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Ah.swocr-We study slotted ALOHA with multiple random access chan- 
nels, the so called multi-channel ALOHA (MC-ALOHA). I t  is well known 
that single-channel ALOHA (SC-ALOHA) is unstable. Not surprisingly, 
MC-ALOHA is also unstable. A stabilization algorithm for MC-ALOHA 
has been proposed in 1101, in which the pseudo-Bayesian algorithm in SC- 
ALOHA was extended to achieve stabilized MC-ALOHA. The idea is to 
estimate the number of attempting users so that user transmission prob- 
ability can be adjusted accordingly. In this paper, we give a theoretical 
analysis on the algorithm performance for cases with limited and unlimited 
number of users by assuming perfect estimate. The theoretical results are 
validated by simulation, which shows the stabilization algorithm performs 
close to a system with perfect estimate. The simulation results also show 
that the performance of the stabilized algorithm is much better than the 
non-stabilized algorithm. With the stabilized algorithm, the system is al- 
ways stable when the new packet arrival rate is less than system capacity. 
Even when the arrival rate is higher than capacity, system throughput can 
still be guaranteed. 

,Yq~ \ t~wr /~ - -  Multi-channel ALOHA, multiple access, stabilization, 
pseudo-Bayesian algorithm. 

1. 1NTRODUCTlON 

ALOHA [ l ]  is one of the most important algorithms for ran- 
dom access. It is well known that ALOHA is unstable with a 
single channel. Not surprisingly, it is also unstable with multi- 
ple channels [2], [3]. There has been much research on stabi- 
lizing the SC-ALOHA. The key is to determine an appropriate 
(re)transniission probability. Algorithms that estimate user pop- 
ulation [ 5 ] ,  [6] have been designed to stabilize the network. 

In contrast, little has been done for the stability of MC- 
ALOHA. The stability issue, such as the region for stable opera- 
tion of MC-ALOHA, was discussed in [2], [3], but unfortunately 
no stabilization algorithm was proposed. In [4], a backoff algo- 
rithm for MC-ALOHA was .provided. However, the results in 
[4] showed the backoff approach was unable to sustain through- 
put  under all network conditions. This is expected since it has 
been shown in SC-ALOHA that backoff algorithms are not sta- 
ble [7].  

In [ I O ] ,  a stabilized MC-ALOHA algorithm has been pro- 
posed by extending the pseudo-Bayesian algorithm [8] orig- 
inally devised for SC-ALOHA. The idea is also based on 
the number of contending users, based on which a proper 
(re)transniission probability can be calculated. In this paper, we 
analyze the performance of the proposed algorithm. In the anal- 
ysis, we assume the estimate of the number of users is perfect. 
Then the system can be modeled as a Markov chain, from which 
both the average throughput and user delay can be calculated. 
Such analytical results provide an upper bound on the actual 
performance of the algorithm. Through simulation, we denion- 
strate that the analysis matches very well with the simulation 

results, which suggests that the analytical approach is accurate 
and the algorithm is indeed operating close to perfect estimate. 
The simulation results also show that the proposed algorithm is 
able to maintain good throughput under all network conditions. 

This paper is organized as follows. In Section 11, we describe 
the MC-ALOHA system and the stabilization algorithm. In Sec- 
tion 111, we provide an analysis for the stabilization algorithm. 
In Section IV, we present simulation results. In Section V, we 
conclude the paper. 

11. DESCRIPTION O F  S T A B I I ~ I Z A T I O N  ALGORITHM 

A. System Description and Assumptions 

We consider a time slotted MC-ALOHA system, where mul- 
tiple users compete for uplink access to a base station. In such 
a system, each user always starts transmission at the beginning 
of a fixed-length time slot. The system has ild non-interfering 
channels and a user should select one channel to transmit at a 
time. At the end of the slot, the base station delivers the feed- 
back message for each channel. There are three possibilities: 
success, collision, or channel idleness. 

In this paper, we call a user with a stored packet an attempting 
user, and a user with no packet to transmit an inactive user. An 
inactive user becomes an attempting user after the arrival of a 
new packet, and an attempting user returns to be inactive after a 
successful transmission. 

We have the following assumptions for MC-ALOHA: (1)  
Each user has only one buffer to store a single packet; (2) When 
an inactive user has a new packet arrival, the user is treated the 
same as other existing attempting users; (3) Each attempting 
user decides whether to transmit in the next time slot with the 
same probability p,; (4) The probability of selecting channel n 
is 1/&I for 1 5 n _< M; ( 5 )  Capture effect is not considered. 

B. Pseudo-Bayesian Algorithm,for MC-ALOHA 

The motivation for stabilizing MC-ALOHA is as follows. 
Since users select a channel with equal probability, the attempt 
rate for each channel is 1 when the overall attempt rate is Ad. 
Thus it is obvious that the maximal throughput is achieved when 
the overall attempt rate is M .  Therefore, if the total number 
of attempting users is known as  U, system stabilization can be 
achieved if the transmission probability for every user is chosen 
adaptively as 

M 
U 

p r  = min(1, -). 
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Such a control scheme requires the knowledge of U, which is 
not directly available and can only be estimated. In [lo], we ex- 
tend the estimation approach in the pseudo-Bayesian algorithm 
that was originally designed for SC-ALOHA. 

Let there be C collisions out of the &I channels. Let 6k-1 be 
the estimate at slot k - 1. The estimate at slot IC is updated as 

A h 

U,, = max{~,: UL-I+ A, + C .  ( e  - a)-' - ( M  - c)}. (2) 

In (2), A, accounts for the new arrival, while C (e - 2)-l 
represents the C collisions, and Ad - C stands for the M - 
C successes or idleness. Further, A, is the new packet arrival 
rate, which is usually unknown. Similar to the approach for 
SC-ALOHA, we fix A, = Me-'. It has been shown in the 
simulation that such a selection of A, always maintains stability. 

The transmission probability for each user is then chosen as 

A4 
U, 

pr ( k )  = inin( 1, r ) .  (3) 

111. PERFORMANCE ANALYSIS  FOR STABILIZED 
MC-ALOHA 

We first analyze the performance of the stabilized algorithm 
for a finite number of users. Then we study the case for infinite 
number of users. 

A.  Finite User-s 

We assume there are V users. We assume an inactive user has 
a constant probability p ,  to generate a new packet. An inactive 
user which has generated a new packet will become an attempt- 
ing user at the start of the next time slot. Let uk denote the num- 
ber of attempting users at the beginning of time slot b. Given 
retransmission probability p,. ( k ) ,  obviously U,+, only depends 
on U,. Therefore, {U,, I;  = I, 2 , .  . .} is a Markov chain given 
p , ( k ) .  However, pr(k) is determined by the estimate 6 k  of uk. 
This complicates system performance analysis. To simplify the 
analysis, we assume the estimate of UI, is perfect, i.e., UI, = U k ,  
V b .  Under this assumption, {Uk> b = 1, 2 , .  . .} can be mod- 
eled as a Markov chain with state space (0, 1, 2 , .  . . , V } .  The 
analysis for this Markov chain can serve as a performance upper 
bound for practical systems with imperfect estimate of Uk. 

A. 1 State Transition Probability 

It I s  obvious that the Markov chain { U k ,  k = 1, 2 , .  . .} is 
homogeneous, aperiodic,.and irreducible. Let Pi:j be the transi- 
tion probability from state i to state j, i.e., Pi;j = Pr{Uk+l = 
, j / U k  = , i ] ,  0 5 i :  j 5 V. Let random variable D k ,  0 5 Dk 5 
iiiiii(A4, U,) denote the number of successful transmissions at 
time slot k .  Let Ak+1, 0 5 Ak+l 5 V - U, be the number of 
inactive users having new packet arrivals in time slot k ,  which 
means Akil users will become attempting users at slot k + 1. 

A 

The state transition of {Uk, IC = 1, 2, . . .} satisfies 

It is obvious that when there is no attempting user, there is 
no departure, i.e., when i = 0, then d = 0, so that from ( 5 ) ,  
Uk+l = Ak+I. When there is one attempting user, i.e., z = 1, 
under the assumption of perfect user information, there is pr = 
l/i = 1. Thus the user will always transmit and be successful. 
Then d = 1, and accordingly U I , + ~  = Ak+1. It is easy to get 
transition probabilities of 

where bin(j, V, pg) denotes the binomial probability biii(j, V, p g )  = 

( 7 ) pi(1 - p g ) V - j .  
\ -  I 

We now consider the case when i 2 2. The state transition 
probability Pz.j can be expressed as the conditional probability 
on Dk, 

in which 

Pr{Uk+1 = j1U1, = i, DI,  = d }  

(8) 
Pr{Ak+l, = j - i + dlUk = i, Dn: = d } ,  

w h e n i - d 5 j S V - d  

0 ,  other values of j .  

Since inactive users have a fixed probability in generating new 
packets, A k + l  is binomial, 

= bin(a, V - i , p g )  

where pg is the new packet arrival probability. 
We then need to calculate Pr{DI, = dlUk = i} for (7). Let 

T k  be the number.of transmitting users among UI, attempting 
users at time slot b. Then Pr{Dk = dlUk = i }  can be ex- 
pressed as the conditional probability of T k ,  

Pr{Dk = dJUx, = i} 

= P,r{Dk = d l T k  = t }  . Pr{TI, = t lUk  = i 3  }. 
(10) 

Obviously TI, is binomial given UI;, i.e., 

From our assumption of perfect estimation on U,, p,(b) = 
min(1, M/z) .  

The expression for Pr{Dk = d1T1, = t }  can be derived 
from the well-known combinatorial problem of assigning balls 
to boxes. In that problem, a number of balls are thrown into 

250 



The 14" IEEE 2003 International Symposium on Persona1,lndoor and Mobile Radio Communication Proceedings 

boxes. Each box is selected with equal probability. Our cor- 
responding problem is to assign Tk balls into Ad boxes, and to 
calculate the probability of having one ball in Dk boxes. This 
probability can be expressed as [2] 

(- l)dAd!t!  
Mtd!  

Pr{Dk = dlTk = t }  = 

(12) 

With P,r{Tk = t }  and P,r{Dk = dlTk = t }  given in (11) 

The state transition probability can finally be obtained from 
and (1 2), we can calculate PT{ D k  = dlUk = i} from (IO).  

(7) using (8), (9) and ( 1  2). 

A.2 Performance Evaluation 

* 

The steady state probability T = [TO, T I  , 7r2, . . . , TV] can be 
calculated from the transition matrix P by 

7r = TP, 
cn=o Tn = 1. 

V 

The elements of P are given in (7). 
The average number of attempting users is given by 

V 
- 
U = nT,. 

n = O  

The average throughput is 

The probability Pr{Dk = n }  can be calculated as 

V p ~ . { D k  = n} = Pr{Dk = n(Uk = i }  . P T { U ~  = i }  

= Cy=,, T ~ P T { D ~  = nlUk = Z},  

(1 6) 
where Pr{Dk = nlUk = i }  is given in (10). 

At the end of a time slot, D k  users are successful in transmis- 
sion, and Bk = UL - Dk users continue to attempt in the next 
slot. We call BI, the backlog of slot I C .  The average backlog can 
be calculated as 

' 

- 
B = U - D .  (17) 

B. /?finite '~s/ser=c. 

When there are infinite number of users, the system can still 
be modeled as a Markov chain. However, the state space of uk 
is in (0, 1! 2 , .  . . , +m}. Thus, it is possible for the number of 
attempting users to be infinite. We assume the distribution for 
new packet arrivals at inactive users is Poisson with rate A,. 

To analyze the performance, we first consider the case for 
a stable system, i.e., the number of attempting users U k  is al- 
ways limited. Later we show the condition for system stability 

is A,, < fife-' .  Under this condition, we can calculate the tran- 
sition probability as in the finite user case. The dimension of the 
transition matrix P can be chosen as L, with requirement 

L = argmin,,{P,.Lt < t, V i } ,  (18) 

where E is a very small value. However, the calculation of 
PT{&+~ = alUk = z} is different from that of the finite user 
case in (9). Since we have Poisson arrival, 

Substituting (9) with (1 9), we can calculate state transition prob- 
ability as in Section 111-A. All performance parameters can be 
obtained as in Section 111-A.2. Since the system is stable, the 
average throughput is 

- 
D = A,, whenA,,, < Me-'. (20) 

We then analyze system throughput when the system is un- 
stable (i.e., u k  goes to infinity). Given uk = z, the number of 
transmitting users Tk is binomial with 

PT{Tk = t / U k  = i} = bin(t, i ,  p,). (21) 

Since we assume retransmission probability p ,  is perfectly se- 
lected as pr  = Mli,  equivalently there is i p ,  = Ad. As i 4 00, 

the probability in (21) is Poisson with mean M. The throughput 
distribution is given as 

+E 

PT{DI;  = d}.= C P T { D ~  = d ( T k  = t }  . P T { T ~  = t } ,  (22) 
t=d 

where Pr{Tk = t }  = -. Average throughput can be 
calculated as 

Ad - 
Dinf = d .  P r { D  = d } .  (23) 

d=O 

Substituting the expressions in (1 2) to (22), we can get 
- 
Dinf = Me- ' .  (24) 

Thus when there are infinite attempting users, the departure is 
stabilized at Me-' ,  which is the maximal rate for M indepen- 
dent ALOHA channels. Thus the condition for system stability 
1s 

A, < Me-' .  ( 2 5 )  
Combining the results in (20) and (24), we get the throughput 

with infinite users, 

when&, < Me- ' ,  
(26) 73= { Ale-' , when A,, 2 Mep1. 

IV. SIMULATION RESULTS 

We consider an MC-ALOHA system that has M channels. 
Simulation results are obtained from 100: 000 time slots. In the 
simulation of the stabilization algorithm, we set A, = Me-' in 
(2).  The throughput is normalized to the total number of chan- 
nels M .  The average backlog is calculated as the average num- 
ber of attempting users at the end of a time slot. 
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Fig. I .  Comparison of theoretical and simulation results on throughput. i\il = 4 
(a) V = 10 and V = 20 users; (b) V = 40 and V = 80 users. 

A .  Limited Number- of Users 

In Fig. 1 ,  we show the normalized throughput comparison 
between analysis and simulation. There are four channels. In 
Fig. 1 (a), we present results for V = 10 and V = 20 users. 
It is clear that theoretical calculation matches well with simu- 
lation results. However, the theory predicts higher throughput 
than simulation. This is because we assume perfect knowledge 
on the number of attempting users in the theoretical analysis. 
When there is one user, that user is always successful in trans- 
mission. This accounts for the higher throughput predicted by 
analysis. Further, at high packet generation rate p g ,  theoretical 
throughput is even higher than e-'. This is because the user 
attempts are binomial instead of Poisson so that the throughput 
could be a little higher than e-' .  In Fig. 1 (b), we present re- 
sults for V = 40 and V = ,80 users. It is clear that when there 

Fig. 3 .  
with limited number of users. Ad = 4. 

Comparison of stabilized and non-stabilized ALOHA on throughput 

are more users, the analytical results become almost identical 
with the simulation results. With more users, the theory predicts 
better compared with results in (a). This i s  because the case 
of having only one attempting user is rare with more potential 
users. From both figures, we observe from simulation that the 
throughput is always stabilized around e-1 when p ,  is high. . 

In Fig. 2 ,  we show the results for backlogs. We notice there 
is little difference between the analytical and simulation results. 
The backlog from simulation is just a little higher than analy- 
sis. This is another indication of the good performance of the 
stabilization algorithm. 

In Fig. 3 ,  we demonstrate the throughput difference between 
the stabilized and non-stabilized algorithms, with A4 = 4. In 
the non-stabilized algorithm, a user transmits immediately after 
generating a new packet, while a backlogged user retransmits 
with probability p,. Needlessly to say, the performance of the 
non-stabilized algorithm depends on the retransmission proba- 
bility. As shown in Fig. 3, when V = 40 and p ,  = 0.1, the 
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Fig. 4. Comparison of average throughput between stabilized and non-stabilized 
algorithms. 

non-stabilized algorithm performs as good as the stabilized al- 
gorithm, especially when p ,  is high. This is because the num- 
ber of backlogged users approaches 40 when p g  is high. Thus 
p ,  = 0.1 leads to approxjmately 4 transmitting users per slot, 
which is optimal with Ad = 4. However, the performance de- 
grades when p ,  = 0.2 with 40 users, or p ,  = 0.1 with 80 users. 
Therefore, a preselected retransmission probability is unable to 
adapt to the variation of user parameters. On the other hand, the 
stabilized algorithm always maintains throughput at the maxi- 
mal level regardless of user parameters. 

B. Unliniited Number of Users 

We assume the number of users is infinite, and the distribution 
for new packet arrival is Poisson with a fixed rate A. The rate X 
is normalized by Me-’, which is the system capacity limit. 

We compare the performance of the stabilized MC-ALOHA 
with that of the non-stabilized MC-ALOHA. In the non- 
stabilized MC-ALOHA, a new user always transmits immedi- 
ately, while a backlogged user transmits with a fixed probability 
of p,. In Fig. 4, we plot the average throughput for Id1 = 4, 
p ,  = 0.2, p ,  = 0.1, p ,  = 0.05, and the stabilized algorithm. 

The non-stabilized algorithms exhibit similar throughput as 
the stabilized algorithm when the arrival rate is low. However, 
the throughput of the non-stabilized algorithm degrades dramat- 
ically when the arrival rate is higher than a threshold. This 
threshold depends on the retransmission probability p,. From 
our experiment, the system is very likely to be unstable when 
X > 0.8 for p ,  = 0.2, X > 0.85 for p ,  = 0.1, and X > 0.9 
for p ,  = 0.05. Thus, a lower pr  leads to a more stable system. 
However, even with a small A, stability is not guaranteed by the 
non-stabilized algorithms. 

In Fig. 5 ,  we show the average backlog for the above four 
cases. It is clear that the stabilized algorithm is the best. When 
p ,  is chosen to be very small, the non-stabilized algorithm 
can maintain stability at high arrival rate. For example, when 
p ,  = 0.05, the maximal X can be up to 0.9, as shown in Fig. 4. 
However, the average backlog is much higher compared to other 

40 
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Fig. 5. Coinparison of average backlog between stabilized and non-stabilized 
algorithms. 

values of p,. Therefore, stability and backlog optimization are 
two conflicting factors for the non-stabilized algorithm. In con- 
trast, the two factors can be jointly optimized with the stabilized 
MC-ALOHA. 

V. CONCLUSION 

In this paper, we analyze the performance of a stabilization 
algorithm for MC-ALOHA, which is designed to adjust user 
transmission probability based on the estimated number of at- 
tempting users. The simulation results match the theoretical 
analysis very well, which proves that the stabilization algorithm 
operates close to a perfect estimation of the number of users. In 
the simulation, we also show that the performance of the stabi- 
lized algorithm is much better than the non-stabilized algorithm. 
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