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Abstroct— Subspace method is well-known in CDMA
channel estimation. But a basic problem, channel identi-
fiability by subspace method, is still not well-solved. In
this paper, two subspace based blind methods for esti-
mating the channel responses of a OFDM-CDMA system
in downlink and uplink are discussed respectively, Un-
der some reasonshle assumptions, it is mathematically
proved that subspace method for downlink can estimate
the channel subject to a scalar ambiguity, and the method
for uplink can give the channel responses subject to a
diagonal matrix ambiguity. The methods do not need
precise channel order information (only an upper bound
for the orders is required). Simulations show that the
methods are effective and robust.

Index Terms— Subspace, OFDM, CDMA, Channel
identification

1. INTRODUCTION

CDMA has been chosen as a main technique for the
third generation (3G) wireless communication. On the
other hand, orthogonal frequency division multiplesxing
(OFDM), which can effectively mitigate the effects of
multipath propagation and hence increase data rate {1},
[2), alse emerges as a candidate for wireless communica-
tion system beyond 3G. Combining these two techniques
therefore have the ahility to achieve better performance.
So, multi-carrier CDMA, the combination of OFDM and
CDMA, has been proposed and studied extensively in re-
cent years (3], 4], 5], [6]. There are various methods for
combining the OFDM and CDMA. The so-called MC-
CDMA is one of them [3], [4]. In the transmitting end
of MC.CDMA, each symbol is spread into a block (vec-
tor) of length NV, and the block is transformed by the
inverse discrete Foutier transform (IDFT). The trans-
formed block is then cydic prefixed or zero-padded to a
block of length M. In the receiving end, each length-M
block is chopped back to length NV by discarding some
of its first elements or overiapping add. Then the DFT
is performed. In the received signal, there are inter-chip
intetference (ICI) and multi-access interference (MAI).
To combat these interferences and recover the transmit-
ted signal, accurate channel information is very helpful
and sometimes mandatory.

Subspace methods for CDMA and OFDM-CDMA
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channel estimation have been studied in recent years
i7, [2], [ [8], [9}, (5], [6], [10]. Although the methods
are tested by some simulations, a basic problem, chan-
ne identifiability by subspace method, is still not well-
solved now. The basic idea of a subspace method is that
the signal subspace is determined by the eigenvectors of
the auto-correlation matrix of received signal. Here the
signal subspace is the range space of a structured chan-
ne matrix which includes all information of the channd.
However, generally speaking, the structured channel ma-
trix is not uniquely determined by its range space. This
means that the subspace method may not be able to de-
dde the channel. Only in some very spedial cases, the
channel can be uniguely (up to some ambiguity) iden-
tified by the signal subspace. It is usually difficult to
prove the channel identifiability for a subspace method.
In this paper, we consider the subspace channel esti-
mation for OFDM-CDMA systems, whete zeto-padding
[11], [2], [12] other than cydic prefix is used in OFDM.
The reason of using zero-padding OFDM (ZP-OFDM) is
that it not only has all the advantages of cydic prefixed
OFDM (CP-OFDM) but also avaids inter-block interfer-
ence (IBI) (in CP-OFDM, there is IBI in the first L ele-
ments of each received block, where L is the length of the
CP, but these L elements is discarded). Without IBI, the
channel estimation is simplified [2], [12], [13]. Subspace
methods for downlink and uplink are discussed respec-
tively. Under some reasonable assumptions, it is mathe-
matically proved that subspace method for downlink can
estimate the channel subject to a scalar ambiguity, and
the method for uplink can give the channel responses
subject to a diagonal matrix ambiguity. The ambiguity
is inherent for any second order statistics (SOS) based
method incduding the subspace method. The methods
do not need precise channel order information (only an
upper bound for the orders is required). Simulations
show that the methods are effective and robust.

Some notations are used in the following. Superscripts
T, 1 and * stand for transpose, transconjugate, and con-
Jjugate, respectively. The symbol diag is used to define a
diagonal or block diagonal matrix.
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1I. ZERO-PADDING OFDM-CDMA SYSTEM

Assume that there are K users in the system and each
user is assigned a spreading code £%), k = 1,2,---, K.
The symbols to be transmitted by user k at time ¢ is
¥, i = 0,1,--. The symbol b is spread into N
(N > K) chips which forms a block s{* = p{*¢(®),
Now the recently proposed ZP-OFDM [2], [11] is used
to modulate each block. In ZP-OFDM, each block is
transformed by the inverse discrete Fourier transform
(IDFT). After the IDFT, the block is turned to

u? = @{?(0),u{” (1), -, ul (¥ - 1))T = bV,
where
= (¥ 0), ..., (N - 1))T = IDFT (™).

Then L zeros is added to the tail of each block, where
L is an upper bound for orders of all channel responses.
To assure frequency domain equalization by FFT, it is
assumed that N > L. Each zero-padded block is with
length M = N + L and transmitted via the wireless
channes.

a. Downlink (base station to mobile). A mobile
unit receives a signal (before implementing the DFT) in
baseband as

K L
zin) =3 3 bl (n 1) + i),

k=1 =0
n=01,.--,M -1,
where k(l) is the channd response (incduding the trans-
mitting and receiving filters), L is an overestimated
channel order, 7;(n) is the channel noise, and u*(n) =
0,if n<Qor N<n< M. Let

b = (V.62 BN,

. 1Y

1)

C = (c,c®, ... o,
x = (z:(0),z:(1), -, M — 1)),
o= ((0)ne(1)y--,m(M — 1)), (2)

Then (1) can be expressed into a vector form as

x; = HCh; + 7, (3)

where H is a M x N Toeplitz matrix with first column
(R(0),---,R(L),0,---,0)T and first row ((0),0,---,0).

b. Uplink (mobile to base station). The difference
between downlink and wplink is that in downlink there
is only one channel (for the desired receiver), while in
uplink there are K channels. For synchronized system,
the base station receives a signal as

K L .
z(n) =3 Y APOuP - +mn), @)

k=1 {=0

where A*)(1) ({ = 0,1,-:-, L) is the channel response
from user k to base station (incduding the transmitting
and receiving filters). L is an upper bound (maybe over-
estimated) for all L,. If L; < L, the channle is zero-
padded. By defining

b)) = (V@R AP0,
w(n) = (@ (n),u(n),,{ )T, (5)
we can turn (4) into
L -~
zi(n) =Y B(l)u(n 1)+ m(n). (6)

1=0
Noticing that u{"’ = b{*'c(), (6) can be expressed as

x; = HEb; + 7, ts)

where
C= (Cm Cyy---, CN—I)Ts

C.= diag(c(l)(n)s @ (n)! trty C(K) (n))i

and H is a M x KN block Toeplitz matrix with first
block column (b7 (0), - - -, bT(L),0,---,0)T and first row
(R(0),0,---,0). Please note that here h{l)is a 1 x K
matrix, while in (1) A(!) is a scalar.

Given that the noises can be ignored in (3) or (7), b;
is completely recoverable from x;, that is, there exists a
zero-forcing equalizer, if and only if matrix HC or HE is
of full column rank. In (3), it is obvious that if h(0) # 0,
HC if of full column rank. The condition for HC to be
of full column rank is much more complicated. The full
column rank condition is assumed in the following.

II1. SUBSPACE ALGORITHM FOR DOWNLINK

The following conditions for the statistical properties
of transmitted symbaols b;(k) and channel noise samples
1:(n) are assumed.

(A1) Noise samples are white, uncorrelated and have
idemical distributions.

(A2) Noise samples and transmitted signals are un-
cotrelated, that is, E(n;(n}(b:(k))*)=0.

Here E(y} means the mathematical expectation of a ran-
dom variable y.

Based on the assumptions (A1) and (A2), we can ver-
ify that R. = E(x;x]) = HCR,C'H' + 021, where
R, = E(b;b}) is a positive definite matrix. The small-
est eigenvalue of matrix . is 0,2,. Since the rank of
HCR,, C'H' is K, there are ¢ = M — K co-orthogonal
eigenvectors corresponding to the smallest eigenvalue.
These eigenvectors aredenoted by 3; (i = 0,1,---,¢—1).
Based on simple mathematical derivation which is used
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in standard subspace method, we know that 5JHC =
0, i=0,1,:..,¢—1., Therefore, the vector space spanned
by the column vectors of matrix HC is uniquely deter-
mined. For simplicity, we use span(HC) to denote the
vector space spanned by the column vectors of HC, that
is, all possible linear combinations of the column vectors.
In general, knowing span(HC) cannot determine matrix
HC. However, for some matrix with special structure,
it is possible to determine HC by span{HC) up to cer-
tain ambiguity. In the following, we give the following
assumption for the spreading codes:
(A3) GCD(CM(z), C®(z),-+,C K (z)) = 1, wheze

N-1
)=y M(n)e", k=1,2,-, K, (8)
n=0

where GCD means Greatest Common Divisor. In the
following, we call C(*)(z) the spreading polynomial of
user k because it depends only on the spreading code of
the user. Under the assumption, the following theorem
states that HC is uniquely determined by span(HC)
subject to a scalar ambiguity.

Theorem 1: Let H be the matrix in (3) and H be a

matrix which has the same form as H with k(I) being
replaced by k({). Assume that h(0) % 0 and A(0) # 0. If
span(HC)=span(HC), then there exists a scalar ) such
that HC = \HC.,
Proof. It is easy to verify that span(HC)=span(HC)
if and only if there exists an K x K invertible matrix
A = (a;j) such that HC = HCA. We section the matrix
Cinto C = (d&f,d7,---,d%_,)¥, where d,, is a 1 x
K matrix. From the definition of matrix C, we know
that d,, = (cV(n), - -, ¥} (n)). Now, we turn equation
HC = HCA into an equivalent form as

L L
Y Ad.—r = R{l)d._A. 9
=0 =0

By defining
L L
H(z)= Zh(l)zlv I?[(z) = Zﬁ(l)zls
=0 =0

N-1
D(z)= Z d,z",
=0
we get an equivalent form for (9) as
H(z)D(z) = H(z)D(2)A.
From the definition of D(z), we have

(10}

N-1
D) = 3 (M), (n),- M)z
n=0

(C(l)(z)s c® (&) C(K)(z))-

(11)

Therefore, we get H(z)C¥)(z) = H(z)D(z)Ax,
where A, is the kth column of matrix A. So,
H()|H(z)C¥)(z) (k=1,2,--+, K), which is equivalent
to

H(z)|H(z)GCD(CM (2), CA(z),---,CF)(2)) = H(z2),

(12)
where | means dividing in number theory. Since A is
invertible, we can also prove that H(z)|H(z). Hence,
there exists a scalar A # 0 such that H(z) = AH(z). So,
we have AD(z) = D(z)A, that is,

AC®(2) = ekl CV (2) + a2k CP (2) + - - - + a1 C ) (2),

(13)
k=12-.-,K,
which can be written into vector form as
¥ = apel +agee® + -+ agac®), (14)

k=1,2,---,K.

Since ¥} (k = 1,2,---, K) are linear independent, we
know that arr = A, aju =0 {j # k), that is, A = Mg,
or HC = \HC.

The physical meaning of assumption (A3) is that there
is not a common zero for the spreading polynomials of
the K users, which is easy to satisfy in practice. As-
sumption (A3) has nothing to do with the channel, that
is, by properly choosing the spreading codes, the sub-
space method is valid in any channel conditions. Even
if the assumption (A3) is not satisfied, theorem 1 still
holds obviously if H(z) (H(z)) is relatively prime with
GCD(CM (2),CF(z), - -+,CF)(2)), that is, the channel
does not have a common zero with at least one spread-
ing polynomial, which is almost surely (with probability
one)} guaranteed for random channels.

IV. SUBSPACE ALGORITHM FOR UPLINK

Like the downlink case, a subspace method can only
determine span(HC). A tough task is to study if HC
can be uniguely determined (up to some ambiguity) from
span(HEC). In general, if we have another possible chan-
nel matrix H, which has the same form as H with h()
replaced by h(l), such that span(HC)=span(HC), we
can only say that there exists an invertible matrix A
such that HC = HCA. From the definitions of the ma-
trices, we can turn this condition into a equivalent form
as

H(2)C(z) = H(z)C(2)A, (15)
where
L
H(=) =) h@)<, H(z)=>_h({}),
=0 I=0
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and C(z) = diag(CV(2),C@(2),---,CK)(2)). Please
note that here HI(z) and H(z) are 1 x K polynomial
matrix. So, there is a big difference between (10) and
(15). By defining E; tobe a M x (L +1) Toeplitz matrix
with first column (¢(*){0), - - -, ¢*) (N —1))T and first row
(c(k)(O), 0,--- ’ 0)1 and

B = (R®(0), A¥)(1), -, B (L),
E(k) = (E(k)(o)s Fl(h)(l)s e JE(") (L))T’
we turn (15) into

Ekﬁ(k) = alkEﬂ;(l) <+ az;,Ezﬁ(z) +---+ GK;‘EKEI(K),
(16)
k=12, K.
Now we set another assumption for the spreading codes:

(A4) For any length-(Z + 1} non-zero vectors f(*)

(k = 1,2,--+,K), E.f®) (k = 1,2,---,K) are linear
independent.
Under this assumption, it is easy to show that the coef-
ficients a;; in (16) must satisfy a;, = 0 for j 5 k, that
is, A must be a diagonal matrix. If A is diagonal, we
have C(2)A = AC(z) and therefore H(z)=H(z)A. So,
the subspace method can determine the channel H(z)
subject to a diagonal matrix ambiguity.

Theorem 2: Under assumption (Ad4), the subspace
method can determine the channel matrix subject to a
diagonal matrix ambiguity, that is, h({)=h(l)A, where
h(l) is the estimated channel, A is a diagonal matrix
and [ =0,1,---, L.

The assumption is only imposed on the spreading
codes and has nothing to do with the channels. However,
the physical meaning of it remains to be investigated fur-
ther.

V. SIMULATIONS

In the following, R.. is computed by R.. = E(x;x!) 2
L,—1

LL,, Y x;x], where L, is the mumber of block samples
i=0

used. The columns of Hadamard matrix are used as

spreading codes. Signal-roise-ratio (SNR) means the ra-

tio of the received signal power with the noise power as

_ E(lzi(n) - m(n)])
R TR
The subspace methods leave a scalar or diagonal matrix
ambiguity respectively for downlink and uplink, which
cannot be resolved by SOS based blind method. For
the purpose of verification, it is obtained as follows. For
downlink, let

-1 L-1
A=Y B @A/ Y B ORO),
=0 =0

and for uplink, let

L-1 L1
ax =D B0/ 3 EPOIER Q)

1=0 1= .
and A = diag(a1,-+-,ax). The estimated channd is
then computed by h({) = AA(l) {for downlink) and
h(!) = h()A (for uplink), [ = 0,1,..-, L — 1. Here k(l)
and h*)(I) are the obtained channel responses from the
subspace method for downlink and uplink, respectively.
The true channel coefficients are used here only for ver-
ification and never be used elsewhere. The normalized
mean square error (NMSE} between the estimated and
true channel responses is defined as

NMSE = 2otz [0 — OP

S Rp O Gerink)
or
Yo llB() — B[P .
NMSE = - aor uplink).
AT

Simulations show that the algorithms are effective. Two
examples are shown below. The results are averaged
over 100 Monte Carlo test.

Ezample 1: In downlink, X' = N = 32 and M = 48.
The channel responses A(l) are generated randomty,
where the true channel order is 12 and it is overesti-
mated to L = 16. The transmitted baseband signals are
4-QAM. The number of received block for computing
R. is 70. Figure 1 shows the NMSE of the estimated
channe versus SNR.

Example 2: In uplink, K = N =8 and M = 13. The
transmitted baseband signals are 64-QAM. The chan-
nel responses h(l} are generated randomly, where the
true channel orders (different for different users) are not
greater than 4 and they are overestimated to L = 5. 50
received blocks are used for computing R... The NMSE
of the estimated channels versus SNR is shown in Figure
2.

V1. CoNCLUSIONS

Subspace methods have been proposed for estimating
the channel responses of a zero-padding OFDM-CDMA
system. Under some reasonable assumptions, it is math-
ematically proved that subspace method for downlink
can estimate the channel subject to a scalar ambigu-
ity, and the method for uplink can give the channel re-
sponses subject to a diagonal matrix ambiguity. Owing
to zero-padding, the subspace methods do not need pre-
cise channel order information (only an upper bound for
the orders is required). Simulations show that the meth-
ods are effective and robust.
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