. Simulation results show that 
significant throughout gain can be obtained with G- 
Snoop. 

1. Introduction 
Wireless data applications such as e-mail, web browsing, 
mobile computing, etc., are gaining increased attention 
due to rapid advances in the areas of wireless 
communications and the Internet. Transmission Control 
Protocol (TCP), an end-to-end reliable transport protocol 
in the Internet Protocol (IP) suite, is widely used in 
popular applications like telnet, ftp, http, etc. TCP has 
been designed, improved and tuned to work efficiently in 
the wired network where the bit-error-rate is very low. 
Whenever a packet is lost, it is reasonable to assume that 
congestion has occurred on the connection path. Hence 
congestion recovery algorithms are triggered to recover 
the loss efficiently. In other words, both congestiodflow 
control and error control functions are carried out 
simultaneously based on the simple sliding window 
mechanism. This enables various implementations of 
TCP very efficient. 

Unfortunately this original design beauty becomes a 
hurdle in providing TCP transportation over wireless 
links. In a wireless network with both wired and wireless 
links, the assumption that packet loss infers congestion is 
flawed because wireless link has a much higher bit-error- 
rate, and a TCP connection might be temporally broken 
as a result of handoff or signal fading. As a result, TCP 
congestion recovery algorithms will be incorrectly 
triggered. This results in low link utilization and poor 
TCP performance. 

Since many network applications are built on top of 
TCP, it is necessary to enhance TCP performance 
without (or with minimal) modifications to end-to-end 
TCP protocols. Various TCP enhancement schemes, also 
known as performance enhancement proxies [ 11, have 

been proposed. Most of them are designed based on the 
following ideas. 

Shield the sender from the peculiarities in the 
wireless links. Local loss recovery is usually 
performed at the gateway between wireless and 
wired networks. 
Decouple the combined error control and congestion 
control functions of the original TCP. This can be 
achieved by either designing an explicit loss 
notification mechanism, or an explicit congestion 
notification mechanism. 

A brief review of the existing TCP enhancement 
schemes is presented in the next section. 

Most of previous studies consider the scenario that 
the last hop/link (i.e. directly connected to the receiver) 
of an end-to-end TCP path is wireless. In other words, 
the receiver is a mobile terminal. This corresponds to the 
popular web-browsing applications via mobile terminals. 
There is also a growing interest in studying the case that 
the first link is wireless, or the sender is a mobile 
terminal. This can represent, e.g. a mobile streaming 
videolaudio server for a live broadcast event. Relatively 
little attention has been paid to the general case that a 
wireless link can be at any link along the sender-to- 
receiver path, as shown in Fig. I .  In this case, the end-to- 
end TCP path consists of three segments, upstream 
network from the sender to wireless gateway A, wireless 
link from gateway A to gateway B, and downstream 
network from gateway B to the receiver. A gateway is a 
router that can send and receive data from a wireless link. 
When either upstream network or downstream network 
is not available, the network degenerates into the special 
cases we mentioned earlier. 
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Fig. 1 A general wireless network 
In this phper, we focus on designing an efficient TCP 

enhancement scheme called G-Snoop that can cater for 
the general case where a wireless'link can be at any link 
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along the sender-to-receiver path. It is essential that any 
TCP enhancement scheme should be transparent to the 
end-systems as well as the fixed networks. To achieve 
this, G-Snoop only needs to be implemented at the 
wireless gateways, i.e. gateways A and B in Fig. 1, no 
other parts of the network require modifications. In 
Section 3, the proposed scheme, G-Snoop, is presented 
in details. A data flow analysis is then carried out in 
Section 4 to demonstrate how G-Snoop can be used to 
handle packet loss at various locations of the network. In 
Section 5 ,  simulations are conducted for performance 
evaluations. Finally, we conclude the paper in Section 6. 

2. Existing TCP Enhancement Schemes 
A. Split Conneciion 
The Indirect-TCP (I-TCP) [2] protocol was one of the 
first protocols to use this method. It involves splitting a 
TCP connection between a fixed and mobile host into 
two separate connections at the mobile base station. 
Since the second connection is over a one-hop wireless 
link, an optimized wireless link-specific protocol tuned 
for better performance can be used. The advantage of the 
split connection approach is that the flow and congestion 
controls of the wired and wireless links are separated. 
However, this approach suffers from breaking the end- 
to-end TCP semantics, requiring application relinking 
and higher software overhead. 

B. Preventing Sender Timeout 
This approach focuses on addressing the TCP 
performance when communication resumes after a 
temporary disconnection, e.g. handoff. When a timeout 
occurs, the system enters slow start and the window size 
is reduced to 1. Usually handoffs complete relatively fast, 
and long waits are required by the mobile host before 
timeouts occur at the sender. 

To reduce this waiting period, [3] makes the mobile 
host retransmit 3 copies of the ACK for the last data 
segment it received priori to the disconnection, 
immediately after completing the handoff. This causes 
TCP at the sender to immediately reduce its window size 
and retransmit packets starting from the first missing one 
(for which the duplicate acknowledgment was sent). 
Freeze-TCP [4] uses idea of “shrinking its window size 
to zero” together with that of [3]. But like other protocols 
following this approach, they are incapable to handle 
packet corruption at the wireless links. 

C. Link-level Retransmission 
In this approach, the wireless link implements a 
retransmission protocol coupled with forward error 
correction at the data-link level [5,6]. The advantage is 
that it improves the reliability of communications 
independent of the higher-level protocol. However, TCP 
implements its own end-to-end retransmission protocol. 
This duplicates the effort. Studies have shown that 
independent retransmission protocols can lead to 
degraded performance, especially when error rates 
become significant. 

D. TCP-aware Loss Recovery 
The enhancement schemes are designed using the 
knowledge obtained from the TCP layer by snooping. In 
[7], it is proposed to delay the duplicate ACKs 
(acknowledgments) for a missing packet in order to 
allow any special local retransmissions on the wireless 
links to work. In [SI, an explicit bad-state notification 
(EBSN) scheme is proposed. The idea is to prevent the 
sender from dropping congestion window (when packet 
corruption occurs) by generating explicit notifications at 
the base station. 

Recently, Snoop protocol [9] started a new trend of 
performing smart local retransmission based on the 
snooped TCP information at the base station. A snoop 
agent monitors every packet that passes through the TCP 
connection and maintains a cache of TCP packets sent 
across the wireless link that have not yet been 
acknowledged by the mobile receiver. A packet loss is 
detected by the arrival of a small number of duplicate 
ACKs from the receiver or by a local timeout. The snoop 
agent retransmits the lost packet if it has it cached and 
suppresses the duplicate ACKs. Like other local 
retransmission schemes, Snoop also suffers from not 
being able to completely shield the sender from wireless 
losses. In [lo], New Snoop has been proposed by us to 
overcome this problem. Combining with a two-layer 
hierarchical cache architecture, we showed that New 
Snoop handles both local loss recovery and seamless 
handoff efficiently. 

Due to limited bandwidth and high-bit error rates, 
wireless links usually become the bottleneck in an end- 
to-end connection path. In [I I], we designed an efficient 
flow control scheme at the base station, called FDA. 
FDA should be functioned together with either Snoop or 
New Snoop. Implementing FDA also only needs code 
modifications at the base station. 

E. Adopted Protocols 
There are a few protocols that are originally designed for 
other purposes, but nevertheless, they can be 
utilizedadopted for improving the TCP performance 
over wireless links. These include TCP-SACK (selective 
acknowledgment) [ 121 and ECN (explicit congestion 
notification) [ 131. TCP-SACK was originally proposed 
to recover quickly from. multiple packet losses within a 
single transmission window. Later studies [ 141 showed 
that SACK can also be used to improve the performance 
over the wireless link. ECN scheme was originally 
proposed for minimizing the packet loss due to 
congestion, thereby without triggering time-consuming 
end-to-end loss recovery too frequently. Recently, an 
Internet Draft [I51 proposed to apply ECN for improving 
TCP performance over wireless links so that a TCP 
sender could distinguish the cause of packet lost. 

F. Mobile TCP Sender 
All the above five approaches (except [9]) assume that 
the sender is inside the fixed network, and the receiver is 
a mobile host. This is a reasonable assumption in most 
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cases. But there is also a growing need to cater for the 
vice versa scenario. For example, a live broadcast from a 
crime scene over the Internet via a first-hop wireless link. 
In [9], a mechanism based on SACK was proposed when 
the TCP sender is a mobile host. In [16], the same 
authors proposed a refined solution called Explicit Loss 
Notification (ELN). The idea is to explicitly detect and 
inform the sender which packet loss is caused by 
wireless link errors. 

3. Our Approach 
Unlike previous approaches, we consider a general 
network where a wireless link can be at any link along 
the sender-to-receiver path as shown in Fig. 1. To shield 
the sender as well as the receiver from the peculiarities 
of the wireless links, G-Snoop is implemented at the two 
gateways connected by the wireless link. Refer to Fig. 1. 
The main function of gateway A is to cache the packets 
that have been transmitted to gateway B. In case of 
packet corruption on the wireless link, as reported by 
gateway B, gateway A carries out local loss recovery if a 
copy of the corrupted packet can be found in its cache. 

Gateway B has two main tasks, detecting and 
reporting packet corruption, and suppressing duplicate 
ACKs (acknowledgements) generated by the receiver for 
already correctly recovered packets. The resulting 
scheme is totally transparent to the TCP implementation 
at the two end-systems as well as other parts of the 
network. The detailed protocol mechanisms are 
discussed below. 

A. At Gateway A 
For each flow/connection, gateway A keeps track of its 
incoming packet sequence numbers. Any missing packet 
creates a “hole” in its sequence number table. In case of 
an out-of-order packet arrival, the hole will be filled up 
very quickly. Otherwise, the hole indicates the packet 
with the corresponding sequence number is lost. 

The buffer at the gateway A is shown in Fig. 2. When 
a packet arrives, it waits in the FIFO buffer for 
transmission over the wireless link. When it has been 
sent, a copy of it will be stored in the FIFO cache for 
possible local loss recovery later on. The cache size 
should be large enough to store at least the maximum 
number of packets can be transmitted on one wireless 
link round-trip-time. Otherwise, cached copies of the 
transmitted packets will be prematurely flushed (i.e. 
pushed out) before the retransmission request arrives. 

When a NACK (negative ACK) generated by 
gateway B is received, gateway A checks its hole table. 
(NACK is a special ACK used only between the two 
gateways.) If there is no match, gateway A checks its 
cache for a cached copy of the requested packet. If the 
cache size is large enough, we can always find a cached 
copy of the requested packet. Then gateway A carries out 
the local packet retransmission. In case of a cache-miss, 
the request is ignored and no further action will be taken. 
This happens when the cached copy of the requested 
packet has been pre-maturely flushed. 

output to 
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Fig. 2 Buffer design at gateway A. 
If the requested packet by NACK corresponds to a 

hole in the hole table, that means this packet was lost in 
upstream network (most likely due to congestion in 
upstream network), not at the wireless link. An incipient 
congestion notification (ICN) function is then activated. 
The purpose is to inform the corresponding sender to 
slow down its transmission rate at an earlier time. To 
a‘chieve this, gateway A makes three copies of the next 
received ACK, which belongs to the same TCP 
connection of the requested packet by NACK, and sends 
them to the corresponding sender. When the sender 
receives three duplicate ACKs, it resends the ‘‘lost’’ 
packet and slows down its transmission rate. 

It should be noticed that this retransmitted packet is 
not the packet requested by NACK and is thus not really 
a lost packet. Besides, gateway A cannot generate three 
duplicate ACKs for the requested packet because ACK 
in TCP is cumulative. That would cause 
misunderstanding to the sender that all packets with 
sequence numbers smaller than that of the received ACK 
have been correctly received. 

The downside of the ICN function is that the receiver 
is not aware gateway A has already throttled the sender’s 
transfer rate. As a result, when duplicate ACKs 
generated by the receiver (for the same packet as 
requested by NACK) arrive at the sender later on, they 
will trigger the sender to go through another round of 
rate reduction. If the round trip time on downstream 
network and wireless link is significant, the gain brought 
by incipient congestion notification would outperform 
the potential loss. We can see this from the simulation 
results in Section 4. 

B. At Gatewtly B 
Gateway B carriers out two main functions: (i) detecting 
and generating NACK for packets that might be 
corrupted on the wireless link, and (ii) suppressing 
unnecessary duplicate ACKs generated by receivers for 
already local recovered packets. 

Gateway B also keeps track of the sequence number 
of incoming data packets for each TCP connection. 
When a sequence number gap is detected and the gap 
cannot be filled up by the next three (out-of-order) 
packet arrivals, a special NACK will be generated and 
forwarded to gateway A. The threshold of 3 out-of-order 
packets is chosen in order to be in line with sender’s Fast 
Retransmit triggering mechanism. This is to ensure the 
missing packet is not due to the possible out-of-order 
packet delivery. 

When a NACK is sent, gateway B initializes a 
counter, denoted as 03_counter, for counting the number 
of out-of-order packet arrivals before the requested 
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repair is received. If the packet requested by NACK is 
lost in upstream network instead of at the wireless link 
(i.e. a hole-hit at gateway A), gateway B will not get the 
retransmitted packet from gateway A within a wireless 
link RTT (plus some guard time). Then the associated 
03-counter is reset. 

The following example shows how 03-counter can 
be used to suppress the duplicate ACKs for a corrupted, 
but already locally retransmittedrecovered packet. 
Suppose packet 4 is corrupted at the wireless link. When 
packets 5 ,  6 & 7 arrive at gateway B, gateway B realizes 
that packet 4 is lost and it generates an NACK to 
gateway A. Upon receiving this NACK, gateway A 
performs the local loss retransmission of packet 4 
(assuming there is a cached copy at gateway A). When 
the retransmitted packet 4 arrives at gateway B, gateway 
B has already received packets 8,9, & 10. In other words, 
the packet receiving sequence at gateway B (which is 
also the packet forwarding sequence to the downstream 
network) is “ ... 3, 5 ,  6 ,  7, 8, 9, IO, 4 ...”. When those 
packets arrive at the receiver subsequently, the receiver 
will generate 6 duplicate ACKs for packet 4 before 
packet 4 is received. If those duplicate ACKs cannot be 
suppressed by gateway B, they will trigger unnecessary 
Fast retransmit procedure at the sender. 

With the ACK suppression function, when the 
retransmitted packet 4 arrives at gateway B, 6 packets 
have been received by gateway B as out-of-order packets, 
so 03-counter = 6. When the first duplicate ACK for 
packet 4 arrives at gateway B subsequently, gateway B 
retrieves the associated 03_counter, and the next 6 
duplicate ACKs (including the current one) will be 
suppressed. 

Note that if the retransmitted packet 4 is lost again in 
downstream network, the number of duplicate ACKs 
received by gateway B will be larger than 6 (its 
03_counter), so gateway B will not suppress useful 
duplicate ACKs. 

3. Data Flow Analysis 
In this section, we describe in details about the series of 
actions to be taken by the two gateways in case of (1) 
congestion loss in upstream network, (2) packet 
corruption on the wireless link, (3) cache-miss at 
gateway A, and (4) congestion loss in downstream 
network. 

A. Congestion loss in upstream network 
If congestion occurs in upstream network (including 
gateway A), some packets will be dropped as a result of 
buffer overflow (or action by active queue management 
scheme such as RED). A missing data packet creates a 
sequence number gap and will be detected by gateway A 
as a “hole” in its hole-table. Similarly, gateway B detects 
the missing packet and generates a retransmission 
request (NACK) to gateway A after three out-of-order 
packets have been received. 

When gateway A receives the NACK, it checks 
against its hole-table. If the sequence number of the 
packet specified in the NACK matches a hole, this 
confirms that the requested packet is lost in upstream 
network as a result of congestion. The incipient 
congestion notification (ICN) function is activated. 
Gateway B informs the associated sender by generating 
three duplicate ACKs of the next arrived ACK of the 
same connection. This can slow down the sender earlier 
than waiting for the duplicate ACKs generated by the 
receiver to arrive. 

B. Apacket is corrupted at the wireless link 
When gateway A receives a NACK generated by 
gateway B, it checks its hole-table. If there is no hole-hit, 
the requested packet is corrupted in the wireless link. 
Then gateway A checks its cache for a repair. If the 
cache size is large enough, a copy of the corrupted 
packet can always be found and local retransmission can 
then take place. 

C. Cache-miss at gateway A 
If the cache size at gateway A is not large enough, a 
copy of the requested packet will be prematurely flushed. 
This results in a cache-miss. In this case, no attempt will 
be :made by gateway A to retrieve a copy of the 
corrupted packet from the associated sender. This is 
because the loss recovery in this case is not urgent and 
there is no congestion being detected in the network. 
Therefore we do not want to put extra processing burden 
at gateway A. 

D. Congestion loss in downstream network 
If congestion occurs in downstream network, some 
packets will be lost as a result of buffer overflow or 
random discarding. The receiver will detect the sequence 
number gap in the received packet stream. Duplicate 
ACKs will be generated by a standard TCP receiver. 
Those duplicate ACKs will be forwarded by gateways B 
and A all the way to the sender. Triggered by three 
duplicate ACKs, the sender carries out the standard Fast 
Retransmit and Fast Recovery procedures. 

4. Performance Evaluations 
Since there is no other schemes that target at a general 
scenario as us in this paper, the performance of G-Snoop 
is not compared with others directly. Instead, we focus 
on the performance of TCP Reno that deploys our 
proposed scheme or not. 

The G-Snoop is implement using the LBNL network 
simulator ns version 2.lb7a [17]. The simulated network 
is shown in Fig. 3. The network consists of five TCP 
senders, five TCP receivers, two intermediate nodes and 
two intermediate transmission gateways where G-Snoop 
is implemented. The buffer size at all intermediate 
routers and gateways is 140 packets and is managed by 
drop-tail queue management policy. 
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Fig. 3 Simulation network topology. 
In the simulation, a large file is sent from each sender 

to the receiver by using FTP. All links (both wired and 
wireless) are of 10 Mbps except the wired link connected 
to gateway A. It has a capacity of 5 Mbps and thus it is 
the system bottleneck. The packet loss rate at the 
wireless link is uniformly distributed. Simulation for the 
wireless link with two different propagation delays, 5ms 
for a terrestrial wireless link and 275 ms for a typical 
satellite link, are conducted. 

ACKs are assumed not experiencing any loss due to 
its small packet size. Table 1 summarizes other major 
simulation parameters. 

Table 1 Simulation parameters 
Goodput and fairness performance of G-Snoop are 

evaluated and their definitions are as follows: 
Goodput = total -#-of -packet -received -successjiul~ 

Simulation -time 

where n is the total number of connections and bi is the 
fraction of the bandwidth occupied by connection i. The 
value of Fairness ranges from lln to 1 with 1 denoting 
equal bandwidth sharing. 

A. Wireless link with 5 ms propagation delay 
First we consider the network shown in Fig. 3 with a 
wireless link of 5ms propagation delay. The initialhasic 
cache size at gateway A is set to 25 packets, which is 
slightly larger than the wireless link round-trip-time 
equivalent bandwidth. 

Goodput and fairness performance against wireless 
link packet loss rate are plotted in Figs. 4 & 5.  From Fig. 
4, we can see that with G-Snoop, TCP Reno performance 
is significantly improved (as compared with the pure 
TCP Reno) when the wireless packet loss rate is from 1 0  ' to lo3.  Besides, by varying the cache size at gateway A 
from 25 to 75, there is a diminishing gain in goodput 
using G-Snoop. This is because the majority of packet 
losses on the wireless link are recovered within one 
wireless link round trip time, and the excess cache size is 
of limited use. 

I.OOE-05 I00E-04 l.OOE-03 I.OOE-02 I.OOE 
Packet Los Rate 
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Fig. 4 Goodput vs packet loss rate 
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Fig. 5 Fairness vs packet loss rate 
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When the packet loss rate is less than IO3, it is 
interesting to note that with G-Snoop, the goodput is in 
fact a little bit less than the case without the scheme. 
This is caused by the incipient congestion notification 
(ICN) function of G-Snoop. As we mentioned earlier, 
when the packet loss rate is low and the end-to-end 
propagation delay is small, the gain in having ICN to 
inform the sender to slow down in advance is less than 
the loss due to the duplicate efforts in flow control. 

Fig. 5 shows the fairness performance against the 
packet loss rate. It can be observed that all schemes give 
pretty good fairness performance with a typical value 
larger than 0.7. 

Referring to Section 3A, we test the effect of function 
ICN by elongating the propagation delay of downstream 
network. Simulation parameters keep the same as the 
previous one except the propagation delay of 
downstream network is doubled, i.e. 60 ms. Fig. 6 shows 
the overall goodput performances of using the G-Snoop 
scheme and without using this scheme. Similar to the 
previous, a considerable performance gains in goodput 
are preserved, and the adverse effect in the packet loss 
rate range of 10.’ to is removed. 

I.OOE-05 I OOE-04 1.00E-03 I.OOE-02 I.M)E-OI 
Packet Loss Rate 

Fig. 6 Goodput vs packet loss rate by elongating the 
downstream network 

5. Conclusion 
In this paper, we have considered a general wireless 
network where a wireless link can occur at any link 
along the sender-to-receiver path. A new TCP 
enhancement scheme called G-Snoop was proposed to be 
transparently implemented at the wireless gateways. This 
helps to eliminate the adoption problem in a wireless 
network. With G-Snoop, TCP senders are shielded from 
non-congestion packet loss due to wireless links and thus 
no unnecessary congestion control mechanisms will be 
performed. Simulation results have shown that 
significant throughout gain can be obtained with G- 
Snoop. 
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