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ABSTRACT 

Many time series in practice turn to he the time-varying (TV) 
non-Gaussian processes. In this paper, we address the problem 
of how to describe these non-stationary non-Gaussian time 
series. A non-Gaussian AR model with TV parameters is 
proposed to track the non-stationary non-Gaussian 
characteristics of the signal. Since wavelet has flexibility in 
capturing the signal’s transient characteristics at different 
scales, a set of wavelet basis is employed so that the model 
parameters can effectively track the variations of TV signals 
and be.used to estimate the comesponding TV bispectnun. The 
experiments results confirm the superior performance of the 
presented model over the previous method. 

1. INTRODUCTION 

To identify the systems and estimate the parameters, many of 
the existing methods exclusively assume that the signal is 
stationary, The stationarity requires that the underlying 
statistics and the model parameters that characterize the 
process are not dependent on time. However, in practice the 
time-varying characteristics of the systems are so important 
that they have close relations with physical accommodation. In 
spite of having been applied in many system, the stationary 
assumption is often not true for many physical signals such as 
speech signals, biomedical measurement, seismic signals and 
so on. To effectively identify the characteristics of the 
non-stationary signals, several kinds of methods were 
proposed for this purpose [l-31. But up to now, there exists not 
any general mathematical framework for dealing with the 
time-varying process. 

On the other hand, many signals encountered in practice 
are not only non-stationary, hut also non-Gaussian and 
nonlinear [4,5]. The most common method used for the 
evaluation of the signals is based on the power spectral density 
(PSD) function which quantifies the power contents at 

different frequencies [7]. The PSD, however, suppresses the 
phase relationship of the frequency components of the signal. 
Dealing with non-Gaussian and nonlinear random process, 
higher-order statistics (HOS), like bispecr”, are of 
paramount importance in advanced statistical signal 
processing. The motivation behind the use of HOS for the 
non-Gaussian and nonlinear signals includes the following 
three aspects: (1) detect and characterize the non-Gaussianility 
and the nonlinearity of the underlying process, (2) extract the 
information of the phases relationship among the frequency 
components of the process, (3) significantly improve the 
signal-to-noise ratio ( S N R )  when dealing with the Gaussian 
additive noise. 

As more evidences have mounted to confirm the 
existence of time-varying non-Gaussian and nonlinear 
behavior of the process, it is necessary and appropriate to 
adopt new method to address the non-stationariiy, 
non-Gaussianility and nonlinearoty of the signal. For this 
purpose, a non-Gaussian autoregressive (AR) model wifh 
time-varying coeflicients is employed in this contribution. By 
means of time-variant parametric bispectral analysis, the 
tmnsient phase-locking relationship among the components of 
the signal can be identified. 

2. THE PROPOSED SCHEME 

Let the non-stationary time series x(n) be modeled as the 
output of a time-varying non-Gaussian linear system which is 
expressed as the following AR(P) model: 

P 

x(n) = -Cak (n)x(n - k )  + e(n) ( 1 )  
k 4  

where e(k) denotes a stationary non-Gaussian, 
independent identically distribution (i.i.d.) input 
sequence with zero-mean and finite moments. ak(n) 
represent the time-varying model parameter to be estimated. 
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The observed noisy time series is described as 

where the noise n(k) is zero-mean, additive Gaussian noise 
which is statistically independent of x(k). Since the I'* -order 
cumulants C,(m,n) of Gaussian process will vanish for 
1 2  3 , we have the third-order cumulants relation as 
C3..(m,n) = C3,(m,n) . Obviously, the additive Gaussian 

noise is significantly suppressed due to the HOS. The 
time-varying coefflcients ai@) are expressed as wavelet 
basis functions [6,8] 

Where #i,k(t) are a number of orthonormal basis functions. 
The TVAR coefficients are projected on the space of the basis 
functions and this projection, symbolized by ai,r, does not 
change with time. Once 4i,,k(f) were decided, we can get x(f) 
only if we have known the constant coefficients as 

~ 

m 

where the (6k (t) are defmed as an orthonormal set 

so we have 

Thus the TV signal can be obtained 

We have also known that the mth order cumulant sequence of 
X(t) satisfies the following recursive equation [ 5 ] :  

c 

When m=3, (7) can be changed to : 

wherecj,,,, = E [ x j ( f ) x l ( t + r I ) ~ ~ ( t + r - k ) l  and X j ( f )  
is the jth element ofX(). 

3. WAVELET BASIS FUNCTION 

In this contribution, we chwse orthonormal wavelet basis With 
the form: 

or 

where the function q(f) is called wavelet basis. 
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According to the model proposed above, the wavelet series 
can be expressed 

where ai,t are constant coefficients of wavelet functions, 
which reflect the type of features presented in the time series. 
The use of wavelet basis is advocated in our work, since 
wavelets can well localize in time and frequency. 

. 

For time series with sharp jumps or steps, one would 
choose a boxcar-like wavelet function such as the Harr and 
Daubechies basis. While for smoothly varying time series, one 
would choose a smooth function such as Morlet wavelet. 

For Harr basis functions, they are represented as 

Fig.1 shows the Harr basis functions across scales. It is noted 
that Harr basis bas interesting behavior as being capable of 
capturing the global as well as the local behavior of the TV 
coeEcients. It consists of scaled and translated versions of a 
single function. To obtain the parametric estimation, Harr 
basis is used in (9) and provides information about ai (t) at 
different resolutions while the traditional Fourier basis cannot 
provide satisfied time and frequency localization. 

4. SIMULATIONS AND DISCUSSION 

The first simulation is considered with a piecewise AR(2) 
model 

n(t) =a,  (t)n(k - 1) +a2 (t)x(k - 1) +e(?)  

where (al(k),a2(k)} have thevalues as 

-1.5 
-0.9 k € [ N / 4 + / N / 2 ] ~ [ 3 N / 4 + l , N ]  

k E [ l ,N/4]u[N/  2 + / 3N/4 ]  

k E [ l ,N/4]u[N/2  + 1,3N/4] 

i aI (k) = 

k e [ N / 4 + L N / 2 ] u [ 3 N / 4 + / N ]  

We investigate the data set with N=6000 data points. Fig.2 
shows the estimation of a,(k)  via Harr basis. The result 
using Fourier basis was also given as a comparison with 
dotted line. 

The second simulation considered a non-Gaussian AR(2) 
model with the following non-piecewise TV parameter 

al ( k )  = 0.6*sin(l2*(k./6000)) 

a2 ( k )  =-0.7*cos(24*(k.i6000)) 

Morlet wavelet was used in this example with m=7. Fig.3 
shows the estimation result of al (k )  with the dotted line. 

It is important to note that the estimation based on wavelet 
basis responds rapidly and precisely to the parameters’ 
time-variances. This finding highlights the capacity of 
wavelets to identify time-variances that may have physiologic 
relevance and retains parametric identity even though model 
coefficients vary continuously over the data segment studied. 
We can also get the same results by analyzing the ermr 
criterion, which is estimated by the following definition [3]: 

~~(xl,~,~~;~,;~l,a,...a,) 

The error of wavelet basis in the first simulation with 
do, = 1.7332 is less than the ermr of Fourier basis with 
do2 = 2.0256. Moreover, it is remarkable from the results 
that the wavelet basis is more suitable than Fourier basis U) the 
estimation of time-variance of AR parameters. As a novel 
method, non-Gaussian AR model with wavelet basis provides 
us a new way to describe the TV bispectral structures of the 
non-stationary non-Gaussian process. 

5. CONCLUSION 

To cope with the problem of the identification of the 
time-varying linear systems, this paper proposes a 
non-Gaussian AR model with TV parameters. In this approach, 
model parameters that characterize the time-varying system 
are functions of time and were approximated by a family of 
wavelet basis functions. A comparison between wavelet basis 
and Fourier basis of cumulant-based method was also 
demonstrated. Simulation results show the applicability and 
the effectiveness of this new procedure, while more signal 
processing techniques are needed to be applied to minimize 
the estimated error. 
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Fig. 1. Harr basis functions across scales 

Fig. 2 The estimation of a,(k) in which the dotted line 
denotes the estimation based on the Fourier basis, and the 
solid line is the estimation based on Harr basis with m=9. 

Fig. 3. The estimation of the TV a, ( k )  via Morlet wavelet 
with m=7. 
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