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Abstract 

This paper discusses the reliable controller design problem 
for symmetric composite systems composed of several iden- 
tical subsystems. A reliable controller design procedure is 
presented in terms of the solutions to the Algebraic Riccati 
Equations. The order of these AREs is much lower than 
that of the symmetric composite system. The resulting 
closed-loop system is reliable in that it provide guaranteed 
internal stability and H ,  performance when all sensors and 
actuators are operational as well as when the sensors or ac- 
tuators of a prescribed subsystem experiences an outage. 

1 Introduction 

Symmetric composite systems are systems consisting 
of identical subsystems with interconnections described 
by constant block-symmetric matrices. This class of 
systems occurs in very diverse areas such as electric 
power systems, industrial manipulators, computer net- 
works, etc. [l] 121 [6] [8]. In recent years there has been 
a great interest in symmetric composite systems. Lunze 
first proposed the state model of symmetric compos- 
ite systems, and investigated some of the fundamen- 
tal properties of such systems [I]. In [SI, a synthesis 
procedure for decentralized controllers for symmetric 
compositc systems is prescntcd and important charac- 
teristics of such systems are observed. For uncertain 
symmetric composite systems, a robust controller de- 
sign procedure is given in [8]. 

Recently, some approaches to  the design of reliable con- 
trollers that retain stability and H ,  performance have 
been developed by several authors [3] - [5] [7]. In [7], 
Veillette et a1 presented a methodology for the design of 
reliable centralized and decentralized control systems 
by using the Algebraic Riccati Equation (ARE) ap- 
proach The resulting controller guarantees closed-loop 
internal stability and Hm performance not only when 

all control components are operational, but also in case 
of some admissible control component outages. In [3], 
Medanic investigated the single contingency reliable de- 
sign problem, and presented a technique for H,-norm 
bounding design that results in performance reliable 
with respect to  the outage of any one sensor or any 
one actuator by introducing a redundant sensor and a 
redundant actuator. 

, 

In this paper, we study the reliable control problem for 
symmetric composite systems. By making use of the 
symmetric structures, the order of the AREs involved 
in the design process is drastically reduced. The paper 
is organized as follows. The mathematical description 
of symmetric composite systems and and problem for- 
mulation are given in Section 2, together with some 
technical preliminaries. In Section 3 a reliable con- 
troller design procedure is presented in terms of the 
solutions to the Algebraic Riccati Equations (AREs) 
whose order is much lower than that of the system. 
The controller is reliable with respect to  the outage of 
sensors or actuators of a prescribed subsystem. Finally, 
some concluding remarks are given in Section 4. 

2 Problem formulation and preliminaries 

The symmetric composite system I= under considera- 
tion consists of N ( N  > 1) identical subsystems and 
the overall system is described by composite equations 
of the following form 

C :  x = Ax+Bu+Gw (1) 
y = c z + w o  (2) 

z = ['fl"] 
where for i = 1, a I . ,  N ,  

x =  [ZT, * * * , x.;F]', x.; E R" 

(3) 
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U = [ U ? ; * . , U $ ] ~ ,  ~i E R" 
Y = [Y1 , ' " , Y N I  > Y i  ER' T T T  

Here ui, xi, and yi are, respectively, the input, state, 
and output of the i th subsystem; z E RTN+" is the 
output to be regulated; and w and WO are the square- 
integrable disturbances. The composite matrices A E 

and H E RrNxnN all have block-symmetric structures. 
For example, 

R n N x n N  B E R n N x m N  c E R p N x n N ,  G E R n N x q N  , , 

r 1 

When an actuator outage occurrs in, say, the first sub- 
system, the B matrix in (1) is replaced by 

Similarly, when a sensor outage occurrs in, say, the first 
subsystem, the C matrix in (2) is replaced by 

r o o ... 0 1  

By defining 

Cll c 1 2  ... c 1 2  

Cl = [ ; ; ::: ; ] (€9 
... 

we have the following decompositions for the B and C 
matrices. 

Motivated by the controller structure by Veillette et al. 
in [7], we consider dynamic controllers of the following 
form. 

j = ( A  + BK)J + G+& + L(y - C4) (10) 

U = K t ,  t E R n N  (11) 

where dim 6 = dim w + dim U .  Then the reliable 
control problem considered in this paper is defined as 

follows. Given the symmetric composite linearsystem 
in (1) - (3), design a controller of the form (10)-(11) 

such that the resulting closed-loop system is asymptoti- 
cally stable, and the &,-norm of the closed-loop trans- 
fer function matrix from [wT, w$IT to z is bounded by 
some prescribed y > 0 when all sensors and actua- 
tors are operational as well as when the sensors and 
actuators of one, but only one, prescribed subsystem 
experience outages. 

Due to the symmetry in the system, it is sufficent to 
consider only outages in the first subsystem. Before 
going to the next section to give the design procedure 
for the above reliable control problem, the following 
technical preliminaries are needed. 

Suppose that VO,. . . , t 1 - 1  are the s roots of unity in 
complex plane. That is v j  = ezp(27rj-/s), j = 
O,l , . - . , s  - 1. Let mj = [1,vj,vj2,..-,vjs-'IT. For 
given positive integers p ,  q and s, denote 

for s odd 
A =  

for s even 

and 
TR(P, q, S) = diag[Ip, Rs 8 Iq] (12) 

where IQ denotes the q x q identity matrix, @J denotes 
the Kronecker product and the matrix R, is defined as 
follows 

R, = M,Us (13) 

with 

1 
$mo mlmN-1 m2 "-2 ' .  . mx m,-xl 

$mo mlmN-1 m2 "-2 ..- 
mx-1 mx m,-x+l] 

for s odd 

for s even 

diag[l, y, . ; , VJ for s odd 

diag[l, V, ..., V, 11 for s even 
x - 

A-1 

and 

It is straightforward to verify that R, is a real or- 
thogonal matrix. (In fact, R, is also normal.) Hence, 
T R ( ~ ,  q, s )  is a real orthogonal matrix. 

Lemma 1: For any given matrices Eo0 E RQOXko, 
Eo1 E R q o X k ,  El0 E Rqxko, Ell E RqXk and E 1 1  E 
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Then 

0 j = l , * * * , s - l  1 + v j  +U; + . . . +u;-1 = {  1 
j = s  

where V j  is the complex conjugate of v j  Denoting by E1 

the matrix E with the lSt block row and the lSt block 
column deleted, and (.)H the Hermitian transpose of a 
matrix, we have, for s odd 

(diag[Iq, Ms8rql)HE 

- - 

But 

Eo0 

s-1 

4-%1 + ( @;)El2 
i=o, i#j-1 

8-1 

i=O,  ifj-1 

S-I 

1 - - 
- f i  

Then 

where 

zz = 
i=O i = O  
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Thus, 

m o ,  4, S)ETR(kO, k, s) 

(diadIq, 7 us €4 Iql)H[(diag[Iq,, Ms 8 I q y E  
x diag[ko, M,  €4 Ik]]diag[Iko, us €3 Ik] 

= diag[Ep, E,, ...) Em] 

= 

For the case of s even, the proof is similar. 0 

The following notations will be used in the sequel. 

3 Reliable controller design 

In this section, we consider the reliable control prob- 
lem for the linear system of (1  - 3) in case of sensor 
and actuator outages in the first subsystem. First, we 
review some results in [7] on the reliable control of gen- 
eral linear systems. Note that in Theorems 4.1 and 4.2 
of [7], instead of AREs (Algebraic Riccati Equalities), 
only A N  (Algebraic Riccati In-qualities) are required. 
We summarize Theorems 4.1 and 4.2 of [7] as the fol- 
lowing theorem. Denote 

1 
Y2 

A, 2 A ~ X  + X A  - XB,B,TX + - X G G ~ X  

+ H ~ H  + Tzc~cl  (16) 

1 A~ 2 AY + Y A ~  - YC,TC,Y + - Y H ~ H Y  
Y2 

+ G G ~  + Y2 B~ B; (17) 

Theorem 1: [7] Given the linear system X in ( 1  - 3) ,  
suppose that (A,  H )  is a detectable pair, and 0 5 X E 
RnNxnN and 0 < Y E RnNxnN satisfy the AREs 

A, = 0 (18) 
Ay = 0 (19) 

respectively, with cma,{YX}  < y2 and A + B K  + 
G+Kd+ and A + BK + G+Kd+ - LC Hurwitz where 
o(.) is the singular value of a matrix and 

K = - B T X  (20) 
G+ = [ G y B 1 3  (21) 

(22) 

L = ( I - y 2 Y X ) - ' Y C T .  (23) 

8 = Kd+( (24) 

Kd+ = -GTX 1 

Y2 + 

Then the controller in (10) and (11) with 

asymptotically stablizes the closed-loop system, and 
the H ,  norm of the closed-loop transfer function ma- 
trix from [wT, wZlT to z is bounded by some prescribed 
y > 0 when all sensors and actuators are operational 
as well as when the sensors and actuators of one, but 
only one, prescribed subsystem experience outages. 0 

Note that the orders of the two AREs in (18) and (19) 
are n N  x n N ,  and this poses enomous computation 
burden on the design process especially when N ,  the 
number of subsystems, is large. But the system X in (1 
- 3) under consideration has very strong symmetry. We 
show in this section that the this high-order problem of 
the two AREs is equivalent to four AREs of much lower 
dimensions: two of order n x n and two of order 2n x 2n. 
This reduces greatly the computational complexity of 
this reliable control problem. Denote 

Axp = A AFXp + X p A p  - XpBpBpTXp 

1 + ; ; ; i ~ p ~ p ~ , T ~ p  + H;H, + y2c$cpo (25) 

A Axm = AZXm + X m A m  - XmBmB2X,, ,  

(26) 
1 

+,XmGmGZXm + HZHm 
Y 

A Ayp = AFYp + YpAp - YpCpCzYp 
1 

+ 7 ~ p ~ p ~ ; ~ p  + G ~ G , T  + Y ~ B , ~ B , T ,  (27) 

A Aym = AZYm + YmAm - YmCmCzYm 

Theorem 2: Suppose that the pairs (Apl,  Hpl )  and 
(Am, Hm) are detectable, and y is a positive constant. 
Suppose also that the following hold. 
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1. There exist 0 5 X ,  E R2nx2n and 0 5 X m  E 
Rnxn such that 

Ax, = 0 (29) 
Ax, = 0. (30) 

2. There exist 0 5 Yp E R2nx2n and 0 5 Y, E 
RnXTI such that 

Ay, = 0 (31) 
Aym = 0. (32) 

3. (a) The matrices A, - B,BzX, + l / r 2 G p G ~ X ,  
and Am - B m B 2 X m  + l/y2GmGT, are Hurwitz; 
(b) 

ma~{umax(YpXp) ,  UmaxP'mXm)} < y 2 ;  (33) 

LPG 
(c) the two closed-loop matrices A, - B,BFX, + 1 /y2GpG,'Xp - 
and Am - BmBzXm+l /y2GmGzXm - L m m  C 
are Hurwitz, where 

Cl 1 

cp = [ d N T C 1 2  
L, = ( I  - ~2YpX,)-'Y,C,' 

Lm = ( I  - r2YmXm)-'YmC;. 

Then there exists a controller of the form (7) and (8) 
such that the resulting closed-loop system is asymptot- 
ically stable and has the Ha-norm bound not greater 
than y when all sensors and actuators are operational 
as well as when the sensors and actuators of the first 
subsystem experience outages. 

Furthermore, the construction of the controller is given 
as follows. Partition X ,  and Yp into n x n blocks 

and let 

where 

XlO = 1 / m x p 1 0  

yo0 = Ypoo  , yo1 = 1/m=Y,Ol 
YlO = 1 / m y p 1 0  

XII ,  = 1 / ( N  - 1)[Xp11+ ( N  - 2)Xm] 
X12 = 1 / ( N  - 1)[Xp11 - Xm] 

Y11 = 1 / ( N  - 1)[Yp11 + ( N  - 2)Ym] 
Y12  1 / ( N  - 1)[Ypll - Ym]. 

Then, the controller of equation (7) and (8) is given by 
0 (20 - 23) of Theorem 1. 

The following lemma will be used in the proof of The- 
orem 2. 

Lemma 2: Under the assumptions of Theorem 2,  the 
following hold: 

1. 

A, = 0 ,  (37) 
Ay = 0; (38) 

2. the matrix A + BK + G+Kd+ = A - B0B:X + 
1 

-GGTX is Hurwitz; 
Y2 

3. Cmar{YX} < r2; 
4. the controller given by (7) and (8) with (20 - 23) 

is open-loop stable. 0 

xoo = Xpoo , XOl = 1 / m x , 0 1  
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T ; ( ~ ,  n, N - I ) H ~ H T & ,  n, N - 1) 
diag[HTHp, H:Hm,. . . , H:Hm] 

From equalities (29) and (30),  it follows 

T:(n, n, N - 1) A, TR(n, n, N - 1) 

= diag[A,,, Azm, ..., A,,] = 0 

By assumption 1 in Theorem 2, Azp = 0 and Azm = 0. 
Thus, the equality (37) holds. The proof for equality 
(38) is similar. 

Conclusions 2, 3 and 4 follow from the assumption 3 of 
Theorem 2 and the similar arguments as above. 0 

Proof of Theorem 2 Note that C = CO + Ct, B = 
Bo+BI , then the proof is completed by using Theorem 
1 and Lemma 2. 0 

Remark 1: Theorem 2 presents a reliable controller 
design procedure for symmetric composite systems in 
terms of the solutions of the algebraic Reccati equa- 
tions (AREs). But the order of these AREs are much 
lower than that of Theorem 1. The resulting closed- 
loop system is reliable with respect to the outage of 
sensors and actuators of a prescribed sybsystems (the 
first subsystem, in this case). This result is also differ- 
ent from that given in [6] [8] where the solution of the 
ARE for a symmetric composite system is constructed 
from the solutions of two AREs of the same order as the 
subsystem. When only sensor outages, or only actua- 
tor outages are considered, simpler design procedures 
can be obtained from Theorem 2 and its proof. The 
details are omitted. 

Remark 2: It should also be noted that the condi- 
tion under which the pair (Ap,  Bp) is stabilizable and 
the pair (Ap, C,) is detectable, is a necessary condition 
for the equation (29) and (31) to have positive definite 
solutions. This condition requires that the unstable 
modes of the prescribed subsystem be controlled or de- 
tected by other subsystem inputs or outputs through 
the coupling between the subsystems. When the ma- 
trix Am = All - A12 is unstable, it can be shown by a 
method similar to that in the proof of Theorem 2, that 
the reliable controller design is impossible for the case 
in which the sensors and actuators of any two subsys- 
tems are susceptible to outages. 

4 Conclusion 

This paper treats the reliable control problems for sym- 
metric composite systems composed of several identi- 
cal subsystems. By taking advantage of the symmetric 
structure of the systems, a reliable controller design 
procedure is presented in terms of the solutions to the 
algebraic Riccati equations with lower-order. The re- 
sulting control systems are reliable in that they provide 
guaranteed asymptotic stability and H ,  performance 
when all sensors and actuators are operational as well 
as when the sensors or actuators of a prescribed sub- 
system experience outages. 
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