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ABSTRACT  

This paper studies the stochastic vehicle routing problem 
with soft time windows (SVRPSTW). Vehicles with lim-
ited capacity are routed from the central depot to a set of 
geographically dispersed customers with unknown de-
mands, predefined presence probability and time windows. 
The late arrival at the customer is allowed by adding a 
penalty to the objective value. A mathematical model is 
developed to describe the behavior of this kind of delivery 
system. A novel age based genetic scheduling algorithm is 
proposed as an optimization tool to solve this intractable 
vehicle routing problem in order to minimize the total cost. 
The effectiveness of the proposed scheduling algorithm is 
illustrated by using a set of randomly generated numerical 
examples. The results indicate that the proposed genetic 
approach is a simple but effective means for solving these 
problems. 

1 INTRODUCTION 

Designing optimal delivery or collection routes, where ve-
hicles start and end at a single central depot, and visit a 
number of geographically scattered customers, is generally 
referred to as the Vehicle Routing Problem (VRP). Over 
the past two decades, VRP has become an important re-
search topic in industrial and commercial areas. This prob-
lem can be defined by using a totally weighted complete 
graph G=(V,E), where V={v1, v2,…vn} is a set of vertices 
in which v1 is the central depot, E={(vi, vj): vi, vj∈V} is a 
set of edges associated with a non-negative cost matrix C 
and the Euclidean distance between two vertices is usually 
used as that cost. It is assumed that C satisfies the triangle 
inequality, i.e. cij+cjk≥cik, for all vi, vj, vk. Each customer is 
associated with a non-negative demand di to be collected 
by vehicle. A fleet of m identical vehicles of capacity Q is 
located in the central depot v1. The objective of VRP is to 
determine a minimum cost service route for that fleet of 
vehicles departing from and ending at the central depot. 

Each customer, the vertex other than v1, must be assigned 
to one vehicle and visited exactly once. The VRP is a well-
known non-polynomial hard (NP-hard) problem and most 
techniques for solving the VRP originated from the simple 
Traveling Salesman Problem (TSP) (Christofides et al. 
1981, Golden and Assad, 1988). 

Many companies experienced difficulties in applying 
existing VRP concept in designing their logistics system 
because these mathematical models were usually formu-
lated under unrealistic assumptions (Hicks, 1999). Most 
existing VRP models oversimplify the actual logistics sys-
tem by assuming some system parameters (e.g. vehicle 
travel time, customer presence, customer demands, etc.) as 
deterministic values to facilitate the analysis. In most real-
life distribution applications, it may not be possible to 
know all information about customers before designing 
service routes. Stochastic information occurs, and has a 
major impact on both how the problem is formulated and 
the final solution. The rise of stochastic information leads 
to the Stochastic Vehicle Routing Problem (SVRP), which 
is generally regarded as computationally intractable (Gen-
dreau, et al. 1995). 

Moreover, time window is a natural characteristic in 
many distribution system. Each vertex vi may have a time 
window constraint [ai, bi] where ai and bi are the earliest 
and latest bound of the time window. Most previous stud-
ies focused on the hard time window constraint, which 
means the service at any customer must be taken during its 
time window. If the vehicle reaches to the customer vi be-
fore the earliest bound of its time window, a waiting time 
wi=(ti-ai) is incurred, where ti is the arrival time. But the 
arrival time later than the latest bound of customer’s time 
window is strictly forbidden. Recently, the Vehicle Rout-
ing Problem with Soft Time Windows (VRPSTW) has 
been studied (Koskosidis, et al. 1992, Ioannou et al. 2002) 
since some or all customers’ time windows are not so strict 
but can be violated with appropriate penalties in some real-
life problems. One example is bank delivery system, if a 
vehicle, which is sent to collect cash from different bank 
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branches to the central bank, cannot go back to the central 
bank in the current day, thus losing one day’s interest. But 
the route is feasible and the result is acceptable if the inter-
est is not high. Usually, the time penalty is proportional to 
the duration of time in excess of the latest time window. 
But the vehicle number and/or total travel distance may be 
reduced. In some cases, the cost savings may be larger than 
the penalty cost for time violation.  

The paper studies the stochastic vehicle routing prob-
lem with soft time windows (SVRPSTW), which combines 
characteristics of SVRP and VRPSTW. The stochastic 
elements in such kind of problem include stochastic de-
mands and stochastic customers. All customer are stochas-
tic customers and each of them has a probability, pi, of be-
ing present. Each customer  has a stochastic demand, di, 
which is governed by a known probability distribution. 
Readers can refer to Gendreau et al. (1996) for a compre-
hensive summary of the scientific literature. It is assumed 
that the maximum value of demand does not exceed the 
vehicle capacity. All demands are assumed discrete and in-
dependent. The demand at each customer is an unknown 
variable until the vehicle arrives at that location. If any 
customer is absent, its demand is regarded as zero. 

The SVRPSTW is much more intricate than the classic 
VRP. The goal of this research is to develop an effective 
means to determine optimal delivery plans for SVRPSTW 
systems. The remainder of the paper is organized as fol-
lows. In Section 2, a two-stage recourse model for 
SVRPSTW is formulated to evaluate the expected routing 
cost for a specified solution. A new production scheduling 
algorithm is developed by using the techniques of genetic 
algorithms (Goldberg, 1989) in Section 3. In the proposed 
algorithm, an additional attribute, called “age,” is included 
to enhance the computational speed and the quality of the 
final solution. The effectiveness of the proposed algorithm 
is illustrated by using numerical examples, which are de-
scribed in Section 4. The conclusion follows in Section 5. 

2 THE MODEL 

Due to the uncertainty of demand and customer presence, a 
vehicle may not always follow its service route as sched-
uled. The SVRPSTW belongs to the class of “a priori op-
timization problem” which can be modeled by a stochastic 
programming framework and solved in two stages. The 
first stage solution consists of no more than m transporta-
tion routes. These routes satisfy: 1) each route starts and 
ends at the central depot; 2) each customer is visited ex-
actly once by one vehicle. Whether a customer is present 
or not is known no later than upon leaving the preceding 
customer. So the next present customer in this route can be 
determined immediately. Since the real demand of each 
customer is unknown when the prior route is designed, it’s 
probable that the vehicle capacity, Q, is exceeded during 
the service. In this case, route failure is said to occur. One 

recourse action for this exception is acted at the second 
stage. The vehicle returns to the depot to unload and then 
resumes service at the last visited customer whenever the 
vehicle capacity becomes exceeded; or resumes service at 
the next present customer along its route if the vehicle ca-
pacity is exactly attained. Moreover, the vehicle skips any 
absent customer at the second stage. The recourse action 
for route failure generates an additional cost and the skip-
ping action achieves a potential cost saving according to 
the triangle inequality. The customer’s presence probabil-
ity and its stochastic demands have different effects on the 
solution. Gendreau et al. (1995) reported that stochastic 
customers are more difficult to handle than stochastic de-
mands. 

In some VRPs studied in some papers, an element si is 
set to the service time (loading/unloading) at customer vi. 
To simplify the analysis and computation, it is assumed 
that the service time at any customer is zero in this paper. 
The generality of the problem considered is not restricted 
by this assumption because any SVRPSTW instance with 
si≠0 can be transformed into an equivalent instance with 
zero service time for all customers. Obviously, define '

ijt  

and [ '' , ii ba ] as the new travel time from vertex vi to vj and 
time window of vertex vi with si≠0. So there exist 

iijij stt +='  and 

[ ] [ ]),min(),,max(, 1111
''

iiiiiii stbbtaaba −−+= . The a1 and 
b1 at central depot imply the starting time of vehicles and 
time limitation for all routes. It is assumed that all routes 
have same time limitation and all vehicles start at time 
zero, thus a1=0. This assumption is reasonable since it is 
hardly to know how many routes needed and how these 
routes composed in advance. 

The objective is to design a first stage solution so as to 
minimize the expected cost of the second stage solution. 
The second stage cost consists of the cost of the first stage, 
the expected cost associated with recourse actions and the 
expected penalty associated with the time violation. The 
two-stage recourse model here is inspired by the nonlinear 
stochastic integer program with recourse for VRPSDC 
(Gendreau et al. 1995) and three-index recourse model for 
VRP with stochastic travel time (Laporte et al. 1992). In 
this paper, all distances are represented by Euclidean dis-
tance, and the velocity of all vehicles is assumed to be 1 
unit. That is, numerically the travel cost cij, the travel time 
tij and the Euclidean distance between the vertices equal to 
each other. 

It is assumed that there are m vehicles in the feasible 
solution. Let r={r1, r2,…rm} be a particular solution in 
which rk is the sub tour dedicated to kth vehicle. Let rk={v1, 
vi,…,vj, v1} be a particular sub tour which means the trav-
eling sequence is v1→vi→ …→vj→v1 serviced by vehicle 
k. And assuming there are only kn (kn ≤ n) vertices in the 
kth sub route, thus every vkn+1 is v1. Relabel the vertices and 
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the kth sub route is expressed as { v1, …,vkn,vkn+1=v1}. Let 
zk(S) be the expected cost of the kth sub route at the second 
stage. So the entirely expected cost z(S) is the summation 
of all sub routes. Define following variables used in this 
model: 

 
m:   the vehicle number, all vehicles are identical; 
f:    the cost of employing a vehicle; 

ji vvc , :  the travel cost on edge (vi, vj); 

ivp :  the presence probability of vertex vi; 

)(gPk
i :  the expected additional cost incurred by the route 

failure that happened at the ith customer in route k 
with the remaining capacity g on arrival at the ith 
customer; 

Q:   the vehicle capacity; 
λ :   the fixed time penalty coefficient for all vertices; 
h:   a vector of stochastic valuables corresponding to 

customer demands (including zero demand). Each 
realization of h is called a “state of the demand”; 

H:   the whole space of h, H is finite in this model; 
)(hyk

i :  the lateness time when vehicle arrives at the ith 
customer in route k in the state of demand h; 

ivd :  the demand value of customer vi; 

dvi
q , :  the demand probability in customer vi whose 

value is equal to d; 
k
hp :  the probability of the state of demand h in route k; 

k
iht :   the service beginning time at the ith customer in 

the kth route in the state of demand h. 
 
The stochastic recourse model is: 
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In the above model, equation (1) is the objective func-
tion of the problem. Equation (2) computes the expected 
cost of single route. The first item of equation (2) com-
bines of the expected first stage cost minus cost saving by 
skipping absent customers. Constraint (3) enforces lower 
and upper bounds on the number of vehicles. If mm = , 
vehicle number is constant. Recursive function (6) with 
equations (5), (7) and (8) specify the expected non-
negative additional distance of the kth route if the route 
failure occurred, given the residual capacity of the vehicle 
is equal to g upon arriving at customer vi. Moreover, if the 
customer’s demand can be delivered separately, just substi-
tute drki

dgQ ,−+  for drki
dQ ,−  in equation (7). Equations 

(9) and (10) calculate the time penalty of the ith customer 
along the kth route in the state of demand h. This paper as-
sumes all customers have same time requirement. Unlike 
the deterministic VRPTW, the arrival time maybe changes 
in accordance with the changing of customer demand and 
presence. It is worth noting that k

iht  is the time when the 
vehicle begins to serve the ith customer in route k other 
than reaches to that customer. If the remainder vehicle ca-
pacity is less than the customer’s demand upon arriving at 
customer, the service cannot begin until that vehicle re-
turns to depot to unload and goes back to that customer 
again. The above model reflects the true expected travel 
distance and the expected lateness time penalty. The pen-
alty cost for route failure is reflected by additional travel 
distance. Obviously, this objective function is a nonlinear 
stochastic integer program with recourse and heuristic ap-
proach would appear appropriate. 
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3 AGE BASED GENETIC ALGORITHM 

Since the SVRPSTW is a highly non-linear problem, any 
attempt to determine the optimal route by means of non-
linear integer programming techniques is very difficult if 
not impossible. Genetic Algorithms (GAs), which were 
firstly introduced by Holland (Holland, 1975), are very 
easy to understand and applicable to a many kinds of prob-
lems. GA is a stochastic global search technique that imi-
tates the natural process of evolution by using genetic op-
erators. For many years, GA has been proved to be 
effective and successful in a wide variety of search do-
mains, even for non-linear, multi-modality, high-
dimensionality, discontinuity and noised mathematical 
models. Therefore, GA has been widely applied in solving 
TSPs and VRPs. In J. Grefenstette et al. (1985), GA with 
ordinal representation and adjacency representation were 
illustrated to solve TSP. The behavior of crossover was 
studied theoretically followed by a heuristic crossover for 
adjacency representation. 

The GA based algorithm proposed here is named Age-
GA, which is different from the canonical GA. In canoni-
cal GA, all chromosomes are replaced by their offspring 
after the mutation and crossover procedures as the popula-
tion evolves. Due to the extremely short life span of the po-
tential individuals, the search algorithms therefore do not 
have sufficient time to sample out the useful schemata 
from individuals. In order to ameliorate this situation, An 
additional attribute called age is proposed to be granted to 
each individual. In the Age-GA, instead of being replaced 
by their offspring after each iteration, individuals may 
grow up and generate new offspring continuously before 
death, and the population comprises individuals from vari-
ous age-groups. The survival period of potential individu-
als becomes longer. Then more useful information and 
properties can be inherited by their offspring. The number 
of chromosomes generated by and survived in each age-
group is determined by two sets of parameters, which are 
named birth rate and survival rate respectively. In order to 
ensure the proposed algorithm’s stability, the birth rate and 
the survival rate of individuals must be controlled care-
fully, so that the population size for each are-group is keep 
constant throughout the search process. When the indi-
viduals gradually become older, the opportunities for them 
to survive and give birth decline. Their survival rates will 
be reduced to zero eventually, which means the individual 
have already completed their duties of giving birth and 
need to leave room for younger individuals. The following 
notation is used to facilitate presentation. 

• L : the maximum age of an individual, 
• n(l,t): the number of individuals contained in the 

population of age-group l in iteration t, 
• b(l) : the birth rate of an individual in age-group l, 
• p(l) : the survival rate of an individual in age-

group l. 

The general outline of each step of the proposed algo-
rithm is presented below: 
Step 1.  Let t be an iteration index (t=0,1,2,…) with an ini-

tial value of 0. 
Step 2. Generate n(0,t) individuals randomly and place 

them into the population of aged-group 0. Set 
n(l,0)=0 for all l=1,2,…,L. 

Step 3. Determine n(l,t+1) by using the following equa-
tions: 

 ∑
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Step 4. Set l=min(L, t+1). 
Step 5. Select n(0,t)b(0), n(1,t)b(1),…,n(L,t)b(L) indi-

viduals from the populations of age-groups 
0,1,…,L respectively, according to their selection 
probability. The selected individuals are the 
placed into a mating pool. 

Step 6. Replace the population of age-group l by selecting 
n(l,t+1) individuals from age-group l-1 according 
to their selection probabilities. If l>1, decrease l 
by 1 and repeat step 6. 

Step 7. Pair up individuals in the mating pool and gener-
ate newborn offspring by using basic genetic op-
erators of crossover and mutation. Replace the 
population of age-group 0 by those newly gener-
ated individuals. 

Step 8. Check the pre-specified stopping condition. If it is 
satisfied, terminate the search process, and return 
the overall best solution as the final solution. Oth-
erwise, increase t by 1, and go to step 3. 

The birth rates and the survival rates must satisfy the 
following equation to ensure a stable genetic search proc-
ess: 

 ∑∏
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The following Table illustrates how the birth rates and the 
survival rates change with individuals’ ages: 
 

Table 1. Birth Rates and Survival Rates 
Age(l) Birth Rate b(l) Survival Rate s(l) 

0 0.00 0.80 
1 0.20 0.90 
2 0.60 0.90 
3 0.50 0.65 
4 0.20 0.00 

3.1 Chromosome Structure 

The application of the proposed algorithm to solve 
SVRPSTW requires a string representation scheme to en-
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code the candidate solutions in the solution space. The al-
gorithm attempts to determine the minimum objective 
function value in all feasible solutions. Hence, the chromo-
some must contain the whole information of a route, such 
as the number of sub routes and the sequence of customers. 
The chromosome construction used here can be conven-
iently illustrated with a numerical example. Assuming the 
problem has seven vertices, from v1 to v7, and there are 
three sub routes in solution si. They can be represented by a 
list of vertices with its visited order, r1={1,4,6,2,1}, 
r2={1,7,3,1} and r3={1,5,1}. Since all routes must start and 
end at the central depot, the number 1 can be omitted. For 
instance, the string (4,6,2) can be used to represent r1. 
Similarly, r2 and r3 are represented by strings (7,3) and (5) 
respectively. The chromosome concatenates those strings 
and separates them by separators, which are numbers lar-
ger than n. The chromosome string is written as (4 6 2 8 7 
3 9 5). To generalize, if there are totally n vertices and m 
vehicles in the problem, the number of separators is m-1 
and they range from n+1 to n+m-1. The separator at the 
first or last position in the chromosome ought to be omit-
ted, and successive separators ought to be regarded as one 
separator. The primary merits of this representation are that 
many classical crossover and mutation operators studied in 
former TSPs and VRPs papers can be applied without any 
modification, and the number of routes as well as the cus-
tomer visiting sequence can be determined in one string. 

3.2 Selection Crossover and Mutation 

Selection operation is used to select the potential chromo-
some from the current population in accordance with their 
fitness values. It is the key procedure for evolvement and 
biases towards the fitter chromosomes and gives them 
higher chance of being selected. In each iteration, the 
number of individuals selected from age group l (l<L) to be 
placed into the mating pool and the survival pool is equal 
to n(l,t)b(l) and n(l,t)p(l), respectively. During the selection 
process, individuals are selected according to their respec-
tive selection probabilities. The probability of selecting a 
candidate solution, si. from the current age-group is: 
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where f(si) is the fitness value of solution si. The solution 
space is defined as S = {s0, s1, … , sP-1}. The ),,( tlsn i  is 
the number of solution si contained in age-group l in gen-
eration t. The fitness function is formulated as: 
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where z(si) is the objective function value of solution si. 
With reference to equation (1), the candidate solutions with 

lower objective function values will receive higher selec-
tion probabilities. 

The crossover operation is made by exchanging a por-
tion of genetic materials (genes) between parent chromo-
somes. It is a probabilistic operation which is controlled by 
a pre-specified parameter Pc, namely crossover probability. 
When it is activated, a pair of parent chromosomes is se-
lected randomly for the mating pool, and then replaced by 
a new pair of offspring generated from parents. The cross-
over operator adopted here is the Partially Mapped Cross-
over (PMX). The steps of performing PMX are stated as 
follows: 

 
1. Select two separated crossover points randomly. 

For instance, the pair of parent chromosomes are 
separated as P1={4 6 || 2 8 7 || 3 9 5} and P2={2 8 
|| 4 3 9 || 6 5 7}, where || is the crossover point. 

2. Generate the offspring by swapping the numbers 
between two crossover points in the parents, the 
offspring are O1={4 6 || 4 3 9 || 3 9 5} and O2={2 
8 || 2 8 7 || 6 5 7}. 

3. The repeated elements before the first crossover 
point and after the second crossover point in the 
offspring are replaced by the absent elements 
whose original positions are between the cross-
over points in the parent. So the resulting off-
spring individuals are O1={2 6 4 3 9 8 7 5} and 
O2={4 3 2 8 7 6 5 9}. 

 
Mutation operation is used to prevent the search proc-

ess from converging to the local optima prematurely. It di-
versifies the research process to explore the candidate solu-
tion on the solution space in a random way. It is another 
probabilistic operation which is controlled by another pre-
specified parameter Pm, namely mutation probability. The 
Pm is normally very small. The working steps of mutation 
process is best illustrated by using a numerical example. 
For instance, given an individual {3,5,6,7,2,4} ought to be 
mutated. A number between zero and the length of chro-
mosome minus 1 is randomly generated. It is assumed 3. 
Then the numbers from the 3rd number, 6, to the last num-
ber, 4, in this individual are permuted. For instance if the 
sequence after permutation is {7,4,6,2}, the resulting indi-
vidual after mutation process is {3,5,7,4,6,2}. This step 
guarantees that at least two numbers would be permuted or 
at most a whole new individual is created, which means 
any solution in solution space may be generated by muta-
tion process. 

The mutation process, as well as the crossover process, 
may change the number of sub routes in a solution and the 
customer sequence in a service route. 
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4 COMPUTATIONAL RESULTS 

In this section, the genetic algorithm described in Section 3 
is tested on randomly generated problem set similar with 
the standard problem set developed in Solomon (1987). 
Three different types of problems are named Rx, Cx, and 
RCx in which x designates the number of customers in the 
problem. The problems with the same number of custom-
ers in the same type are further denoted by an index pre-
ceded by an underline score. Such as R10_1 and R10_2 are 
two different problems both have ten customers in type R. 
In the problem set of type R, the customer coordinates are 
distributed by a random uniform distribution. Customers 
are clustered in problems of type C and semiclustered in 
problems of type RC. The semiclustered problem is the one 
that contains a mix of randomly generated and clustered 
data.  
It is assumed that there are no more than 3 homogeneous 
vehicles located in the central depot in all problems. The 
cost of employing a vehicle is set to be 1 and the capacity, 
Q, is assigned to 50. All graphical coordinates in test prob-
lems are generated within a [0, 100]2 square. And the trav-
eling cost matrix is assumed as symmetric so that cij=cji. 
The presence probability pi of each customer vi (i>1) was 
generated in interval (0 1) independently. Each customer 
may have 2, 3 or 4 dissimilar demand quantities and each 
demand quantity is generated in the range [1, 20] ran-
domly. The probability of each demand level is generated 
in (0, 1) according to random distribution. Of course, the 
summation of probabilities of all demand levels in any cus-
tomer is definitely equal to 1. 

So far, the geographical and demand data were given. 
The time windows for all vertices, including central depot, 
are generated at the last step. These time windows were 
designed in such a way that at least a few routes without 
route failure are feasible even in hard time constraints. 
Firstly, randomly design a solution containing m-1 service 
tours, and make sure every vehicle returns to the central 
depot before the upper bound of the time window of the 
central depot. Secondly, the time window constraints were 
generated by letting the arrival time at the customer be the 
center of its time window. To create the width of the time 
window for customer vi, a random integer number is gen-
erated as half of the width of the time window. At last, 
these time windows are manually adjusted to ensure that 

ii cab ,11 +≥ , ii cba ,11 −≤ , ii ab >  where ai and bi are the 
integers for vertex vi. 

After generating the example data, the parameters of 
the Age-GA need to be determined. The crossover and mu-
tation probabilities are set to be 0.8 and 0.05 respectively. 
The initial population size is set to be 60. The stop condi-
tion is 100 iterations. The maximum age of any individual 
is fixed at 4 and the birth and survival rates were presented 
in Section 3. 

For the sake of comparison, the test problems were 
also solved by using a Canonical GA (CGA), which used 
ordinal representation,  single-point crossover and uniform 
order-based mutation. The population of CGA is set to 30, 
other parameters are same as the corresponding parameters 
in Age-GA. A Pentium III-866MHz with RAM 512M 
based computer is used to implement both algorithms. 

 
Table 2. Results of Age-GA 

Instances Age-GA 
Names λ Total cost Lateness Time(s) 

1 276.12 13.06 6 
10 322.06 0.82 2 R10_1 
100 309.63 0.13 4 
1 344.41 4.21 15 

10 387.55 0.086 5 R10_2 
100 413.93 0.11 9 
1 336.46 5.82 2 

10 351.52 1.71 3 C10_1 
100 465.33 1.23 3 
1 316.71 29.56 11 

10 375.51 1.79 6 C10_2 
100 489.24 1.4 5 
1 354.86 33.32 5 

10 372.13 2.54 2 RC10_1 
100 513.19 1.59 3 
1 368.36 8.5 8 

10 434.42 4.07 6 RC10_2 
100 688.53 2.83 7 

AVERAGE 395.55 6.26 5.67 
 

Table 3. Results of CGA 
Instances CGA 

Names λ Total cost Lateness Time(s) 
1 294.94 2.64 3 

10 341.04 3.18 5 R10_1 
100 429.01 0.86 3 
1 358.79 15.42 12 

10 398.78 2.74 10 R10_2 
100 513.19 1.2 5 
1 339.07 14.63 3 

10 355.19 7.47 2 C10_1 
100 523.68 1.46 2 
1 333.89 11.57 10 

10 390.95 5.9 6 C10_2 
100 882.47 4.32 5 
1 355.36 6.63 5 

10 376.42 1.04 3 RC10_1 
100 790.11 4.13 5 
1 374.18 6.67 6 

10 466.23 1.02 6 RC10_2 
100 677.48 2.89 5 

AVERAGE 455.60 5.21 5.33 
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Eighteen problem instances were generated in this pa-
per. These test problems highlight the time penalty coeffi-
cient that impacts the behavior of soft time windows con-
straint. Table 2 presents the final results provided by Age-
GA and Table 3 presents the final results solved by CGA. 
The final result is the overall best solution in search proc-
ess. The report rules contain: the expected total cost of the 
final solution (Total cost), the computational time con-
sumed (Time) and the expected total lateness time in the 
final solution (Lateness), which is calculated by dividing 
total expected time penalty by λ. 

Upon analyzing the data in result Tables, it can be de-
duced easily that the Age-GA clearly outperforms the CGA 
about 15%. Nearly all results obtained by Age-GA are bet-
ter than the corresponding results obtained by CGA. The 
computational times consumed by two algorithms are simi-
lar, although the population size of Age-GA is larger than 
the population size of CGA. It is because the crossover and 
mutation operations are only executed in age-group 0 in 
Age-GA so that it need not to recalculated the objective 
values of individuals in other age-groups. 

It is worth noting that the increase of time penalty co-
efficient, λ, usually leads to the increase of expected total 
cost, and decreases the expected total lateness time of final 
result. When λ is small, the expected travel distance is a 
significant part in total objective value. The primary goal is 
to reduce the travel distance so that commonly more cus-
tomers have to be planned for one vehicle. Although cus-
tomer time windows have been violated from time to time 
in this circumstance, the expected total time penalty is still 
comparatively small. When λ rise, the expected time pen-
alty become more and more important in total objective 
value. The primary goal is changed to avoid the time win-
dow violation as much as possible. Typically more vehi-
cles are used and fewer customers are arranged in one ser-
vice route, which increases the expected total travel 
distance. In this case, each customer can be served earlier 
averagely, which leads to decrease the expected total late-
ness time. It is believed if λ is large enough, the final solu-
tion may satisfies all customers’ time windows if such so-
lution exists. The problem has been changed from SVRP 
with soft time windows to SVRP with hard time windows 
eventually. 

Figure 1 shows the convergence behavior of the Age-
GA for a typical search process of the problem RC10_2 
with λ = 10. The search process converges very rapidly in 
the first few generations then slows down the convergence 
speed in subsequent generations. It is because the initial 
population is generated totally randomly, the objective 
function values are often high. And most regions of the so-
lution space are unexplored in the beginning. Hence, it is 
relatively easy to discover new promising regions and pro-
duce good individuals. With removing the poor performed 
individuals, the mean objective value of whole population 
also drops fast. As the search process going on, more 

promising regions have been explored and it is harder to 
find the better solutions. Therefore, the speed of conver-
gence decreases. When the Age-GA attempts to exploit 
promising regions, the mutation operation plays a very im-
portant role at this stage to prevent the search process from 
being trapped into local optima. But the mutation operation 
may also destroy the good individuals and produce bad in-
dividuals. This causes the wave of mean objective function 
value. 
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Figure 1. Typical convergence process of the Age-GA 

 
A sensitivity analysis on the genetic parameters has  

also been studied in this paper. It indicates that the prema-
ture convergence may be avoided and better final solution 
may be obtained by increasing the population size. How-
ever, this could severely lengthen the computational time, 
especially for such difficult type of problem. A large muta-
tion probability can reduce the convergence speed of the 
genetic search process and avoid premature convergence. 
But the mutation probability can not be too high, other-
wise, the genetic search process will behave like a random 
search process. In addition, increasing the crossover prob-
ability will not improve the quality of final solution, nei-
ther affects the convergence speed. It should not be too 
larger nor too small according to experiences. 

5 CONCLUSION 

This paper has presented the use of an age based genetic 
algorithm as a general methodology to solve stochastic ve-
hicle routing problem with soft time windows. A nonlinear 
stochastic integer program has been formulated to provide 
the objective function for optimization algorithms. A nu-
merical chromosome presentation is chosen to reveal both 
the number of routes in solution and the customer sequence 
in each route. Eighteen randomly generated problems have 
been used to evaluate the effectiveness of the proposed al-
gorithm. A canonical genetic algorithm has also been ap-
plied to solve the same group of numerical problems. The 
results have shown that the optimal or near-optimal solu-
tions can be obtained by using Age-GA with reasonable 
computational time. Comparison of the results obtained by 
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using Age-GA and CGA shows that Age-GA is superior to 
CGA. The success of Age-GA seems mainly due to its age 
property that allows good individuals to survive longer and 
gives them more chance to generate offspring. Moreover, 
for the same amount of computational effort, it is possible 
to use a larger population size in Age-GA than in CGA. 

This paper also analyses the behavior of SVRPSTW 
and the impacts of time penalty coefficient on final solu-
tions. The results show that some elementary properties of 
deterministic VRPTW  are no longer kept in the stochastic 
case. In addition, sensitivity analysis has been performed to 
study the effects of the various genetic parameters on the 
convergence behavior of the proposed algorithm. The re-
sults reveal that the population size and the mutation prob-
ability are two key factors that govern the convergence rate 
and the quality of final solution. 
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