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ABSTRACT

We study the problem of reconstructing a super-resolution image f from multiple undersampled, shifted, degraded
frames with subpixel displacement errors. The corresponding operator H is a spatially-variant operator. In this
paper, we apply the preconditioned conjugate gradient method with cosine transform preconditioners to solve the
discrete problems. Preliminary results show that our method converges very fast and gives sound recovery of the
super-resolution images.
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1. INTRODUCTION

Super-resolution image reconstruction refers to obtaining an image at a resolution higher than that of the camera
(sensor) used in recording the image. It has many electronic imaging applications, including aerial or facilities
surveillance, consumer, commercial, medical, forensic, and scientific imaging. The observed images often have low
resolution. They are also degraded by blur and noise. Increasing the image resolution by using digital signal
processing techniquel:4%7%10 is therefore of great interest.

We consider the reconstruction of a super-resolution image f from multiple undersampled, shifted, degraded and
noisy images. Multiple undersampled images are often obtained by using multiple identical image sensors shifted
from each other by subpixel displacements. In this application, we usually obtain a spatially-variant system

Hf=g. (1)

Since the system is ill-conditioned and generally not positive definite, we solve it by using minimization and regular-
ization technique:

min |[Hf — gli3 + aR(f). (2)

Here R(f) is a functional which measures the regularity of f and the regularization parameter « is used to control
the degree of regularity of the solution. In this paper, we will use the H;-norm regularization functional ||£ f||3 where
L is the first order differential operator.

Previous work (for instance Bose and Boo!) pays little attention to the boundary condition of the problem
(2). Since we do not have any information about the scene outside the frames, a natural approach is to impose zero
boundary conditions outside the scene, i.e. assuming a dark background outside the scene. However, such assumption
is usually not satisfied by the images and therefore ringing effect will occur at the boundary of the reconstructed
image (see the numerical results in Ng et al.*%). The problem is more severe if the image is reconstructed from
a large sensor array. We here use the Neumann boundary condition on the image, which assumes that the scene
immediately outside is a reflection of the original scene at the boundary. Our numerical results in3® have shown
that the error of the image under the Neumann boundary condition is less than that under the zero and periodic
boundary conditions.

The discretization matrix of H has a special structure. The preconditioned conjugate gradient (PCG) method
is commonly used in solving the system, see Chan and Ng.2 We observe that for 2 x 2 sensor array with exact
subpixel displacement, the matrix system can be solved efficiently by using the discrete cosine transform matrix.
We thus propose using the PCG method with cosine transform preconditioners for solving the system when there
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are subpixel displacement errors. Numerical results show that our preconditioners perform significantly better than
other preconditioners.

The outline of the paper is as follows. In Section 2, we give a mathematical formulation of the problem. The
Neumann boundary condition and a brief introduction on cosine transform preconditioners will be given there.
Finally, numerical results are given in Section 3.

2. SUPER-RESOLUTION IMAGE RECONSTRUCTION
2.1. Mathematical Model

We begin with a brief introduction of the mathematical model in high-resolution image reconstruction. Details can
be found in Bose and Boo.!

Consider a sensor array with L; X Lo sensors, each sensor has N7 x N, sensing elements (pixels) and the size of
each sensing element is 71 X T5. Our aim is to reconstruct an image of resolution M; x Ms, where

M1 =L1XN1 and M2=L2XN2.

In order to have some information to resolve the high-resolution image, there are subpixel displacements between
the sensors. In the ideal case, the sensors are shifted from each other by a value proportional to T7 /Ly x T5/Ls.
However, in practice there can be small perturbations around these ideal subpixel locations due to imperfection of
the mechanical imaging system. Thus, for I =0,1,---,L; —1 and and I, = 0,1,---,Ly — 1 ( with (I1,12) # (0,0),
the horizontal and vertical displacements df’, and d; of the [l1,l5]-th sensor array with respect to the [0,0]-th
reference sensor array are given by
T . y T; y
;‘112 = L—l(ll + 61112) and dl1l2 = E(lg + 61112).

Here €} ;, and €}, denote respectively the normalized horizontal and vertical displacement errors. We note that the
parameters €j,,, and 6;/1 1, can be obtained by manufacturers during camera calibration. We assume that |ef ;| < :%

and Ief’l Ll < -;— For if not, the low-resolution images observed from two different sensor arrays will be overlapped so
much that the image reconstruction is rendered impossible.

For the super-resolution image reconstruction, we let S be the set of positions of sensors present in the sensor
array. We remark that when S = {(l1,l2) : 0<l; < L; — 1, and 0 <l < Lo — 1}, this just corresponds to the case
of the high-resolution image reconstruction. However, when S C {(l1,l2) : 0 <l; < L; —1, and 0 < Iy < Ly — 1},
this corresponds to the case for the super-resolution image reconstruction.

Let f be the original scene. Then the observed low-resolution image g;,;, for the (1, l5)-th sensor is modeled by:

Ta(na+3)+df,, pTi(mt3)+dr,
gix[n1,n2] = / / f(z1, z2)dz1dzs + My, [N, na), (3)
T2("2—%)+df1,2 T1(”1—%)+d}”1,2
forn; =1,...,N; and np =1,..., Ny. Here n,;, is the noise corresponding to the (I1,l2)-th sensor. We intersperse
the low resolution images to form an L; N1 x Lo N> image by assigning
_ _ — glllz[nlan2]a if (ll,l2) € S,
glLa(ny = 1) + b, Loz — 1) + o] = { 0, otherwise. (4)

Here g is an L1 N; x Ly N2 image and is called the observed image.

Figure 1 shows the method of forming a 4 x 4 image g with a 2 x 2 sensor array each having a 2 x 2 sensing
elements, i.e., Ly = 2, Ly = 2, My = My =4, N; = Ny =2 and T; = T, = 2. This is case for the high-resolution
image reconstruction and S = {(0,0), (0,1), (1,0),(1,1)}. We remark that the number of observed image pixel values
is the same as the number of unknown original image pixel values. Under the noiseless condition, we have sufficient
information (except at the image boundary) to reconstruct the original image exactly.
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However, in the case of the super-resolution image reconstruction, the number of sensors is always less than L; L.
For instance, Figure 2 shows a 4 x 2 image g with a 2 x 1 sensor array each having a 2 x 2 sensing elements. Here
we consider two sensors, namely, the [0, 0]-th reference sensor and the [1,0]-th sensor, i.e., S = {(0,0),(1,0)}. This
case corresponds that the sensor takes the same scene of the original image but the sensor is slightly displaced in the
horizontal direction with respect to the reference sensor. In Figure 3, we consider the [0, 0]-th reference and [0, 1]-th
sensor arrays. This case corresponds that the sensor is slightly displaced in the vertical direction with respect to the
reference sensor, and S = {(0,0), (0,1)}. In Figure 4, we consider the case of two sensors where the [1, 1]-th sensor
is slightly displaced in the diagonal direction with respect to the [0, 0]-th reference sensor. In this case, we have
S =4{(0,0),(1,1)}.

Using a column by column ordering for g, we obtain g = H f +7 where H is a spatially variant operator.! Since H
is singular due to the fact that the total number of sensing elements (pixels) is less than the size of the reconstructed
image, the classical Tikhonov regularization is used and the minimization problem (2) is solved. In this paper, we
use the regularization functionals:

R(f) = IIL£II3 ()

where L is the first order differential operator.

2.2. Image Boundary

The continuous image model in (3) can be discretized by the rectangular rule and approximated by a discrete image
model. Because of the blurring process (cf. (3)), the boundary values of g are also affected by the values of f outside
the scene. Thus in solving f from (1), we need some assumptions on the values of f outside the scene. Bose and
Boo! imposed the zero boundary condition outside the scene, i.e., assuming a dark background outside the scene in
the image reconstruction.

Let g and f be respectively the discretization of g and f using a column by column ordering. Under the zero
boundary condition, the blurring matrix corresponding to the (I1,/)-th sensor can be written as

I:IZIIZ (6) = I:I:lzllz (6) ® I:I?],lz (6)

where I:I;”1 I (¢) is an M7 x M; banded Toeplitz matrix with bandwidth L + 1:

+
1 1 hfllz 0
—1— 1 hlzl_;_z
L _ .. .. .. .. ’
hlz1lz . . . . 1
0 W1 1
and
+
h:lnllz :§i6ﬁ12'

The Ms x M, banded blurring matrix H}’l 1,(€) is defined similarly. We note that ringing effects will occur at the
boundary of the reconstructed images if f is indeed not zero close to the boundary, see for instance Figure 5 in §4.
The problem is more severe if the image is reconstructed from a large sensor array since the number of pixel values
of the image affected by the sensor array increases.

Ng et al.% have considered to use the Neumann boundary condition on the image. It assumes that the scene
immediately outside is a reflection of the original scene at the boundary. Our numerical results have shown that the
Neumann boundary condition gives better reconstructed high resolution images than that by the zero or periodic
boundary conditions. Under the Neumann boundary condition, the blurring matrices are still banded matrices with
bandwidth L + 1, but there are entries added to the upper left part and the lower right part of the matrices (see
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Figure 1: High-resolution image reconstruction.
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Figure 2: Super-resolution image reconstruction (horizontal displacement of the sensor).
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Figure 3: Super-resolution image reconstruction (vertical displacement of the sensor).
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Figure 4: Super-resolution image reconstruction (diagonal displacement of the sensor).
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the second matrix in (6)). The resulting matrices, denoted by Hf; (¢) and H}, (e), have a Toeplitz-plus-Hankel
structure:

+
Lo L kg, 0 1 - 1 &Y 0
. . 162
—1— 1 hfl‘l: + _}_ ,:1_ . h;,;l-l: , ©
L, z— . .. .. .. 1 1 h1112 - 1
Il . . . .
0 hf172 1 . 1 0 hlllz 1 1

and H ; (¢) is defined similarly. The blurring matrix corresponding to the (I1,l2)-th sensor under the Neumann
boundary condition is given by
Hy,1,(¢) = Hfy, (€) @ H,y, (6).

The blurring matrix for the whole set of sensors is made up of blurring matrices from each sensor:
Hs(e)= Y Dy,Hiy,(e). (M
(I1,l2)eS

Here Dy,;, are diagonal matrices with diagonal elements equal to 1 if the corresponding component of g comes from
the (l1,l2)-th sensor and zero otherwise, see! for more details. More precisely, the matrices Dy,;, are given as follows:

Di,1, = (Iar /2 ® Diy) ® (Ingy/n ® Dyy),
where D; are zero L-by-L matrices except its (I + 1)th main diagonal entry being equal to 1. For instance, for a 2 x
2 sensor array (L = 2),
Do = diag(1,0) and D; = diag(0,1).
With the Tikhonov regularization, our discretization problem becomes:
(Hs(e)'Hs(e) + aR)f = Hs(e)'g (8)

where R is the discretization matrix corresponding to the regularization functional R(f) in (5). The linear system
(8) will be solved by using the conjugate gradient method.
3. COSINE TRANSFORM PRECONDITIONERS
Let C,, be the n x n discrete cosine transform matrix, i.e. the (¢, j)-th entry of C,, is given by

2—96;  —1)(25 —1
== cos((l )2 )”>,1sm'5n,
n 2n

where ;5 is the Kronecker delta. Note that the matrix-vector product C,z can be computed in O(nlogn) operations,
see Sorensen and Burrus.® For an n x n matrix B, the cosine transform preconditioner ¢(B) of B is defined to be
the matrix C{,AC,, that minimizes

ICLAC, — Bllr
in Frobenius norm.? Clearly, the cost of computing ¢(B)~'y for any vector y is O(nlogn) operations. For banded
matrices, like the one we have in (7), the cost of constructing ¢(B) is of O(n) only.2

When there is no subpixel displacement error, i.e., when €f; = 6;/1 1, = 0, the matrices Hj, ;, are the same for all
l; and l;. We will denote them simply by H% and HY. For L = 2, the blurring matrix H is an M; x M; tridiagonal
matrix given by

NI N5
[ L
[N

[T
o= =
[SUENIES

and HY is an M, x M, matrix with the same structure.
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3.1. Horizontal and Vertical Displacement of Sensors

In this subsection, we consider two sensors in a sensor array where one of the sensors is slightly displaced in the
horizontal or vertical direction with respect to an another sensor, i.e., S = {(0,0),(1,0)} or S = {(0,0),(0,1)}
respectively. In these cases, the blurring matrices are given as follows:

¢ [ HIH3)® Hg(IMz/g ® Dg)HY, when S = {(0,0),(1,0)},
Hs(0) Hs(0) = { HZ Iy, 2 ® Do)H ® (HYHS), when S = {(0,0),(0,1)}.

In this paper, we consider the Hj-norm regularization functional. Correspondingly, we are required to solve the
following linear system:

(H4(0)Hs(0) + oL ® I+ oI ® L)f = Hig, 9)
where a > 0 and
1 -1
-1 2 -1
-1 2 -1
-1 1

is the discrete Laplacian matrix with the Neumann boundary condition. The matrix L can be diagonalized by the
discrete cosine transform matrix. It follows that the coefficient matrix H%(0)Hg(0) + oL ® Ing, + ala, ® L can be
transformed to a block-diagonal matrix:

Be— | A ®Hi(Iy, 2 ®Do)HE + ol ® Ing, +ala, ®L,  when S = {(0,0),(1,0)},
ST HE(Ip 2 ® Do)HE ® A% + oL ® Ing, + oIy, ® T, when S = {(0,0), (0,1)},

by using Cps, ® Ins, or Ing ® Cay, respectively. Here A and I are diagonal matrices containing the eigenvalues of
HZ (or HY) and L respectively. We note that the k-th diagonal block of By is a banded matrix given by

[A%)ks - HY (Tpr, 2 ® Do)HY + Tk - Ing, + oL

It is easy to see that the bandwidth of each of the diagonal blocks of Bs is equal to 5 and hence its inversion
can be done in O(Mz) operations. It follows that the linear system (9) can be solved 4M; one-dimensional fast
cosine transforms (2M; for finding the eigenvalues of H and L, 2M; for transforming the right hand side and the
solution vector). Thus the total cost solving the system is of O(4M; M3 log M2 + M; M) operations. Similarly, when
S ={(0,0), (0,1)}, we can show that the total cost of solving the system is of O(4MzM; log My + My M>) operations.

3.2. Spatially-variant Blurring Matrices

When there are subpixel displacement errors, the blurring matrix Hg(e) has the same band structure as that of
H(0), but with some entries slightly perturbed. It can no longer be diagonalized by the cosine transform matrix.
Therefore we solve the corresponding linear system by the preconditioned conjugate gradient method. We will use
the matrices H (HY) of Hf,;, (¢) (H};, (¢)) as the preconditioner. Thus when S = {(0,0),(1,0)}, we consider the
following preconditioned matrix:

— — -1
[(H2HS) © HY,,, (9 (Luj ® Do)Hyy, (€) + AL @ L, + alag, L] -

[Hgo(f)t(IMlﬂ ® Do)Hy (€) ® Hgo(e)t(IMz/z ® Do)Hg, (e)+
H{o(€)" (Inr /2 ® D1)Hiy (€) ® Hip (€)' (Inr, /2 ® Do)Hig(€) + oL ® Ing, + alny, ® L], (10)
where 1
ﬁilz (6) = 3 [HEo(€) + Hip(e)] -
The preconditioned matrix for the case of S = {(0,0), (0,1)} can be constructed similarly.

Our numerical results in §3 show that these preconditioners can indeed speed up the convergence of the method.
Since Hg(€) has at only (L+1)?/2 non-zero diagonals, the matrix-vector product Hz,(¢)x can be done in O(L?M; M,).
Since the linear system involving the preconditioner can be solved in O(M; M2 log M; M>) operations. Hence the total
cost per iteration is of O(M; Mslog My Mo + L?M; M) operations.
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3.3. Diagonal Displacement of Sensors

In this subsection, we also consider two sensors in a sensor array. However, one of the sensors is slightly displaced in
the diagonal direction with respect to an another sensor, i.e., S = {(0,0), (1,1)}. In this case, we solve the following
linear system:

{[HIZ, (€)' (Tns, /2 © Do) Hy (€)] ® [Hey (€)' (Tar, /2 ® Do)Heg(e)]+
[HZ, (e)! (s, /2 ® D1)HE, (€)] ® [HY, (€)' (Ing, /2 ® D1)HY, (€)] + oL ® Ing, + alar, @ L]} £
= {[HZ ()} (Ins, /2 ® Do)] ® [HYo(€)t (g /2 ® Do)] + [Hi1 ()" (Tary /2 ® D1)] @ [HY, (€)*(Iar, /2 ® D1)]} 8:(11)

We employ the coefficient matrix arising from the case of horizontal or vertical displacement of sensors as a precon-
ditioner. More precisely, we have the following two preconditioners for the blurring matrix in (11) :

1 <

3 {HZHE © [HY,(6)! (Iar, /2 ® Do)HYo(6)] + HEHS © [HY, ()" (Ing, /2 @ D1)HY; ()]} + oL @ Ing, + olng, O L
and

1 x xr T

> {[H(e)*(Trg, /2 © Do)Hgo ()] ® HYHY + [Hf, (6) (Ing, ;2 @ D1)HF, ()] ® HIH}} + oL ® Iny, + ol ® L.

Our numerical results in §3 show that these preconditioners are quite effective. For the cost of using these two
preconditioners, we can transform them to a block-diagonal matrix and each diagonal block is just a banded matrix.
Thus the total cost of solving the system involving the preconditioner is of O(M;Mslog Ma + M M>) operations.
Hence, the total cost per iteration is again of O(M;M;log MM, + L2M; M>) operations.

4. NUMERICAL EXAMPLES

In this section, we illustrate the effectiveness of preconditioned conjugate gradient method by solving the super-
resolution image reconstruction problem with a 2 x 2 sensor array. The original 128 x 128 image is shown in Figure
5(a). In the tests, we use the zero vector as the initial guess in the conjugate gradient method. The stopping criteria
is |[t@])2/|[r©@]|2 < 1078, where r(9) is the normal equations residual after j iterations.

Firstly, the parameters €], and ¢}, are set to be zero. We show the 128 x 128 reconstructed images from (i) four
64 x 64 low resolution images, i.e., the high-resolution image reconstruction case and (ii) two 64 x 64 low-resolution
images, i.e., the super-resolution image reconstruction case. One of the low-resolution images is shown in Figure
5(b). Gaussian white noises with signal-to-noise ratios of 50dB and 30dB are added to the low-resolution images.
The observed high-resolution noisy images g are shown as in Figures 5(c) (high-resolution case), 5(e) (—), 5(g)
({), 5(1) () and 6(c) (high-resolution case), 6(e) (=), 6(g) ({), 6(i) (\). Here —, | and \, corresponds that the
second sensor is slightly displaced in the horizontal, vertical and diagonal directions with respect to the first sensor
respectively. Figures 5(d), 5(f), 5(h), 5(j) and 6(d), 6(f), 6(h), 6(j) show their corresponding reconstructed images.
For Figures 5(c) and 6(c), the images are reconstructed by using four 64 x 64 low resolution images. For Figures
5(e), 5(g), 5(i), 6(e), 6(g) and 6(i), the images are reconstructed by using two 64 x 64 low resolution images. The
optimal regularization parameter ¢ is chosen such that it minimizes the relative error of the reconstructed image
f.(a) to the original image f, i.e., it minimizes

If — £ (|2

l1£l2

We see that the trees in the image are much better reconstructed under the super-resolution case (cf. Figures 5(e),
5(g), 5(i), 6(e), 6(g) and 6(i)) than the high-resolution observed images. (cf. Figures 5(b), 5(c), 6(b) and 6(c)). We
remark that the relative errors of the super-resolution reconstructed images (cf. Table 1) are less than the relative
errors of the high-resolution observed images are 0.0758 and 0.0765 for SNR = 50dB and 30dB respectively.

Table 1 shows the optimal regularization parameters and the corresponding relative errors. We note from the
table that the number of iterations required for convergence is less when the SNR is high. Both the relative errors
and the numbers of iterations are low when the second sensor is slightly displaced in the diagonal direction with
respect to the first sensor. This phenomenon may be explained that the horizontal and vertical details may be more
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Figure 5. (left two columns) Images for high- and super-resolution cases when SNR = 50dB, and Figure 6. (right
two columns) Images for high- and super-resolution cases when SNR = 30dB (right).
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S | «a Relative error S ] «a Relative error

{(0,0),(0,1),(1,0), (1,1)} | 5x 1075 0.0366 {(0,0),(0,1),(1,0), (1,1)} [ 5 x 1073 0.0558
{(0,0),(0,1)} — 5x 1078 0.0703 {(0,0),(0,1)} = 5x 1073 0.0761
{(0,0),(1,0)} | 5x 1075 0.0622 {(0,0),(1,0)} 4 5x 1073 0.0703
{(0,0),(1,1)} 5% 107° 0.0533 {(0,0), (1,1)} \, 5x 1073 0.0630

Table 1. Regularization parameters and relative errors when SNRs are 50 dB (left) and 30 dB (right).

M; = M, | Without preconditioner Cosine M; = M, | Without preconditioner Cosine
32 232 12 32 39 5
64 257 12 64 42 5
128 250 11 128 40 5
256 251 11 256 40 5

Table 2. Number of iterations required for convergence when SNRs are 50dB (left) and 30 dB (right).

My = M, | Without preconditioner Cosine M, = M- | Without preconditioner Cosine
32 148 80 32 27 14
64 156 87 64 27 14
128 134 84 128 26 13
256 132 72 256 26 13

Table 3. Number of iterations required for convergence when SNRs are 50dB (left) and 30 dB (right).

accurately interpolated under the diagonal sensor displacement setting than under the horizontal and vertical sensor
displacement setting.

Tables 2 and 3 show the performance of our cosine transform based preconditioners proposed in Section 2. Here
we consider two sensors. One of sensors is slightly displaced in the horizontal direction (Table 2), and is slightly
displaced in the diagonal direction (Table 3). In the tables, « is chosen to be 10~°, and the parameters €, and €/
are chosen randomly between -0.1 and 0.1. We see from Table 2 that the cosine transform preconditioner converges
significantly faster than without using the preconditioner. To further illustrate the fast convergence of our method,
Figure 6 depicts the convergence behaviour of the original system and preconditioned system when M; = M, = 128.
The figure shows that the preconditioned system converges very quickly. Although we find that the cosine transform
preconditioner converges faster than without using the preconditioner in Table 3, the performance of using the cosine
transform preconditioner is not very superior to that without using the preconditioner. Again Figure 7 depicts
the convergence behaviour of the original system and preconditioned system when M; = M, = 128. We see from
the figure that the convergence of the preconditioned system in the initial few iterations is very fast and then the
convergence slows down.
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