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The optimal parameter settings for digital PID controllers 
incorporated in model-following systems are complicated, 
unknown functions of the underlying sampling frequency. In 
order to simplify the design process, genetic algorithms have 
previously been used to tune the restricted set of controller 
parameters affecting the fast modes of the closed-loop 
system. However. i t  is important to investigate the effects of 
both slow and fast modes on model-following behaviour by 
using an enlarged set of controller paramettrs in  the genetic 
optimisation procedure. This use of genetic algorithms is 
illustrated in this paper by the design of model-following 
flight-control systems for the F- 16 aircraft. 

1. INTRODUCTION 

digital PID controllers was therefore investigated by Porter 
and Hicks [4][5][6]. 

The results obtained from the genetic design procedure 
(4][5][ 61 provide improved model-following behaviour 
compared with that obtained using the asymptotic design 
procedure [ 11. However, in the genetic optimisation 
procedure of Porter and Hicks [4][5][6], only the restricted 
set of controller parameters affecting the fast modes of the 
closed-loop system was used. Since the slow modes of the 
model-following systems are only asymptotically 
uncontrollable or unobservable, such slow modes will be 
present to some extent in the output of model-following 
systems for finite sampling frequencies. It is therefore 
important to investigate the effects of both slow and fast 
modes on model-following behaviour by using an enlarged 
set of controller parameters in the genetic optimisation 
procedure. 

The nicthodologies of Porter et a1 [ 1 I provide a powerful 
means of designing model-foilowing systems incorporating 
digital PID controllers. These methodologies use only plant 
input/output data and thus circumvent the need for explicit 
mathematical models of multivariable plants. Indeed, i t  was  

This use of genetic algorithms is illustrated i n  by 
the design of model-fo~lowing flight-control systelns for the 
F- 16 aircraft, 

shown by Porter [ 21 that such model-following systems can 
be dcsigncd simply by using the step-response matrices of 2. GENETIC DESIGN PROCEDURE 

multivariable plants. Since such step-response matrices can 

parameter-estimation techniques, such model-following investigation incorporate the following two principal 
systems can readily be rendered adaptive. 

bc directly identified in real time using standard recursive The closed-loop digital model-following systems under 

components, as shown in Figure 1: 

Ilowever, in order to obtain optimal pcrfoi-lnance i t  is an explicit multivariable dynamical model that 
necessary to tune the digital PID contro!lzrs in such generates desired model output vectors, viz((). in 
non-adaptive or adaptive model-following systems. l h c  response to command input vectors, v(t); 
undcrlying singular perturbation theory developed by Porter a multivanable digital PID controller that generates 
et a1 [ 11171 provides asymptotically optimal parametcr appropriate control input vcctors, u(f), in rcsponse 
settings f o -  such I’ID controllers as the associated sampling to errors between model output vectors, w(t), and 
frcqucncies become very large. However, i n  practice, such plant output vectors, y(t). 
sampling frequencies are finite and the resulting 
non-asymptotically optimal controller pardmeter settings 
may differ significantly from their asymptotically optimal 
settings. This use of genetic algorithms for tuning such 

(i) 

(ii) 

CH35797-9510000-0472 $1.00@1995 IEEE 472 



- I  

where El E K('-pi"( '-p),  E2 E R('-Ppp, runk El = 1-p, and 
the non-negative integer p is the rank defect of the first 
Markov paramctcr of the open-loop plant. Furthermore, the 
vectors r(kT) and z(kT3 in equation ( 3 )  are generated in 
accordance with the difference equations 

Figure 1: Block diagram of digital model-following system. 

It is assumed that the linear multivariable plants under 
consideration are governed on the continuous-time set 
T= [ O , + x )  by state and output equations of the respective 
fonns 

i ( r )  = A x ( t )  +Nl l ( t )  (1) 

and 

In addition, it is assumed that the fast-sampling digital PID 
controllers are governed on thc discrete-time set 
TTr{U,T,2T ,..., kT ,...I by control-law equations ofthe form 

14 ( k r )  = K, ( r )  r(kT) 7 K, ( T)r (k i") (3  1 

where T E  I<+ is the sampling period. Such controllers are 
required to generate the piecewise-constant control input 
vector i c ( t ) = u ( k T ) ,  t E [kT,(k+ 1)7),kTE TT, so as to cause 
the plant output vector, y(t), to track the model output 
vector, w(Q, on T T .  This means that the error vector 
e([) =w(t)-y(t) is required to assume the steady-state value 

on Tr for arbitrary initial conditions 

In equations (l), (2 ) ,  ( 3 ) ,  and (4), ~ ( t )  E R",ii(t) E R', 
y ( t )  E R', e(t)  E It ' ,  w(r) E R', .4 E R"", B E K"X(, c E RIX", 
Z(kQ E R' , r (ko  E K' ,  K I ( T )  E RIx', Kz(T) E R"', T E X+, 

and 

The plant outputs are ordered such that 

(8) 
and 

(9 )  z((k+l)TJ=z(kT)+Tr(kT) . 

In equations (7), (S), and (9), a E (-l,+l), s(k2) E RP, and 
the derivative matrix 

is such that 

The frequency-domain characteristics of such closed-loop 
digital model-following systems can be conveniently 
elucidated by determining for such systems the closed-loop 
transfer function matrix, G(z), relating the plant output 
vector to the desired model output vector. The results of 
Porter and Shenton [7] from the singular perturbation 
analysis of transfer function matrices can then be used to 
obtain the asymptotic form of G(z) as the sampling 
frequency f=l /T -+ W .  These results thus greatly facilitate 
the determination of the controller matrices k;(1] E X"' and 
K2(7) E I?"', together with the derivative matrices 
& ( 7 )  E R('-P@P and 0 1 4 ( 7 )  E l V ' ,  such that the resulting 
fast-sampling digital PID controller produces closed-loop 
model-following behaviour of increasing fidelity as the 
sampling frequency is increased. Indeed, i n  terms of the 
open-loop step-response matrix 

and thc associated rcgularity matrix 
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this singular perturbation analysis indicates that the 
appropriate design equations for the digital PID controller 
are 

and 

where 

and cj 1 ~ 0 2 ,  p, 64(T) E R’. The closed-loop transfer function 
matrix, G(z), then assumes the diagonal asymptotic form 

as f = 

model-following behaviour occurs 
+ a, thus indicating that fast and non-interacting 

This closed-loop model-following behaviour is a 
consequence of the facts [ I ]  that the slow modes of the 
resulting closed-loop system become either asymptotically 
unobservable or uncontiollable as f =  $ + and that the 
fast modes of the closed-loop system r e m m  both 
contiollnble and observable. Hence, only the fast modes 
(which depend only on the restncted set of controller 
parameters { 0 1 ,  cj2, a } )  appear In the asymptotic 
closed-loop transfer-function matnx as f =  3 + x: 

Indeed, the singular pertur-bation analysis [ 1][7] leading to 
the asymptotic transfer-function matrix, qS), in equation 
(18) indicates that the optimal choice of design parameters is 
{ O ~ , G ~ , C X $  = { l , ~ ,  2) since it  is then evident that all the 
poles of the resulting asymptotic transfer-hnction matrix lie 
at the origin within the unit disc. However, in practice, the 
sampling frequencies of fast-sampling digital PID 
controllers arc obviously finite and the associated optimal 

1 1  

parameter settings mat well differ significantly from their 
asymptotically optimal settings. 

Genetic algorithms have previously been used [4][ 5 ] [  61 to 
tune the restncted set of controller parameters {U 1 , 6 2 ,  a }  
for finite sampling frequencies. This restricted set facilitates 
the optimisation of the fast modes of the closed-loop system 
whilst the remaining controller parameters (which 
essentially determine the slow modes of the system) are 
assigned fixed values (for example, p = 1 and 6 = 0.25). 

However, since the slow modes of the closed-loop system 
are present to some extent in the outputs of the closed-loop 
system for finite sampling frequencies, it is therefore 
pertinent to investigate the effects of slow-modelfast-mode 
tuning on model-following behaviour by using the enlarged 
controller parameter set { 01  0 2 ,  a, p, 6 )  for such finite 
sampling frequencies. 

-, 

I hus, for example, if minimum maximum multivariable 
generalised model-following error is regarded as the 
ultimate design requirement. genetic algorithms can be 
readily used to select the enlarged set of controller 
parameters such that the measure of generalised 
model-following error 

is minimised. In this measure of generalised 
model-following error, c;‘’(t) is the model-following en-or in 
the jtlz channel when a command is applied to the itli 
channel, Au;”(t)  is the corresponding change in thc , j th  
control input (over a sampling period), and oi/ and p,, are 
weighting parameters. 

3. ILLUSTRATIVE EXAMPLE 

This procedure for the genetic slow-modeifastmode dcsign 
of digital model-following systems for finitc sampling 
frequencies can be conveniently illustrated by considering 
the F-16 aircraft [ l ]  for which a digital PID controller was 
previously designed both non-genetically 11 1 and genetically 
[4] using the restricted controller paramcter sct. 

It is desired to design a digital PID controller that minimises 
the maximuin multivariable generalised model-following 
error when the F-16 aircraft performs pitch-pointing and 
vertical-translation manoeuvres for the F-16 flying at Mach 
0.9 at an altitude of 15,000 ft. In these manoeuvres, i t  i s  
known that practical position and rate limits 181 are 
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comfortably satisfied by selecting models with transfer 
function 111 
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g(s)  = (s+2)(sz+8.si 2 5 ) .  

in both the pitch-angle and flight-path-angle channels. 

The results of solving this model-following design problcm 
for the enlarged controller parameter set (with o ?i = 1 and b~~ 
=0.01 in equation (19)) by means of a genetic algorithm with 
a population size N=50, a crossover probability p,=0.6, and a 
mutation probabilityp,=O.Ol are shown in Figure 2 over 100 
generations. In Fibure 2(a) the best-of-generation measure of 
generalised model-following error is plotted against 
generation number whilst, in Figures 2(b), (c), (d), (e), and 
(0, the associated best-of-generation controller parameters 
O I , C T ~ ,  cc ,p, and 6 are respectively plotted against generation 
number. It can be seen from Figures 2(a), (b), (c), and (d) 
that the minimal generalised model-following error 
F, = 0.0272 and that the alssociatcd optimal enlarged 
controller parameter set is (o , ,a2 ,u ,p ,S j  = 

[ 1.1 19,0.641,0.5423,13.728,~.~!597}. The time-domain 
model-following behaviour corresponding to this set of 
optimal controller parameters is shown in Figure 3. It is 
evident that the slow-modei'fast-mode genetically tuned 
digital PID controller gives excellent model-following 
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4. CONCLUSION 

In this paper, genetic algorithms have been used to tune the 
enlarged controller parameter set { ol, 0 2 ,  a, p, 6) for 
fast-sampling digital PID controllers for finite sampling 
frequencies. This enlarged controller parameter set 
facilitates the tuning of both slow and fast modes of the 
closed-loop system for finitt; sampling frequencies, and 
significant improvements have thus been made in the case of 
the F- 16 aircraft when compared to the results previoudy 
obtainzd non-genetically [ 11. This genetic 
slow-moddfast-mode optimisation procedure has also been 
shown to lead to improved modcl-following behaviour when 
compared to the rcsults previously obtained from genetic 
fast-mode optimisation 191. 
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Figure 2: Best-of-generation generalised model-following error and 
controller parameters (T=0.01) 
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