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ABSTRACT 
In this paper, genetic algorithms are used to design 
computed-torque/fuzzy-logic controllers for robotic 
manipulators. It is shown that this use of genetic 
algorithms provides a very effective means of determining 
the optimal set of fuzzy rules as well as the optimal 
domains of the associated fuzzy sets of the fuzzy-logic 
components of such controllers. It is demonstrated that 
these computed-torque/fuzzy-logic controllers are more 
robust than computed-torque/fuzzy-logic controllers in 
which only the domains of the fuzzy sets are genetically 
determined. 

1. INTRODUCTION 

In recent years, much research effort has been expended on 
the development of high-performance trajaectory-tracking 
controllers for non-redundant robotic manipulators. 
However, most of the controllers thus developed are too 
complicated for routine industrial use. Such complicated 
controllers have therefore failed to replace the relatively 
simple computed-torque controllers [ 11 frequently used in 
practical applications of industrial robots. This 
circumstance suggests that the following approach to the 
design of practical high-performance controllers for robotic 
manipulators be adopted: 

(i) retain the well-proven computed-torque structure of 
such controllers: 

(ii) enrich the control algorithms embodied in the 
computed-torque controllers. 

The objective of such a design strategy is to maintain the 
simplicity of computed-torque controllers whilst increasing 
their robustness. 
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The robustness problems associated with conventional 
computed-torque controllers [ 11 for robotic manipulators 
can be readily demonstrated. Thus, if all elastic effects are 
neglected, the dynamical behaviour of such non-redundant 
manipulators is governed by non-linear vector-matrix 
differential equations of the form 

M(8)8 + h(8,8) = Z . (1) 

In equation (I), M(8) E %""" is the inertia matrix, 

h(8,8)€%" is the vector of centrifugal, Coriolis, 

gravitational, and frictional torques, z E %' is the vector 
of actuator torques, and 86%' is the vector of joint 
angles. If all the dynamical characteristics of such 
manipulators are known precisely, it is possible to use 
computed-torque/proportional-plus-derivative controllers 
governed by control-law equations of the form 

z = M(8)(8, +U) + h(8,8) (2) 

where 

u=K,e+K,e  . (3) 

In equations (2) and (3), 8, E %" is the vector of desired 

joint angles, e = 8, - 8 E %' is the vector of joint-angle 

errors, K, E % " ~ '  is the proportional gain matrix, and 

K, E %""" is the derivative gain matrix. It follows from 
equations (l), (2), and (3) that 

e+  K , i  + K,e=O (4) 
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which indicates that the controller gain matrices 
K, E %""" can be readily chosen so 
as to produce linear second-order error dynamics with any 
required characteristics. 

and K, E %""" 

However, in practice, the dynamical characteristics of 
robotic manipulators are rarely known precisely. In such 
cases, the computed-torque control law equation (2) will 
have the form 

z = M(0)(0, +U) + ;(e&) , ( 5 )  

where M(6) # M(0) E 3""" , is the estimated value of 

the inertia matrix and i(6) # h(0) E '%" is the estimated 
value of the centrifugal, Coriolis, gravitational, and 
frictional vector. It is evident from equations (2), (3), and 
(5) that, in such practical cases, the error dynamics are 
governed by the vector-matrix differential equation 

e + K,e + Kle = M-l (e)[ {h(0,6) - c(0, e)} 
+{M(0) - M(6)}6] . (6) 

Equation (6) indicates that a choice of the controller 
matrices K, E %""" and K, E %""" made on the basis 
of equation (4) will not normally in practice produce 
satisfactory error dynamics. 

In order to circumvent such robustness problems, adaptive 
computed-torque controllers have been proposed [ 11. 
However, although these adaptive controllers retain the 
computed-torque strkture, the incorporation of explicit 
parameter-identification schemes makes such controllers 
too complicated for routine practical use. In an endeavour 
to avoid such complications, Porter and Zadeh [2] therefore 
introduced a new class of computed-torque/fuzzy-logic 
controllers. Such controllers are non-adaptive but differ 
from conventional computed-torque/proportional-plus- 
derivative controllers in that the linear control law (3) is 
replaced by a non-linear control law of the form 

U = K(e, e) (7) 

expressed in terms of fuzzy logic. It was demonstrated by 
Porter and Zadeh [2]  that such computed-torque/fuzzy- 
logic controllers are more robust than conventional non- 
fuzzy computed-torque controllers. 

However, in these computed-torque/fuzzy-logic controllers 
of Porter and Zadeh [ 2 ] ,  only the domains of the fuzzy sets 
associated with the fuzzy rules were determined 
genetically. In the present paper, these results are 
significantly extended by using genetic algorithms to 
determine the optimal set of fuzzy rules as well as the 

optimal domains of the associated fuzzy sets embodied in 
the computed-torque/fuzzy-logic controllers. It is shown 
that the resulting computed-torque/fuzzy-logic controllers 
are more robust than the controllers of Porter and Zadeh 
[2]  (which, in turn, were shown to be more robust than 
conventional computed-torque/proportional-plus-derivative 
controllers). It is thus evident that the procedure for 
genetic rule induction described in this paper is very 
effective in the design of high-performance controllers for 
robotic manipulators. 

2. GENETIC DESIGN P 

The computed-torque/fuzzy-logic controllers under 
investigation are governed by control-law equation of the 
forms (2) and (7). The design problem is to express the 
non-linear controller function, K(e,e), in equation (7) in 
terms of fuzzy logic; and the associated design objective is 
to minimise the cost function 

when the robotic manipulator under control performs a 
trajectory-tracking task of duration T. This design problem 
can be solved very readily by using genetic algorithms to 
determine the optimal set of fuzzy rules as well as the 
optimal domains of the associated fuzzy sets for such 
computed-torque/fuzzy-logic controllers. 

The simplest form of these controllers is governed by the 
decoupled version 

U, = k,  (ei ,ei)  (i = 1,2 ,..., n) (9) 

of equation (7), in which each of the n joints is controlled 
separately. Thus, each of the n decoupled fuzzy-logic 
controllers is governed by a rule of the following generic 
form: 

Ife, is Pi(J) and e, is Qi'k' , 
then ui is R,") (i=1,2 ,..., n) . (10) 

The entire sets of fuzzy sets in the e , ,e i ,  
spaces are, respectively, 

and ui 

Q~ = {Q,'') , Qi('), __. Qi'" } (i = 1,2, .. . , n) , (1 lb) 

and 
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These entire sets of fuzzy sets are symmetric and are, 
respectively, defined on the domains 

(i = 1,2 ,..., n) . 
[-ai ,+ail, [-Pi,+PiI, and [-Yi ,+Yi 1 9  

It is evident from the generic rule (10) that there are 
altogether (pqn) rules with different antecedents, for each 
of which the appropriate consequent must be selected from 
the entire sets Ri (i = 1,2, .. ., n) of fuzzy sets. In addition, 
there are 3n domains of these fuzzy sets for each of which 
the appropriate parameters ai,Pi, and 

y i  E%+ Ii = 1,2 ,..., n) must be determined. In the 
genetic design procedure, each computed-torqnelfuzzy- 
logic controller governed by equations (2) and (9) is 
represented by an entire string of (pqn+3n) concatenated 
sub-strings of binary digits: in each such entire string, the 
first (pqn) sub-strings represent in encoded form the 
consequents of the rules, whilst the remaining 3n sub- 
strings represent in encoded form the domains of these 
rules. The Darwinian fitness, a, of each entire string of 
binary digits can be conveniently expressed in the form 

where v E '%+ is an appropriately large number and the 
cost function, r , is given by equation (8). 

The evolutionary process involved in the genetic design of 
these computed-torque/fuzzy-logic controllers for robotic 
manipulators starts by generating an initial population of 
binary strings. Then, using the standard genetic operations 
of selection, crossover, and mutation [3], successive 
populations of binary strings are caused to evolve. In this 
way, computed-torque/fuzzy-logic controllers of 
progressively increasing fitness are produced. This 
evolutionary process is allowed to continue until no 
significant further improvement is achievable, when the 
binary string representing the controller with the largest 
achievable fitness, Qmx , is obtained. In view of 
equation (12), this computed-torque/fuzzy-logic controller 
has the smallest achievable cost function, r ~ n  . This 
evolutionary process thus provides the optimal set of fuzzy 
rules and the optimal domains of the associated fuzzy sets 
for the fuzzy-logic components of the required controller. 
This optimal computed-torque/fuzzy-logic controller 
minimizes the cost function, r, when the robotic 
manipulator performs the specified task of duration T. 

torque/fuzzy-logic controller for the direct-drive two-link 
robotic manipulator located in the laboratories of the 
University of Salford. In this case, n=2, p=5, q=5, and -7. 
Indeed, in the terminology of equations (1 1) , 

Pi ={NB,NS,Z,PS,PB} (i=1,2) , (13a) 

Qi = {NB,NS,Z,PS,PB} (i = 1,2) , (13c) 

and 

Ri ={NB,NM,NS,Z,PS,PM,PB} (i=1,2) . (13c) 

There are therefore 5 x 5 = 25 rules for each joint of the 
robotic manipulator. But it is assumed that the set of 
optimal rules for each joint includes the following rule: 

I f e i i s Z  and ei is Z ,  
then ui is Z (i=1,2) . (14) 

The removal of this rule, and the assumption of symmetry 
amongst the remaining 24 rules, thus leads to the need to 
find the appropriate consequent in only 12 rules for each 
joint of the robotic manipulator. 

In each such rule, the possible linguistic values of the 
constituent fuzzy sub-sets of the sets, Ri(i=1,2) , 
involved in these consequents (see equation (1 3c)) can be 
readily encoded using 3 bits, as shown in Fig 1. It is thus 
evident that the entire set of consequents of the rules for 
each computed-torquelfuzzy-logic controller can be 
expressed by 12x3x2=72 bits. If, in addition, each of the 6 
domains is represented by 10 bits, the entire set of domains 
involved in each such controller can be represented by a 
further 6x10=60 bits. This means that each computed- 
torquelfuzzy-logic controller can be represented by a string 
of 72+60=132 bits. 

In applying the genetic algorithm in this case, excellent 
results were obtained by using a population size N=20, a 
crossover probability pc = 0.8 , a mutation probability 
pm = 0.05 , and by allowing evolution to occur over 500 
generations. The fitness of each design was determined by 
evluating the cost fuction in equation (8) when the robotic 
manipulator performed a trajectory-tracking task of 
duration 4.2s with no payload. The resulting genetically 
induced set of optimal fuzzy rules are shown in Figs 2(a) 
and 2(b) for the first and second joint of the manipulator, 
respectively: the genetically determined optimal domains 
of the associated fuzzy sets are 

a, =0.00115 , 
PI =1.733 , 

3. ILLUSTRATIVE EXAMPLE 

This general methodology for genetic rule induction can be 
conveniently illustrated by designing a computed- 
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y, =795 . 

and 

a2 =0.00824 , 
p2 =2.178 , 
y2 =94.8 . 

This genetically designed computed-torquelfuzzy-logic 
controller performs well its trajectory-tracking task, both in 
the absence of payload and in the presence of a 4kg 
payload. Indeed, this computed-torquelfuzzy-logic 
controllers is very robust since only minimal performance 
degradation occurs as a result of the unmodelled dynamics 
represented by the payload. In fact, in the absence of 
payload, the value of the cost function is 

whereas, in the presence of payload, the value is 

r, = 45.3 x io4 . (17) 

In the case of the computed-torque/fuzzy-logic controller 
of Porter and Zadeh [2] (in which only the domains of the 
associated fuzzy sets were genetically determined), the 
corresponding values of the cost function are 

and 

It is evident that I?, < r, and r, < r, , thus indicating 
the superior robustness of the present computed- 
torque/fuzzy-logic controller (in which the optimal set of 
fuzzy rules as well as the domain of the associated fuzzy 
sets are genetically determined). 

4. CONCLUSION 

In this paper, the results of Porter and Zadeh [2] for the 
genetic design of computed-torquelfuzzy-logic controllers 
for robotic manipulators have been significantly extended. 
In particular, genetic algorithms have been used to 
determine the optimal set of fuzzy rules as well as the 
optimal domains of the associated fuzzy sets embodied in 
these controllers. It has been shown that the resulting 
computed-torque/fuzzy-logic controllers are more robust 
than the controllers designed previously by Porter and 
Zadeh [ 21. 
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Sign Bit Value Bits Numeric Value Fuzzy Value I 
0 

0 

1 1  -3 NB 
1 0  -2 NM 

0 

091 

0 1  -1 NS 

0 0  0 Z 

Figure 1: Binary representation of the fuzzy consequents 

I 1 0 1  +1 I PS 

Figure 2(a): Genetically induced fuzzy rules: first joint of robotic manipulator 

1 1 0  +2 PM 

Figure 2(b): Genetically induced fuzzy rules: second joint of robotic manipulator 

1 I 1 1  
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