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ABSTRACT

We consider the reconstruction of images by minimizing regular-
ized cost-functions. To accelerate the computation of the estimate,
two forms of half-quadratic regularization, multiplicative and ad-
ditive, are often used. The goal of this paper is to compare both
theoretically and experimentally the efficiency of these two forms.
We provide a theoretical and experimental analysis of the speed of
convergence that they allow. We show that the multiplicative form
gives rise to a better rate of convergence.

1. INTRODUCTION

We address image reconstruction where a sought image & € RP
is estimated from degraded data y € R? by minimizing a cost
function J : R —+ R which combines a quadratic data-fidelity
term and a regularization term ® via a parameter 5 > 0

&= minJ(z), where J(z)=|Az - yll? + B8(z). (1)

We shall assume that the observation operator A € R¥** isknown.
We focus on regularization term ¥ of the form

B(z) =Y #lelz), @

where ¢ : R, — R is a potential Tdnction and g, fori = 1,...,r,
are linear operators. Typically, {¢Tz} are first or second-order
differences between neighboring pixels. If GG is the r x p matrix
whose ith row is g7, fori = 1,...,7, a basic requirement is

ker(AT A) Nker(GTG) = {0}. 3)

We suppose that ¢ is smooth and convex, and edge-preserving, i.e.
#(t) < 2 for [t| — oo. Such functions are for instance [1, 2, 3, 4):

oty = f*,1<a<y,

¢t) = Ve+i?

o) = { £2/2 if <o, @
- alt| —a?/2 if |t >a

Cost-functions of this form are popular in various inverse problems
such as denoising, deblurring, seismic imaging, tomography.
However, the resultant minimizers £ are non-linear with re-
spect to data y and their computation is costly, especially when A
has many non-zero entries. In order to cope with numerical slow-
ness, half-quadratic (HQ) reformulation of J has been pioneered,
using two different ways, in [5] and [6]. The idea is to construct
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an augmented cost function 7 : R? x R™ — R which involves an
auxiliary variable s € R", and two new functions, @ :RxR—-R,
where Q(., 3:) is quadratic ¥s; € R,and ¢ :R— R,

T(z,s)=[Az—y*+8)  Qlelm,s)+8 Y v(se), (5)
=1 i=1

so that ¢(t) = f.’gf{ {Q(t, s) +v(s)}, VteR. (6)

By (6), the global minimizer (&, §) of 7 vields the solution ini-
tially defined in (1), since J{z) = min,err J(zx, s), ¥z € RP.
In [5], Geman & Reynolds first considered a quadratic term Q of
the multiplicative form,

Q(t,s) =t’s, for teR, s€R,. (7
Later, Geman & Yang [6] proposed an additive form for Q:

Q(t,s)=(t—s)°, for teR, seR. (8)

In both cases (7) and (8), the dual function ¥, which ensures (6),
is obtained using the theory of convex conjugacy [7, 8].

The augmented cost-function .7 is minimized using an alter-
nating minimization scheme. Let the solution obtained at iteration
(k — 1) read (z%*~1, s*=1)) At the next iteration k we calculate

s suchthat J(z®* 1, s®) < 7(z*-1 s5), Vse R,
%) such that Fa® sy < 7(z,s™), Yz € R?,

These minimizations give rise to two minimizer mappings, * —
[a(g'lra:),... ,a(g,Tz)]T witho : R = R, and 5 - x(s) with
x : R™ — RP, The alternate minimization thus reads
‘qgk) = a(g?w(k_l))) Vi=1,...,n &)
e = x(&*). (10)
For both forms, the functions & and x admit an explicit form.
These ideas has been pursued and deepened by many authors
[2, 11, 3, 4, 8, 10]. Although the intuition that HQ regulariza-
tion does indeed increase the speed of the minimization of regular-
ized cost-functions of the form (1), this critical question has never
been considered in a theoretical way. Moreover, the performance
of both formulations (7) and (8) has never been compared, The
goal of our paper is to fulfill this gap by characterizing both theo-
retically and experimentally the speed of convergence relevant to
these two forms. The obtained results reveal that in general, the
multiplicative form (7) allows to reach a better convergence rate.
Furthermore, derived expressions allows to consider the conver-
gence speed relevant to different potential functions ¢. The proofs
of the main theorems, as well as other details, can be found in {13].
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2. SOME FACTS ABOUT HQ REGULARIZATION
2.1. Multiplicative form

We consider potential functions ¢ such that

t = ¢(v/t) isconcaveon Ry, lime 0 ¢'(2)/t <oo,
t — ¢(t) is convex on R, lime oo @(2) /2 =0, (11)
¢ is twice differentiable on R,  ¢{t)=¢(-t), Vt€R.
Then the expressions below are equivalent [5, 4, 10]:
B(t) infoer {st” + w(s)} , (a2)
¥(s) SUp,eg {¢(t) — st?
Notice that ¢ is convex and (3) = +oo for 8 < 0; hence the
infimum in (12) can be considered only for s > 0. The resultant
augmented cost-function J is defined on R x R and reads

T(z,5) = | Az—y||*+5(G=)" diag(s) Ga+8 Y _ w(s:), (13)
=1
where diag(s) is a diagonal matrix whose diagonal elements are
s;, fori = 1,...,r. The function o, as given in (9), reads [4, 10]
if t#£0

0 N
a(t)={ STl ¢ir)
¢ if =0

where { = 11_1{‘1}) P (14)
where clearly o (t) > 0, ¥t € R. The minimizer mapping Y, intro-
duced in (10), satisfies D17 {x(s),3)=0,¥s€R", and reads:

x(s) = (H) ATy, )
where H(s) = ATA+ BGTdiag(s)G.

Although J is convex with respect to = and to s separately, it
is not globally convex in general. Nevertheless, when ¢ satisfies
(11), it is shown in [10] that the sequence (z*}, s*)), generated
by (9)-(10) and {14)-(15), converges to a point {§, £} as k — oo,
such that £ is the sought minimizer of J as given in (1)-(2).

2.2. Additive form
This form is considered under the condition that the function

t—t2/2 - 4(t) (16)
is convex, continuous and finite for every t € R. Then the follow-
ing expressions are equivalent:

git) = infoer {V(s)+(t- 3)2/2} L am
W(s) = supep{@(t) - (t~-5)°/2
The condition (16) implies that ¢'(t7) > ¢'(t1), for any ¢t €
R. Whenever ¢ is convex, it implies that ¢ is differentiable. The
augmented cost-function now reads

T(e.9) = Iz — yl* + EliGz — sif + 63" 95 (8)

i=1

The minimizer function o reads [12, 3, 13]:

alt) =t —¢'(t). (19)
The minimizer function x relevant to 7., s) reads
x(8) = H™'(24Ty+8G"s), Q0)
where H = 24TA+8G7G.

Here again, 7 is convex with respect to = and to 3 separately,
in general it is not convex with respect to (z, s) jointly. In spite
of this, if ¢ is twice differentiable and convex, and if the function
in (16) is convex, it is seen {3, 13] that the sequence (=¥, s*)),
given by (9)-(10) and (19)-(20), converges to (3,£) as k = &
where £ is the sought minimizer of J as given in (1)-(2).

3. CONVERGENCE RATE FOR MULTIPLICATIVE
FORM

Qur main result for multiplicative form is stated below.

Theorem 1 For J of the form {1}-{2), where (3} and (11) are sat-
isfied. consider J as defined in {12)-(13). Assume that ¢ satisfies
¢"(t)t < 2¢'(t), VtER4, 1)

and ¢" (t) /t is well defined whent ™, 0. Suppose aiso that one of
the following conditions is satisfled:

(it AT A is invertible;

(i) the inequality in (21) is strict and ¢" (t) > 0 for allt € R.
Consider the seguence {xx}3—, generated by (9)-(10) and {14}-

(15). Then there is a point & € RP, an integer koo > 0 and a
constant i € [0,1) such that

liz — =@
mﬁﬂ-<1= Yk 2 koo, (22)
Le., the sequence {4k : k 2 koa} converges linearly to &.
Sketch of the proof. After some calculations, we get
lI£ — =]
= z0]
where E{z) is an error term which goes to 0 as ||z|| = 0 and
M(z) = (ATA+BG diag ([o(elx))_ ) G)"
x AGTdiag([g{z a'(g?z)] :=1) G.
The convergence rate is determined by M (x). The essential point
is that for every x € R”, and for every i € {1,...,r} such that
gF z # 0, we have

M (=) <

< M) + B - =), @

lo7z o' (g )|

o(9]z)
where the inequality is strict when AT A is invertible. On the other
hand, (21) amounts to

|o’(8)t] < oft), VteR,

: 24

which inequality is strict if AT A is not invertible. We conclude
that ||M(z)]| < 1, for any z € R”. Furthermore, for  large
enough, all iterates ) are contained in a compact neighborhood
K of the limit point £. Since z — || M (z)[] is continuous, we see
that o = sup, ¢ || M ()i < L. o

4. SPEED OF CONVERGENCE FOR ADDITIVE FORM

There is an analogous result for the additive form.

Theorem 2 Consider J as defined in (18) and (17), and suppose
that (3) holds. Let ¢ be twice differentiable and satisfy

0<¢"(t) <1, VteR. 25

Suppose also that one of the following conditions is satisfled:
(i) AT A is invertible;
(i) ¢"(t) > 0 forailt € R,
Consider the sequence {xx Y5y generated by (9)-(10) and (19)-
(20). Then there are & € RF, koo > 0 and p1 € [0, 1) such that
==
i = 2]
ie., the sequence {z : k 2 koo } converges lineariy to £.

Su<l, Vk2 ke, (26)
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Sketch of the proof. In this case, we obtain an inequality of
the same form (23), with E an error term converging to zero. Now,
the matrix M, which gives the convergence rate, reads

M(z) = AT A+8G7G) 7 GTding ([1 - ¢" (a7 z)]]_,) G-
It is easy to see that for every © € RP we have
M)l <1-¢"(gl2), Vi=1,...,m, @n

which inequality is strict if AT A is not invertible. This allows us
to deduce that || M (z}|| < 1 for every z € RP. As previously, &
has a compact neighborhood K such that z**) € K for all k large
enough. The constant u is deduced by the same reasoning. °

5. MULTIPLICATIVE VERSUS ADDITIVE FORM

Based on (24), the convergence rate for the multiplicative form is
essentially determined by the function
M) =o' (1)l /o (t), (28)
where ¢ is as given in (14). Similarly, (27) shows that the conver-
gence rate for the additive form is essentially determined by
M(t)=1-¢"(t). (29)
Notice that by (22) and (26), the convergence rate is better if M is
smaller. We can say that M is a rate function, Tn Fig. | we present
the function M relevant to (28) and (29) for two potential fune-
tions ¢. In both cases, the function AM relevant to (28) is smaller
than the one relevant to (29): this suggests that multiplicative form
needs less iterations than additive form in order to find Z.
Furthermore, the cost-per-iteration for the multiplicative form
follows from (14)-(15), and the one for the additive form comes
from (19)-(20). The comparison of these expressions clearly shows
that the cost of each iteration under the additive form is much eas-
ier than under the multiplicative form.

0.5 0.5

[ 1 -1

3 [ i
oty = vVa+ i p(t) =1 —1og (1 + &)

Fig. 1. The rate-function M for two potential functions. X -axis ¢,
Y -axis M(t), multiplicative form (—), additive form (+++).

6. EXPERIMENTAL STUDY OF THE RATE OF
CONVERGENCE

In this section, we consider restoring an one-dimensional signal
and use this example to compare the additive and the multiplicative
forms of the HQ regularization. In Figure 1 are displayed: the
original signal, the observed blurred and noisy version, and the
restored signal using a cost-function of the form (1)-(2) where ¢ is
a Huber function (4). The stopping criterion of the HQ iterations
is[le™® —z%® -V < 1x 1072

The numbers of HQ iterations required are listed in Table 1 for
different values of @ and 8. Tt is obvious from these results that
the multiplicative form of the HQ regularization is more efficient
than the additive form, in terms of iterations required.

In the additive form of the HQ regularization, the matrix in-
volved is fixed at each HQ iteration, and the right hand side in-
volved is changing at each iteration and is affine in y and in 5. It
follows that efficient method such as fast cosine transform can be
applied to solving such kind of linear systems. In contrast, in the
multiplicative form of the HQ regularization, the matrix involved
H(s), given in {15), is changing at each iteration, and the right
hand side involved is fixed and is given by ATy. We can only
apply the Gaussian elimination method to solve these linear sys-
tems. It is very expensive. In Fig. 2 is displayed the condition
numbers of the matrices H{s) during the iterations, for different
values of the parameters o and 3. In Table 2, we list the average
of the condition numbers of H{s) for HQ iterations. It is seen
that the condition number of the matrix in the additive form is less
than those in the multiplicative form. Since the condition numbers
of the matrices in the multiplicative form are large, the number of
inner iterations required {o solve the corresponding linear systems
are more when we apply iterative methods in the inner iterations.

Finally, we estimate the convcr%ence speeds of both forms,
In Figure 3, we show the ratios [|2'¥¥1} — £//||=2® — || for
the additive and the multiplicative HQ iterations. We observe that
the convergence speed of the multiplicative HQ iterations is faster
than that of the additive HQ iterations especially for the first few
iterations. We also see that the convergence factor of the addi-
tive HQ iterations is very close to 1, especially when 2'* is close
to £. However, the convergence factor of the multiplicative HQ
iterations is strictly below 1. These results explain why the multi-
plicative form converges faster than the additive form.

B | a | Additive | Multiplicative
5 1 > 1000 306
5105 »1000 361
5 {01 > 1000 308
10 ] 0.1 {| > 1000 447
1 |01 937 162

Table 1. Number of HQ iterations required,

B | « | Additive | Multiplicative (average)
5 1 38.01 44.27
5|05 38.01 59.22
5 |01 38.01 128.38
10 | 0.1 50.33 159.31
1 |01 26.29 102.29

Table 2. Condition numbers of matrices involved in the additive
and multiplicative forms.
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eriginal signal blurred signal
30,
25 25
20 20
15 15
10 10
£ 5

20 40 60 B0 100 120 20 40 60 BD 00 120

biwred and nolsy signal rastored signal

30,

20 40 B0 80 100 120 20 40 60 B0 100 129

Fig. 1. Results of the test image when & = 0.1 and 3 = 5.
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Fig. 2. Condition numbers of matrices involved in the multi-
plicative form.

W o W @ B W W W W 10

Fig. 3. Estimates of the convergence speeds for the additive
(+H+++) and the multiplicative ( ) forms.

7. CONCLUDING REMARKS

We performed a both theoretical and numerical comparison of the
two forms of HQ regularization, multiplicative and additive. The
obtained results clearly stipulate that the multiplicative form is
more attractive in terms of speed of convergence. In contrast, ad-
ditive the form presents some possibilities to further improvement
of the conditioning.
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