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ABSTRACT

Many time series in practice turn to be the time-varying (TV)
non-Gaussian processes. In this paper, we address the problem
of how to describe these non-stationary non-Gaussian time
series. A non-Gaussian AR model with TV parameters is
proposed 1o track the non-stationary non-Gaussian
characteristics of the signal. Since wavelet has flexibility in
capturing the signal’s transient characteristics at different
scales, a set of wavelet basis is employed so that the model
parameters can effectively track the variations of TV signals
and be used to estimate the corresponding TV bispectram. The
experiments results confirm the superior performance of the
presented model over the previous method.

1. INTRODUCTION

To identify the systems and estimate the parameters, many of
the existing methods exciusively assume that the signal is
stationary. The stationarity requires that the underlying
statistics and the model parameters that characterize the
process are not dependent on time. However, in practice the
time-varying characteristics of the systems are so important
that they have close relations with physical accommodation. In
spite of having been applied in many system, the stationary
assumption is often not true for many physical signals such as
speech signals, biomedical measurement, seismic signals and
so on. To effectively identify the characteristics of the
non-stationary signals, several kinds of methods were
proposed for this purpose [1-3]. But up to now, there exists not
any general mathematical framework for dealing with the
time-varying process.

On the other hand, many signals encountered in practice
are not only non-stationary, but also non-Gaussian and
nonlinear [4,5]. The most common method used for the
evaliation of the signals is based on the power spectral density
(PSD) function which quantifies the power contents at
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different frequencies [7]. The PSD, however, suppresses the
phase relationship of the frequency components of the signal.
Dealing with non-Gaussian and nonlinear random process,
higher-order statistics (HOS), like bispectrum, are of
paramount importance in advanced statistical signal
processing. The motivation behind the use of HOS for the
non-Gaussian and nonlinear signals includes the following
three aspects: (1} detect and characterize the non-Gaussianility
and the nonlinearity of the underlying process, (2) extract the
information of the phases relationship among the frequency
components of the process, {3) significantly improve the
signal-to-noise ratio (SNR) when dealing with the (faussian
additive noise.

As more evidences have mounted to confirm the
existence of time-varying non-Gaussian and nonlinear
behavior of the process, it is necessary and appropriate to
adopt new method to address the non-stationarity,
non-Gaussianility and nonlinearoty of the signal. For this
purpose, a non-Gaussian autoregressive (AR} mode! with
time-varying coefficients is employed in this contribution. By
means of time-variant parametric bispectral analysis, the
transient phase-locking relationship among the components of
the signal can be identified.

2. THE PROPOSED SCHEME

Let the non-stationary time series x(n) be modeled as the
output of a time-varying non-Gaussian linear system which is
expressed as the following AR(P) model:

P
x(n) ==Y a,(n)x(n—k)+e(n) )
k=

where e(k) denotes a stationary non-Gaussian,
independent identically distribution (i.i.d.) input
sequence with zero-mean and finite moments. a;(n)
represent the time-varying model parameter to be estimated.
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The observed noisy time series is described as

(k) = x(k) + n(k) @

where the noise n{k) is zero-mean, additive Gaussian noise
which is statistically independent of x(k). Since the [ * _order
cumulants C;(m,n) of Gaussian process will vanish for
123, we have the third-order cumulants relation as
Cs;(m,n)=C;5,{m,n) . Obviously, the additive Gaussian
noise is significantly suppressed due to the HOS. The
time-varying coefficients a,(f) are expressed as wavelet
basis functions [6,8]

a;() = Zai,k 4 (0) 1O

Where #;(f) are a sumber of orthonormal basis functions.
The TVAR coefficients are projected on the space of the basis
functions and this projection, symbolized by @, ;, does not
change with time. Once ¢, (#) were decided, we can get x(f)
only if we have known the constant coefficients as

a,(t)= z ai,m¢i,m ®
a8, () =D a, b, (O, (1)

where the ¢, () are defined as an orthonormal set

1 k=
O
so we have
[ asuit=a,
a; = I a;(0@; , (Ot 4

Thus the TV signal can be obtained

x(f) = ——ZP:a,. (O)x(t —i)+e(f)
. )
= —Z,[Zai,k Lk (O x(t =) +e(f)

or

X = —-Zp: A(D).X{@ -+ E@®) (6)

=l

where X(#),E(1) denote the projections of the x() and () on
the basis function space:

X (1) =18 (Dx(t), 4, (N2, ., (Hx(D]”
E(t) = [¢0 (l)e(t)’ ¢1 (’)e(t)’ """ !¢q (t)e(t)]r
Ak) = (o (Day (a8 (a1

where a, :[ako,akl‘ ---,akq]T . Then the expression (6) can
be evolved into a system of q+1 equations:

$oOX0) =3 4o 0a, - Xt~ B+ y 1)

4O =3 (D - X(t~k)+ 4 (Dele)
k=1 A

8,000 =-3 ¢, (O, - X(—K)+ 4, (Delt)

We have also known that the mth order cumulant sequence of
X(1) satisfies the following recursive equation [5]:

P
S ARG x5 Tpt-R=0. T>0 (D)

=

When m=3, (7) can be changed to :

$o(t)a,
$| 40 || esna

€11 Ci g

il
<

Cig+l2
pary S o (8)

, (D)ay

Cilg+ls "Cjg+tgel

where CJ.-U = E[xj(t)xl (l + Tl)xl (t +T- k)] and x} (t)
is the jth element of X{(1).

3. WAVELET BASIS FUNCTION

In this contribution, we choose orthonormal wavelet basis with
the form:

B=0"2p@! t-k),jk < Z}

where the function @(f) is called wavelet basis,
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According to the model proposed above, the wavelet series
can be expressed

a,(1)=.a,,0,, (1)
k
Qg = Iai(’)(”i,k ()dt 9

where a, , are constant coefficients of wavelet functions,
which reflect the type of features presented in the time series.
The use of wavelet basis is advocated in our work, since
wavelets can well localize in time and frequency.

For time series with sharp jumps or steps, one would
choose a boxcar-like wavelet function such as the Harr and
Daubechies basis. While for smoothly varying time series, one
would choose a smooth function such as Morlet wavelet,

For Harr basis functions, they are represented as

Pun)=2""" (27"t - 1)

Fig.1 shows the Harr basis functions across scales. It is noted
that Harr basis has interesting behavier as being capable of
capturing the global as well as the local behavior of the TV
coeflicients. Tt consists of scaled and translated versions of a
single function. Te obtain the parametric estimation, Harr
basis is used in (9) and provides information about @, (f) at
different resolutions while the traditional Fourier basis cannot
provide satisfied time and frequency localization.

4. SIMULATIONS AND DISCUSSION

The first simulation is considered with a piecewise AR(2)
model

x(H)=a,(O)x(k-1)+a,(t)x(k -1} +e(t)
where {a,(k),a,(k)} have the values as

o[ ke[, N4l u[N/2+13N74]
4=\ 09 ke[n/art,N/2JUpN/arLN]

08  ke[LN/4JU[N/2+13N/4]
ay (k)=
02 ke[N/4+LN/2JU3N/4+LN]|

We investigate the data set with N=6000 data points. Fig.2
shows the estimation of a,(k) via Harr basis. The result
using Fourier basis was also given as a comparison with
dotted line.

The second simulation considered a non-Gaussian AR(2)
model with the following non-piecewise TV parameter

a, (k) = 0.6%sin(12*(k./6000))
a, (k)=-0.7*cos(24*(k./6000))

Morlet wavelet was used in this example with m=7. Fig.3
shows the estimation result of a,(k) with the dotted line.

It is important to note that the estimation based on wavelet
basis responds rapidly and precisely to the parameters’
time-variances. This finding highlights the capacity of
wavelets to identify time-variances that may have physiologic
relevance and retains parametric identity even though model
coefficients vary continuously over the data segment studied.
We can also get the same results by analyzing the error
criterion, which is estimated by the following definition [3]:

do(xl)xz Xyl Gy ”aP)

N P
=YX, -Yax /N (o
J=1

i=P+1

The error of wavelet basis in the first simulation with
dy; =1.7332 is less than the error of Fourier basis with
dy; =2.0256 . Moreover, it is remarkable from the results
that the wavelet basis is more suitable than Fourier basis to the
estimation of time-variance of AR parameters. As a novel
method, non-Gaussian AR model with wavelet basis provides
us a new way to describe the TV bispeciral structures of the
non-stationary non-Gaussian process.

5. CONCLUSION

To cope with the problem of the identification of the
time-varying linear systems, this paper proposes a
non-Gaussian AR model with TV parameters. In this approach,
model parameters that characterize the time-varying system
are functions of time and were approximated by a family of
wavelet basis functions. A comparison between wavelet basis
and Fourier basis of cumulant-based method was also
demonstrated, Simulation results show the applicability and
the effectiveness of this new procedure, while more signal
processing techniques are needed to be applied to minimize
the estimated error.

6. ACKNOWLEDGEMENTS
This work was partly supported by the National Natural

Science Foundation (No. 60271023), the Key Grant of Natural
Science Foundation of Guangdong Government (No. 021264}

661



and the Grant of Natural Science Research of Guangdong
Education Bureau (No. Z02036).

me | evsw— | P
7. REFERENCES — ]

anutns NN oo SN S OO p .
| MMM TUNR i NN L D

=

[11J. J. Rajan , Peter ]. W. Rayner “Generalized Feature nhmoonnnonn
Extraction For Time-varying Autoregressive Models”, IEEE BENESRURSRURRER!
Trans. on Signal Processing. vol. 44, No. 10, October 1996.

[2] D. Aboutajdine “Fast Adaptive Algorithms for AR

)

Parameters Estimation Using Higher Order Statistics™ IEEE F‘I—I—rrLi

Trans. on Signal Processing. Vol. 44, No.8, Aug. 1996. e e e e e
L'_l_l_l | ]

[3) Marc Lavielle “Optimal Segmentation of Random =

il
Processes,” IEEE Trans. on Signal Processing. vol. 46, No.3, &
May 1998 pELELE J“J b =1 + bR R

i

1

geomelric proof

[4] D. Geman,“Random fields and inverse problems in

imaging,” in Lecture Notes in Mathematics. New York: b ar
Springer -Verlag,1990 "f—'_-f:"’i;“*—x:g-_',--j—ryl‘r‘;-ﬁ"ﬁ + W

[5] Lee M. Garth “A comparison of optimized higher-order =
spectral detection techniques for non-Gaussian signals,” IEEE ;
Trans. on Signal Processing, vol. 44, No.5, May 1996. !

=N

[6] M. K. Tsatsanis and G.. B Giannakis. “Time-varying . ) )
System Identification and Model Validation Using Wavelets.” Fig. 1. Harr basis functions across scales
IEEE Trans. on Signal Processing, 41(12): 3512-3523, 1993.

[71 M. Martone “Non-Gaussian Multivariate Adaptive AR e parameter a1 and fts estmation
Estimation Using the Super Exponential Algorithm,” IEEE 0 '
Trans. on Signal Processing, vol. 44, No.10, Oct. 1996,
. . . . D5
[81 G. Thonet, “Stationarity Assessment with 2
Time-varying  Autoregressive Modeling”  Signal g =4 e
Processing Laborator, pp. 3721-3724, 1997. t ? b 7
P S
2 1000 2000 3000 4000 5000 8000

Fig. 2 The estimation of @ (k} in which the dotted line
denotes the estimation based on the Fourier basis, and the
solid line is the estimation based on Harr basis with m=9.
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Fig. 3. The estimation of the TV a;(k) via Morlet wavelet
with m=7.

662



