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ABSTRACT 

We consider the reconstruction of MRI images by minimiz- 
ing regularized cost-functions. To accelerate the computa- 
tion of the estimate, two forms of half-quadratic regulariza- 
tion, multiplicative and additive, are often used. In [13], we 
have compared both theoretically and experimentally the ef- 
ficiency of these two forms using one-dimensional signals. 
The goal of this paper is to compare experimentally the effi- 
ciency of these two forms using MRI image reconstruction. 
We find that using the additive form is more computation- 
ally effective than using the multiplicative form. 

1. INTRODUCTION 

We address image reconstruction where a sought image ? E 
RP is estimated from degraded data y E Rq by minimizing a 
cost function J : Rp --f R which combines a quadratic data- 
fidelity term and a regularization term Q via a parameter 

i = min J ( z ) ;  where J ( z )  = 11Az-g112+BQ(z). (1) 

We shall assume that the observation operator A E RqXp is 
known. We focus on regularization term 

p > 0: 

ZERO 

of the form 

,= 1 
where $ : R --f R is a potential function and yT. for i = 
1,. . . , r ,  are linear operators. Typically, {gTz} are first or 
second-order differences between neighboring pixels. If G 
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is the r x p matrix whose ith row is gT. for i = 1 , .  . . , r ,  
a basic requirement is ker(ATA) fl ker(GTG) = {O}. We 
suppose that $ is smooth and convex, and edge-preserving, 
i.e. $( t )  < tZ  for ltl + 00. Such functions can be found in 
[2 ,  3, 1, 51, e.g., Huber potential function: 

(3) 
if It1 5 U ,  

Cost-functions of this form are popular in various inverse 
problems such as denoising, deblurring, seismic imaging, 
tomography. 

However, the resultant minimizers ? are non-linear with 
respect to data y their computation is costly, especially when 
A has many non-zero entries. In order to cope with nu- 
merical slowness, halfquadratic (HQj reformulation of J 
has been pioneered, using two different ways, in [7] and 
[SI. The idea is to construct an augmented cost function 
J' : Rp x R" + R which involves an auxiliary variable 
s E R', and two new functions, Q : R x R --t R ,  where 
& ( . , s i )  isquadraticVsiER,Bnd1C. : R + R ,  

J ' ( z , s )  = I I .hz-~l l~ +PcQ(~r~,si)+Bc~i)(~i), 
(4) 

so that $(t) = min {Q(t,  s) + $J(s)} , Vt  E R. ( 5 )  

By (5 ) .  the global minimizer (?,2) of J' yields the solu- 
tion initially defined in (1 j, since J ( z )  = minSER. J ( z ,  s), 
Vz E Rp. In [7], Geman & Reynolds first considered a 
quadratic term Q of the multiplicative form, 

Later, Geman & Yang [XI proposed an additiveform for Q: 

(7) 

In both cases (6) and (7j, the dual function $, which ensures 
(5j, is obtained using the theory of convex conjugacy [9]. 

i=l i=l 

SER 

Q(t , s )  = t 2 s ,  for t E R, s E R+. (6) 

Q(t , s )  = ( t  - s)~, for t E R, s E R. 
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The augmented cost-function 9 is minimized using an 
alternating minimization scheme.  Let the solution obtained 
at iteration ( k  - 1) read ( d - ' ) ,  dS-l)). At the next itera- 
tion k we calculate 
s ( k )  such that J ( Z ( ~ - ' ) , S ( ~ ) )  < - 9 ( d k - ' ) , s ) ,  Vs E R", 
dk)  such that Vx E Rp. 
These minimizations give rise to tn'o minimizer mappings,  

x 4 [u(gTx),  . . . ,u(gTz)IT with U : R + R, and s + 
x ( s )  with x : R' 3 RP. The alternate minimization thus 

.7(dk), dk)) 5 J ( z ,  .dk)) ,  

#) = x(s (" ) .  (9) 
These ideas has been pursued and deepened by many 

authors [3,6, 1, 5,  11, 101. Although the intuition that HQ 
regularization does indeed increase the speed of the mini- 
mization of regularized cost-functions of the form ( l ) ,  this 
critical question has never been considered in a theoreti- 
cal way. In [13], the performance of both formulations (6) 
and (7) has been compared using one-dimensional signals. 
The goal of this paper is to compare experimentally the effi- 
ciency of these two forms using MRI image reconstruction. 
We find that using the additive form is more computation- 
ally effective than using the multiplicative form. 

2. S O M E  FACTS ABOUT HQ REGULARIZATION 

2.1. Multiplicative form 

We consider potential functions $ such that 
t + $(&) is concave on R+, limtbo $'(t)/ t  <CO, 

t + $( t )  is convex on R, limt,, $(t)/ t2 = 0, 
4 is twice differentiableon R, $(t) =$(-t), VtER. 

Then the expressions below are equivalent [7,S, 101: (lo) 

(1 1) 
$(t)  = inf,€R {st' + $(s)} , 

Notice that 21, is convex and $(s) = +CO f o r s  < 0; hence 
the infimum in ( I  1) can be considered only for s > 0. The 
resultant augmented cost-function 3 is defined on RY x R; 
and reads 

J ( s , s )  = I IAx-~11 '+P(Gz)~diag(s )  G z + p X $ ( s i ) ,  

(12) 
where diag(s) is a diagonal matrix whose diagonal elements 
are si, for i = 1;. . . , r .  The function U ,  as given in (81, 
reads 15. 101 

= suPt€R { $ ( t )  - s t ' }  ' 

i= 1 

. .  
~ 1 3 )  

where clearly u(t)  2 0, Vt E R .  The minimizer mappin 2, 
introduced in (9), satisfies D l J ( x ( s ) ,  s) = 0, Vs ER', and 
reads: 

(14) 
X ( S )  = (H(s) ) - '  ATy, 
where H ( s )  = A T A  + BGTdiag(s)G. 

2.2. Additive form 

This form is considered under the condition that the func- 

is convex, continuous and finite for every t E R. Then the 
following expressions are equivalent: 

$( t )  = i&x {$(SI + (t - s)'/2}, (16) 
$(s) = SUPtCR {$ ( t )  - ( t  - s ) 2 / 2 } .  

The condition ( I S )  implies that $'( t - )  2 @(t+), for any 
t E R. Whenever 4 is convex, it implies that $ is differen- 
tiable. The augmented cost-function now reads 

P J ( z ,  S) = IIAz-?/I12 + -IIGz -SI/' + B  $(si), (17) 
;=I 

2 
The minimizer function U reads [4, I]: 

u ( t )  = t - $'(t) .  (18) 

The minimizer function x relevant to J( . ,  s) reads 

X ( S )  = H-I (2.4Ty + p G T s ) ,  
where H = 2AT.4+ 4 GTG.  (19) 

3. EXPERIMENTAL RESULTS 
In this section, we first consider restoring a two-dimensional 
image (128 x 128) and use this example to compare the per- 
formance of the additive and the multiplicative forms of the 
HQ regularization. In Figures 1 and 2, we display the orig- 
inal signal and the observed blurred and noisy version. We 
consider a spatial-invariant blurring process, and therefore 
the corresponding blurring matrix A is a Toeplitz-like ma- 
trix [14]. Since A is Toeplitz-like and G is the discretization 
matrix of the first-order differentiation operator, the coeffi- 
cient matrix ATA+BGTG in the additive form can he diag- 
onalized by the cosine transform matrix. It follows that the 
computational complexity required for solving (19) at each 
HQ iteration is O(n' log n) operations for an n-by-n image. 
However, for the multiplicative form, the coefficient matrix 
is ATA + pGTdiag(s)G and it cannot he diagonalized by 
the fast transform matrix even A and G have Toeplitz struc- 
tures. We employ conjugate gradient methods (inner itera- 
tions) to solve such linear systems. The computational com- 
plexity required at each inner iterations is O(n ' )  operations. 

The restored images using a cost-function of the form 
(I)-@) where $ is a Huber function (3) are displayed in Fig- 
ures 3 and 4 for the additive and the multiplicative forms 
respectively (a  = P = 1). The stopping criterion of the HQ 
iterations is l l f ( k )  - f ( k - 1 ) l 1 2 / / 1 g / 1 2  < 1 x 10V3. All the 
computations are done using MATLAB. Visually, two re- 
stored images using the additive and the multiplicative form 
are almost the same. In Table 1, we compare the perfor- 
mance of the HQ iterations using the additive and the multi- 
plicative forms for different parameters cy and @. We see that 
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Fin. 1. The original image. Fig. 3. The restored image using the additive form. (relative 
omnr = n 1 7 A n j  

Fig. 2. The blurred and noisy image. (relative error = 14.5) 

the multiplicative form of the HQ regularization is more ef- 
fective than the additive form in terms of the objective func- 
tion values and the relative errors. However, the differences 
are not significant. 

On the other hand, the computational time required by 
the additive form of the HQ regularization is significantly 
less than that by the multiplicative form. As we have men- 
tioned that fast cosine transform can be used to solve the 
linear system in the additive form, but inner iterations are re- 
quired to solve the linear system in the multiplicative form. 
Thus the additive form is more efficient. 

Next we consider the problem of increasing the spatial 
resolution of three-dimensional fMRI images [IZ]. A slice 
of a real image is given in Figures 5-8 using the additive and 
the multiplicative forms of HQ regularization (a = 0.01 and 

= 1). Both forms restore the images quite well. Again the 
fast cosine transformcan be applied to solve the correspond- 
ing linear system in the additive form. The inner iterations 
are required in the multiplicative form. Our numerical re- 
sults show that the additive form takes 103 seconds for the 
restoration, but the multiplicative form takes almost an hour 
for the restoration. 

4. CONCLUDING REMARKS 

We performed a numerical comparison of the two forms 
of HQ regularization, multiplicative and additive. The ob- 
tained results clearly stipulate that the additive form is more 

Fig. 4. The restored image using the multivlicative form 
(relative error = 0.1239) 

a = 1 and0 = 1 
Number of iterations required 

Objective function value 
Relative error of the restored image 

CPU time required (seconds) 
a = 0.5 and 0 = 1 

Number of iterations required 
Objective function value 

Relative error of the restored image 
CPU time reauired lseconds) 

a = 0.25 and 0 = 1 
Number of iterations reauired 

Objective function value 
Relative error of the restored image 

CPU time required (seconds) 
a = l a n d p = 0 . 5  

Number of iterations required 
Objective function value 

Relative error of the restored imaee 
I 

CPU time required (seconds) 
a = l a n d p = 2  

Number of iterations required 
Objective function value 

Relative error of the restored image 
CPU time reauired lseconds) 

additive I multiplicative 
4 I 4 

259.3545 1 259.1436 
0.12408 0.12399 

156.1 

158.0 
additive multiplicative '"+_- 
159.3879 I 145.2088 
0.13388 0.12751 

431.9121 468.3296 
0,12243 0.12215 

2.8 154.2 

Table 1. Comparisons between the additive and the multi. 
plicative forms for Huber potential function. 
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Fig. 5 .  ‘lhc origitul image. 

Fig. 6. The blurred and noisy image. (relative error = 5.521) 

attractive in terms of computational cost 
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