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ABSTRACT

The optimal parameter settings for digital PID controllers
incorporated in modcl-following systems are complicated,
unknown functions of the underlying sampling frequency. In
order to simplify the design process, genetic algorithms have
previously been used to tune the restricted set of controller
paramcters affecting the fast modes of the closed-loop
system. However, it is important to investigate the effects of
both slow and fast modes on model-following behaviour by
using an enlarged sct of controller parametcers in the genctic
optimisation procedure. This use of genetic algorithms is
illustrated in this paper by the design of modcl-following
flight-control systems for the F-16 aircraft.

1. INTRODUCTION

The mcthodologies of Porter et al [1] provide a powerful
means of designing model-following systems incorporating
digital PID controllers. These methodologies use only plant
input/output data and thus circumvent the need for explicit
mathematical models of multivariable plants. Indeed, it was
shown by Porter [2] that such model-following systems can
be designed simply by using the step-response matrices of
multivariable plants. Since such step-response matrices can
be directly 1dentified in real time using standard recursive
parameter-estimation  techniques, such model-following
systems can readily be rendered adaptive.

However, in order to obtain optimal performance it is
necessary to tune the digital PID controllers in such
non-adaptive or adaptive model-following svstems. The
underlying singular perturbation theory devcloped by Porter
ct al [1}{7] provides asymptotically optimal parameter
settings for such PID controllers as the associated sampling
frequencics become very large. However, in practice, such
sampling frequencies are finitle and the resulting
non-asymptotically optimal controller parameter settings
may differ significantly from their asymptotically optimal
settings. This usc of genetic algorithms for tuning such
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digital PID controllers was therefore investigated by Porter
and Hicks [4][S][6].

The results obtained from the genetic design procedure
[41{5]16] provide improved model-following behaviour
compared with that obtained using the asymptotic design
procedure [l]. However, in the genetic optimisation
procedure of Porter and Hicks [41[5][6], only the restricted
set of controller parameters affecting the fast modes of the
closed-loop system was used. Since the slow modes of the
model-following  systems arc only asymptotically
uncontrollable or unobservable, such slow modes will be
present to some extent in the output of model-following
systems for finite sampling frequencies. It is therefore
important to investigate the effects of both slow and fast
modes on model-following behaviour by using an enlarged
set of controller parameters in the genetic optimisation
procedure.

This use of genetic algorithms is illustrated in this paper by
the design of model-following flight-control systems for the
F-16 aircraft.

2. GENETIC DESIGN PROCEDURE

The closed-loop digital model-following
investigation incorporate the following
components, as shown in Figure 1:

systems under
two principal

(i) an explicit multivariable dynamical model that
generates desired model output vectors, w(t). in
response to command input vectors, v(t);

a multivaniable digital PID controller that generates
appropriate control input vectors, #(2), in response
to errors between model output vectors, w(z), and

plant output vectors, y(2).

(i)
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Figure 1: Block diagram of digital model-following system.

It is assumed that the lincar multivariable plants under
consideration are governed on the continuous-time set
T=1[0,+) by state and output equations of the respective
forms

x(r) = Ax(t) + Bu(t) )
and
Y)=Cx(y) . 2)

In addition, it is assumed that the fast-sampling digital PID
controllers are governed on the discrete-time  set
T={0.1.2T,....,kT,...} by control-law equations of the form

u(kT)=K,(DrkT)+K(1)=(k1) 3

where 7 e R* is the sampling period. Such controllers are
required to generate the piccewise-constant control input
vector u(t)=u(kl), t € [kT,(k+1)T),kT € Ty, so as to cause
the plant output vector, y(z), to track the model output
vector, w(t), on Ir. This means that the error vector
e(t)=w(1)-y(t) is required to assume the steady-state value

lim e(kT) :iim {w(kT) —y(kT)} =0 “)

ko
on I'y for arbitrary initial conditions.

In equations (1), (2), (3), and (4), x(¢) € R",u(t) € R’,
&) e R, e e R\, w(t) e R/, A e R™ B e R™ (CeR™,
2kTy € R, 1(kT)y € R', Ki(T) € R™, K»(T) € R™ T e R*,
and

rank CB = [-p . )

The plant outputs arc ordered such that

Op,lfpv 01’1’

CB{E‘ > B }ERL" (6)

where Eq € REPYP) e REPI | yynk E=1-p, and
the non-negative integer p is the rank defect of the first
Markov parameter of the open-loop plant. Furthermore, the
vectors r(kT) and z(kT) in equation (3) are generated in
accordance with the difference equations

s{(k+ DT} = —odpsthkD) + [0p 1p, Iple(kT), 0]
2
=(1+a)D>

kD= 7 (kDY + (1, + £D)e(k
HkT) %;(1+0L)D4 s(kT) + (I, + £D)e(kT),
®)
and
z{(k+ D) T} =z(kD)+Tr(kT) . )

In equations (7), (8), and (9), o € (—1,+1), s(kT) € R?, and
the derivative matrix

0/, D
D= ‘e T e g (10)
Oprp D,
is such that
D(NCB =0, (11)

where D,(T) € R“PP and D4(T) € RP®.

The frequency-domain characteristics of such closed-loop
digital model-following systems can be conveniently
elucidated by determining for such systems the closed-loop
transfer function matrix, G(z), relating the plant output
vector to the desired model output vector. The results of
Porter and Shenton [7] from the singular perturbation
analysis of transfer function matrices can then be used to
obtain the asymptotic form of G(z) as the sampling
frequency £=1/T — . These results thus greatly facilitate
the determination of the controller matrices K(7) € R* and
Ky(T) e R* | together with the derivative matrices
Dy(T) € RF7? and D4(T) € RP | such that the resulting
fast-sampling digital PID controller produces closed-loop
model-following behaviour of increasing fidelity as the
sampling frequency is increased. Indeed, in terms of the
open-loop step-response matrix

T
H(T)=[Ce¥Bdt e R™ (12)
0O

and the associated regularity matrix
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(13)

this singular perturbation analysis indicates that the
appropriate design equations for the digital PID controller
are

KD =TH YD +2D)7", (14)

Ky(D) = pKi(D), (15)
and

(1+ )2, Dy(D) =Jo(D)Z2 Dy(D) (16)
where

2#}721 s Orpp || Ol Oupy
Op,lfp 5 G?[F

amn

and 61,02, p,d4(7) € R*. The closed-loop transfer function
matrix, G(z), then assumes the diagonal asymptotic form

Z%;Il—p s Opp
F(z) = G2(z+1) (18)
O;},[—p s ——_—_———[p

22400, -1)24G 0

as f= lT — o0, thus indicating that fast and non-interacting

model-following behaviour occurs.

This closed-loop model-following behaviour is a
consequence ‘of the facts [1] that the slow modes of the
resulting closed-loop system become either asymptotically
unobservable or uncontrollable as f= 1; — o and that the
fast modes of the closed-loop system remain both
controllable and observable. Hence, only the fast modes
(which depend only on the restricted set of controller
parameters  {G;,02,a}) appear in thc asymptotic
closed-loop transfer-function matrix as f = -[f —> 0.

Indeed, the singular perturbation analysis {11{7] leading to
the asymptotic transfer-function matrix, ['(z), in equation
(18) indicates that the optimal choice of design parameters is
{o1,02,a} = {1%;—} since it is then evident that all the
poles of the resulting asymptotic transfer-function matrix lie
at the origin within the unit disc. However, in practice, the
sampling frequencies of fast-sampling digital PID
controllers are obviously finite and the associated optimal

parameter settings mat well differ significantly from their
asymptotically optimal settings.

Gengetic algorithms have previously been used [4][S]{6] to
tune the restricted set of controller parameters {01,062, 0}
for finite sampling frequencies. This restricted set facilitates
the optimisation of the fast modes of the closed-loop system
whilst the remaining controller parameters (which
cssentially determine the slow modes of the system) are
assigned fixed values (for example, p = 1 and 6 = 0.25).

However, since the slow modes of the closed-loop system
are present to some extent in the outputs of the closed-loop
svstem for finite sampling frequencies, it is therefore
pertinent to investigate the effects of slow-mode/fast-mode
tuning on model-following behaviour by using the enlarged
controller parameter set {G1,02,a,p,0} for such finite
sampling frequencies.

Thus, for example, if minimum maximum multivariable
generalised model-following error is regarded as the
ultimate design requircment, genetic algorithms can be
readily used to select the enlarged set of controller
parameters such that the measure of generalised
model-following error

i ; Il
£=2 Y {0, max [eﬁ')(r)‘ +X ¥ {p, max
4 ’ =1=1

ret{impulse)

Auﬁ”(z)] ;

(19
1s  minimised. In this measure of generalised
model-following error, ejm(t) is the model-following error in
the jrh channel when a command is applied to the ith
channel, Au;”(l) is the corresponding change in the jth
control input (over a sampling period), and ©; and py; are
weighting parameters.

3. ILLUSTRATIVE EXAMPLE

This procedure for the genetic slow-mode/fastmode design
of digital model-following systems for finite sampling
frequencies can be conveniently illustrated by considering
the F-16 aircraft {1] for which a digital PID controlier was
previously designed both non-genetically [ 1] and genetically
[4] using the restricted controller parameter sct.

It is desired to design a digital PID controller that minimises
the maximum multivariable generalised model-following
crror when the F-16 aircraft performs pitch-pointing and
vertical-translation manoeuvres for the F-16 flying at Mach
0.9 at an altitude of 15,000 ft. In these manoeuvres, it is
known that practical position and rate limits [8] are
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comfortably satisfied by selecting models with transfer
function [ 1}

- 50
g(S) - (s+2)(52+8s+25) : (20)

in both the pitch-angle and flight-path-angle channels.

The results of solving this model-following design problem
for the enlarged controller parameter set (withw ;=1 and p
=0.01 in equation (19)) by means of a genetic algorithm with
a population size N=50, a crossover probability p.=0.6, and a
mutation probability p,=0.01 are shown in Figure 2 over 100
generations. In Figure 2(a) the best-of-generation measure of
generalised model-following error is plotted against
generation number whilst, in Figures 2(b), (c), (d), (c), and
(), the associated best-of-generation controller parameters
61,02, o.,p, and 8 are respectively plotted against gencration
number. It can be seen from Figures 2(a), (b), (c), and (d)
that the minimal generalised model-following error
£=0.0272 and that the associatcd optimal enlarged
controller parameter set 1s {0,,0,,d,p, 08} =
{1.119,0.641,0.5423,13.728,0.2597}.  The time-domain
model-following behaviour corresponding to this set of
optimal controller parameters is shown in Figure 3. It is
evident that the slow-mode/fast-mode genetically tuned
digital PID controller gives ecxcellent model-following
behaviour. Indeed, this behaviour is superior to that obtained
in the case of the fast-mode genetically tuned digital PID
controller for which [9] the minimal value of the generalised
model-following error €=0.0621 with the associated
optimal restricted controller parameter set {c;,G,a}=
(1.081,0.4915,0.4801} (with p=1 and 8=0.25).

4. CONCLUSION

In this paper, genetic algorithms have been used to tune the
enlarged controller parameter set {o;,0,,a,p,8} for
fast-sampling digital PID controllers for finite sampling
frequencies. This enlarged controller parameter set
facilitates the tuning of both slow and fast modes of the
closed-loop system for finite sampling frequencies, and
significant improvements have thus been made in the case of
the F-16 aircraft when compared to the results previously
obtained non-genetically [1]. This genetic
slow-mode/fast-mode optimisation procedure has also been
shown to lead to improved modecl-following behaviour when
compared to the results previously obtained from genetic
fast-mode optimisation [9].
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Figure 2: Best-of-generation generalised model-following error and
controller parameters (T=0.01)
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