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ABSTRACT 

Genetic algorithms are used to  design digital multivariable PID controllers for robotic manipulators 
for typical trajectory-tracking tasks when various different performance measures are used. It is 
thus shown that, by using an appropriate performance measure, the set of controller parameters 
can be readily found that determines the optimal time-domain trajectory-tracking behaviour for such 
tasks. This use of genetic algorithms is illustrated by the design of digital trajectory-tracking PID 
controllers for a typical three-degree-of-freedom robotic manipulator. 

1. INTRODUCTION 

It was shown by Porter and Abidin [41 
that the design of digital trajectory-tracking 
controllers for robotic manipulators can be 
readily effected by using the methodologies 
of Porter et al [71 for the design of fast- 
sampling error-actuated digital multivariable 
PID controllers. These design methodologies 
are characterised by the following very 
important features: 

1 ) the design equations for the controller 
matrices are directly expressed in 
terms of the step-response matrices 
of the plants under control; 
the robustness characteristics of the 
controllers are simply expressed in 
terms of the step-response matrices 
of the nominal and actual plants. 

2) 

However, although these robustness 
results of Porter and Abidin 141 greatly 
facilitate the design of digital trajectory- 
tracking controllers for robotic manipulators, 
these theoretical results are valid only 
asymptotically (i.e., as the frequency of the 
digital PID controller becomes infinite). Since 
it has so far proved impossible to obtain 
theoretical non-asymptotic robustness results 
for digital multivariable PID controllers with 
f ini te sampling frequencies, genetic 
algorithms [ZI i l l  were used by Porter and 
Allaoui [51 t o  robustify such controllers for 
robotic manipulators performing typical 
trajectory-tracking tasks. This process of 
robustification was effected by using genetic 
algorithms t o  determine the optimal quadruple 

of controller turning parameters for such 
trajectory-tracking tasks (which include 
sudden changes in payload). These genetic 
design results of Porter and Allaoui [51 are the 
natural extension to  robotic control problems 
of the non-robotic results of Porter and Jones 
161 and Porter, Mohamed, and Jones [81. 

J 

In the genetic design procedure of 
Porter and Allaoui 151, the minimum integral 
error norm for any trajectory-tracking task 
was regarded as the ultimate design 
requirement; but it is important to  note that 
other performance measures can be used 
equally well in the context of genetic design. 
In this paper, a detailed comparison is 
therefore made of the performance of 
genetically designed trajectory-tracking 
controllers for robotic manipulators when the 
following three performance measures are 
used: 

1) the integral error norm; 
2) the weighted sum of the integral error 

norm and the integral error velocity 
norm; 
the weighted sum of the integral error 
norm and the integral control velocity 
norm. 

3) 

These general results are illustrated by the 
genetic design of robustified digital trajectory 
-tracking PID controllers for the three-degree- 
of-freedom robotic manipulator previously 
investigated by Porter and Allaoui [51. 



2. GENETIC DESIGN PROCEDURE D = SZ, (6eR') (1 2) 
is the positive diagonal derivative matrix, and peR' 
is the ratio of integral to  proportional action. 
In addition, 

(131 
is the step-response matrix of the nominal 
plant with state-space triple (A, B, C) which 
is used for design purposes in obtaining the 
controller for the actual plant with state- 
space triple (A, B, C) governed by equations 
(1) and (2). The results thus obtained by 
Porter and Abidin [41 elucidate the required 
robustness characteristics of the digital PID 
controllers governed by equations (51, (61 and 
(7). 

g(l) = 1' 0 &%&eRM 

- - -  

The methodology of Porter et al [71 
for the design of error-actuated digital PID 
controllers relates to  linearised multivariable 
plants governed on the continuous-time set 
T = [0, + a) by state and output equations of 
the respective forms 

i(f) = h ( f )  + Bu(t) (1  1 
and 

Y ( t )  = Wt) . (2) 
I n  e q u a t i o n s  ( 1 1  a n d  ( 2 1 ,  
x(t)eR", u(t)eR', y(f)eR', Ad"", B a d ,  a n d 
CeRh. In addition, it is assumed that the 
plants under control are (like most robotic 
manipulators) completely irregular so that 

rank CB = 0 (31 
and 

rank CAB = 1 . (4) 
The digital PID controllers for such plants are 
governed on the discrete-time set 
TT = (0, T, 2T, ..., kT, ...} b y  cont ro l - law 
equations of the form 

In equation (51, TeR' is the sampling period, K,eRu 
and K2eRu are the proportional and integral 

controller matrices, and the vectorsr(k2)eR' 
and z(k2)eR' are generated in accordance 
with the difference equations 

s{(k + 1)Z) = - as(k2) +e&?') , (6a) 

u(k?) = K&Z) +K$(kZ) . (5) 

r(k?) = - - 2 (1 + a)Ds(kZ) + (Z' + ?D)e(kZ),(6b) 2 
T 

and 

Moreover, in equation (61, ae( - 1, + I), 
s(k?)eR', e ( k q  = v(k?) -y(kZ)eR' is the error 

vector, v(kl)eR' is the set-point command 
vector, and the derivative matrix DeR' is 
such that 

rank D = 1 . (8)  
In order to  investigate the robustness 

characteristics of the error-actuated digital 
PID controllers governed by equations (51, (61 
and (71, Porter and Abidin [41 expressed the 
design equations for the controller matrices in 
equation (5) in the forms 

(9) 
and 

In equations (9) and ( IO) ,  

is the positive diagonal turning matrix, 

z{(k + 1)q = z ( k q  + Zk(kZ) . (7) 

K, = Ti?'Z(TIl + 2D)-'eR' 

K2 = pG-'(Z)C(n, + 2D)- 'eP . (1  0) 

c = uz, (UeR') (1  11 

However ,  t hese  t h e o r e t i c a l  
robustness results of Porter and Abidin 141 
are restricted to  the asvmmotic case of fast- 
sampling error-actuated digital PID controllers 
for which the sampling frequency 
f = IIT - m. Since it has so far proved 
impossible to  solve theoretically the 
corresponding non-asvmptotic problem, 
Porter and Allaoui [51 used genetic algorithms 
to  solve the following version of the 
robustness problem : 

In the case of finite sampling 
frequencies, determine the quadruple 
{a,  U, p, 6) of controller design 
parameters such that optimal 
trajectory- trac king behaviour is 
obtained when a given robotic 
manipulator is controlled by a digital 
PID controller so as to track a given 
trajectory. 

It is clear that the solution of this problem 
will provide an optimal quadruple 
{a, U, p, 8 )  of controller desiljh parameters 
which is dependent upon the given 
manipulator, the given task, and the measure 
of trajectory-tracking performance used in the 
optimisation procedure. 

In order to  use genetic algorithms to  
solve this problem, Porter and Allaoui t51 
showed that it is necessary only to  encode 
the quadruple {a, U, p, 6) of controller 
design parameters in accordance with a 
system of concentrated, multi-parameter, 
mapped, fixed-point coding [ l  I. Thus, each 
quadruple (a, U, p, 8 )  o f  control ler 
parameters is represented by a string of 
binary digits. T h e n ~ f o t t i o w l n g a n ~ o i c e  of 



an initial generation of such strings, 
successive generations of strings are 
obtained using the basic genetic operations of 
selection, crossover, and mutation [ I  I. These 
operations ensure that the successive 
generations of error-actuated digital PID 
controllers thus produced by the genetic 
algorithm tend to  exhibit improving trajectory- 
tracking performance in respect of any 
measure of the quality of such performance 
specified by the designer for any given 
robotic manipulator. 

3. ILLUSTRATIVE EXAMPLE 

This general approach to  genetic 
robustif ication can be conveniently illustrated 
by designing trajectory-tracking digital PID 
control lers when various dif ferent 
performance measures are used in the case 
of the typical three-degree-of-freedom robotic 
manipulator previously investigated by Porter 
and Allaoui [51. In this case, the manipulator 
is governed on Te[O, + -) by state and output 
equations of the respective forms 

M(e)B + h(e,e) + g(e) = U (1 4a1 
and 

Y =ne, A 1 4b) 
where e a 3  is the vector of joint angles,u& 

is the vector of joint torques, ye@ is the 
positional vector of the end effector in 
Cartesian space, M(e)eRm is the inertia 
matrix, h(e,8)eR3 is the vector of centrifugal 
and Coriolis torques, j@)eR3 is the vector of 
direct kinematic relationships, and g(e)& is 
the vector of gravitational torques. The 
numerical values of the inertial and kinematic 
parameters for a typical three-degree-of- 
freedom robotic manipulator are given by 
Petropoulakis 131. 

In the neighbourhood of any operating 
point in task space, this manipulator is a 
completely irregular sixth-order linear 
multivariable plant with three inputs and three 
outputs. In order to  illustrate the genetic 
design procedure, it is instructive to  design 
trajectory-tracking digital PID controllers for 
this robotic manipulator when undertaking the 
same task as that investigated by Porter and 
Allaoui 151. Thus, consider that it is desired 
to  design a controller for the linearised 
dynamics of this manipulator corresponding 
the end-effector position (0, 0.45, Olm. It is 
intended that this controller be used to  cause 

the end effector of the robotic manipulator t o  
track straight-line trajectories between the 
following points: 

I 1-0.5, 0, -0.2lm I 

II (-0.4, 0.3, Olm , 
Ill (0.3, 0.3, 0.3lm I 

IV (0.3, 0.3, 0.31m , 
V 1-0.45, 0.35, Olm , 
VI 1-0.45, 0.35, Olm . 

These transitions are effected with 
'trapezoidal' acceleration, cruise, and 
deceleration profiles in the following times: 

I -b /I 1.5s , 
I/ 4 Ill 2s I 

Ill -t IV 0.5s , 
IV -. V 2.5s , 
V 4 VI 0.5s . 

In addition, after the initial transition I -. /I, 
the manipulator grasps an additional payload 
of 5kg. It is evident that, because of the 
intrinsic non-linearity of the robotic 
manipulator and the sudden variation in 
payload, this tracking task constitutes a 
formidable test of robustness for the digital 
PID controller. 

The genetic design of this controller 
for this trajectory-tracking task can be readily 
undertaken by minimising any measure of 
tracking performance specified by the 
designer. Thus, for example, consider the 
cost function 

, (15) 
where 

, (16) 

r = l1 rl + A, r, + A, r3 

r, = 1; le(t)Idt 

, (171 

, (18) 

and A,, A,, A, are non-negative weighting 
parameters. In equations, (161, (17) and 
(1 81, z is the duration of the tracking task, e@)& 
is the trajectory-tracking error vector in 
Cartesian space, Ae(t)eR3 is the change in the 
error vector e@)& over a sampling period, 
Au(t)& is the change in the control vector 
u(t)eR3 over a sampling period, and!.! 
denotes the Euclidean norm. The special 
case of genetic design considered by Porter 
and Allaoui [51 was that corresponding to  the ~ ~ _ _  ~ ___ -~ 



cost function, r, in equation (15) with 
A, = 1, A, = 0, and A, = 0. However, the 
results of performing the genetic 
robustification procedure over 50 generations 
in more general cases are shown in Tables 1 
and 2 for a population size N = 30, a 
crossover probability pc = 0.6, and a 
mutation probability p ,  = 0.005. Thus, the 
results obtained by genetically minimisingr 
with A, = 1 and A, = 0 for different values 
of A, are shown in Table 1; whilst the 
corresponding results obtained by genetically 
minimising I' with I ,  = 1 and A, = 0 for 
different values of A, are shown in Table 2. 
It is evident from Table 1 that, asA, 
increases, the value of r2 decreases while 
the value of I?, increases: the associated 
'smoothing' of the trajectory-tracking 
behaviour of the robotic manipulator is 
demonstrated by comparing the optimised 
time-domain behaviour of [e@) [ corresponding 
to A, = 1, A, = 0 and A, = 0 shown in 
Figure 1 with that corresponding to  
A, = 1, 1, = 5 x 104, and A, = 0 shown in 
Figure 2. Similarly, it is evident from Table 2 
that, as I ,  increases, the value ofr, 
decreases while the value of I?, increases: 
the associated 'smoothing' of the trajectory- 
tracking behaviour of the manipulator is 
demonstrated by comparing the optimised 
time-domain behaviour of le@) I corresponding 
to  A, = 1, A, = 0 and A, = 0 shown in 
Figure 1 with that corresponding to  
A, = 1, A, = 0 and A, = 0.01 shown in 
Figure 3. It also transpires that the joint 
torques generated by the digital PID 
controllers are much 'smoother' in the case 
of the time-domain responses shown in 
Figures 2 and 3 than in the case of that 
shown in Figure 1. Finally, it is important to  
note from Tables 1 and 2 that the quadruples 
{a, U, p, 6) of optimal controller parameters 
corresponding to  these quite different time- 
domain characteristics frequently do not 
differ from each other very much (and yet the 
genetic algorithm has no difficulty in 
discriminating between these quadruples). 

4. CONCLUSION 

In this paper, genetic algorithms have 
been used to  design digital multivariable PID 
controllers for robotic manipulators for typical 

trajectory - tracking tasks when various 
different performance measures are used. It 
is thus shown that, by using an appropriate 
performance measure, the set of controller 
design parameters can be readily found that 
determines the optimal time-domain 
trajectory-tracking behaviour for such tasks 
(which include sudden changes of payload). 
This use of genetic algorithms has been 
illustrated by the design of digital trajectory- 
tracking PID controllers for the typical three- 
degree-of-freedom robotic manipulator 
previously investigated by Porter and Allaoui 
151. 
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4 r rl r2 r3 (Y 

0 1.399X1OJ 3.399~10~ l.201x107 4.101 0.1104 

103 1 .571~10~ 1.466~10~ 1.052~10-~ 2,411 0.1057 

2x103 1.700X10a 1.535~10~ 8.255~10' 2.410 0.0862 

3x1$ 1.729~10~ 1.577~10~ 5.067~10~ 2.26 0.1045 

6x103 1.863~10~ 1.863~10~ 4.01~10' 2.07 0.1092 

5 ~ 1 0 ~  2.161~10' 1.949~10' 4 . 2 4 ~ 1 0 ~  2.44 0.0951 

Table 1 : Genetic designs ( AI = 1 A, = 0 ) 

U P 6 

0.8640 17.6337 1.280X10' 

0.8786 18.2956 1.990X10' 

0.8568 18.6693 2 .134~10~ 

0.8832 19.9679 2.553~1W' 

0.8810 18.2146 2.377~10" 

0.8870 11.4397 1.783~10' 

0.1389 

1.305 

1.759~10~ l.088x107 

I I I 

1.878 0.1485 

1.399~10~ I l.201x107 I 4.100 I 0.1104 

2 .280~10~ 

2 .616~10~ 

5 .660~10~ 1.541 0.1493 

4.440~10' 1.505 0.1343 

1.753~10" 

7.784~10~ I 4.250~10-~ I 1.311 I 0.1248 

2 .592~10~ 1.287 0.1142 

4 I II 
0.8640 I 17.6337 I 1.280~10' 11 

b.1016 

Table 2 : Genetic designs ( A, = 1 , X2 = 0 ) 
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Fig 1 : Time-domain behaviour (A, = 1, h2 = 0, h3 = 0 ) 
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Fig 2 : Time-domain behaviour (A, = 1, A, = 5x104, h3 = 0 ) 
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Fig 3 : Time-domain behaviour (A, = 1, A2 = 0, h3 = 0.01 ) 


