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ABSTRACT: In this paper, two new types of Lyapunov 
and Riccati equations are presented for linear time-invariant 
descriptor systems. The two equations play key roles in 
asymptotic stability analysis and control synthesis for this 
class of systems. Fundamental properties of the two equa- 
tions are investigated and interesting results are obtained. 

1 Introduction 

Descriptor systems arise in many applications such as elec- 
trical networks, economic systems, and biochemical engi- 
neering systems. Recently, the Lyapunov methods have 
been extended to the descriptor systems systems [l]. How- 
ever, an issue remains to be resolved is to relate asymptotic 
stability and stabilizability of descriptor systems with im- 
pulses using Lyapunov and Riccati equations in a way sim- 
ilar to those of normal systems. Preliminary studies were 
conducted by Syrmos et al. [4] and Zhang et al. [5,6] in 
the impulse-free case. Unfortunately, the results in these 
works cannot be directly utilized to analyze the asymptotic 
stability and stabilizability of descriptor systems with im- 
pulses. The purpose of this paper is to study the properties 
of Lyapunov and Riccati equations associated with descrip 
tor systems (with or without impulses). In particular, we 
relate the two equations to the asymptotic stability and the 
asymptotical stabilizability of descriptor systems. 

2 System Descriptions 

Consider a linear time-invariant descriptor system given by 

(1) 
E-=Ax+Bu d x  , ~ = C X  

d t  
where x ,  u and y are respectively the state, input and out- 
put; E, A, B and C are real matrices. The descriptor sys- 
tem in (1) will be identified by the quadruple ( E ,  A,  B ,  C) .  
Whenever an argument, E,  A, B ,  or C, of a realization 
is of no consequence in the development, we may replace 
it by a *. (E ,A,B,C)  is assumed to be regular, that is 
det(sE - A )  $ 0 and it is said to be asymptotically ata- 
ble if the finite roots of det(sE - A )  = 0 lie in the open 
LHP. System concepts related to descriptor systems such as 
R-controllability and R-observability may be found in [l]. 
Since there exists so such that soE - A is invertible, we 
define 
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where 
have the same "stability" and "stabilizability" properties. 

= C. Systems under restricted system equivalence 

There exists a real invertible matrix T such that 

TzT-' = diag p1,E2),  (2) 
T2T-l = diag (& ,zz) 

= diag (SOFI - I ,  SO& - I )  , (3) 

with E1 invertible, z2 nilpotent with nilpotent index equals 
h, i.e. = 0. Note that x2 is an invertible ma- 
trix. ( E ,  A, B,  C) is r.s.e. to (TET- l ,T~iT- l ,TB,~T- l ) ,  
which may be decomposed into the slow and fast subsys- 
tems, 

-h+l 
# 0, E2 

Asymptotical stability of (E ,  A, B ,  C )  is equivalent to that 
of the slow subsystem (4). Unfortunately, the decomposi- 
tion sometimes suffers from numerical problems [3]. 

3 Lyapunov Equations and Stability 

To motivate the use of a new Lyapunov equation, we note 
that Zhtlx # 0 H x1 # 0 . Thus one can construct a 
Lyapunov function of ( E ,  A ,  B ,  C )  as 

v (Eh+'.) = xT (""+I)" Vjp+lX 

where V 2 0, with the property that V (-'+lx) E > o for 

E z # 0, and V (0) = 0 for Bh+lx = 0. The Lyapunov 
equation associated to ( E ,  A, B ,  C )  and V is given by 

-h+l 

2 T  (Eh>' vzh+l+(zh+l)T V E  -h- A = - Wzh+' 

(7) 
where W 2 0. When E = I, (7) is the usual Lyapunov 
equation. The Lyapunov equation with h = 0 was con- 
sidered in [4,2]. From (2) and (3), Lyapunov equation (7) 

becomes 2: (E:) VFz?" = 0 and 
T 

- - 
E = (soE-A)-'E, A = (soE-A)-'A, = ( s ~ E - A ) - ~ B ,  -- - 

where 

T - T V T - ~ =  [ 2 T  2 ] , T - T w T - ~  = [ Z T  2 ] 
we have E A  = A E ,  A = s o 2  - I and (E ,  A, B ,  C )  is 
restricted system equivalent (....e.) to system p, A,  B,  C )  
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such that the partitions are conformal to the dimensions of - T 
E1 and z2. Let 71 = (E:) KEF, 7 2  = (Ei)T%E:, 

W 1  = (E:) WIZ:, then we have 7 2  = 0 and 
T - 

-T- - 
XTVlEi + i!?TviXi = -El W i  E1 (10) 

since 81 and x 2  are invertible. 

(Eh> ' VEh and w = (Eh>T WEh, (7) becomes 

Also, by defining 7 = 

-T-- +-- -T-- 
A V E + E  V A = - E  W E  (11) 

-- 
Theorem 1 Descriptor system (E ,  A, *, *) is asymptoti- 
cally stable i f  and only i f  Lyapunov equation (11)  has solu- 
t i o n 7  2 0, with rank E V E  =rank E f o r w  2 0,  ("--I rh+? 

. Moreover, 7 2 0 with 

Similar to normal systems, asymptotic stability and observ- 
ability are related to the solution of a Lyapunov equation. 

Theorem 2 If any two of the following three statements 
are true, then the other statement is true. 

(i) Descriptor system (z,x, *,c) is asymptotically stable. 

(ii) Lyapunov equation (11)  has solution 7 2 0, satisfying 

rank(i!?TVi!?) =rank(Zh+l) f o r w  = (Eh)TS"CEh. 

(iii) Descriptor system (8,2, *,E)  is R-observable. 

4 Riccati Equations and Stabilizability 

For some R > 0, we define the Riccati equation associated 
with the ( E ,  A, B ,  C, *) as 

--- 

-T-- -T-- -T-- -l-T-- -T-- 
E V A + A  V E - E  V B R  B V E = - E  W E  

13) 
Riccati equation (13) can be rewritten as 

E ~ T ( z - - ~ J R - ~ B  -'--> V E  + (- A-BR-'B -'--IT-- V E  V E  

= - E  -T (- W+vBR- '"-1 B V (14) 

which may be considered as the Lyapunov equation associ- 
ated with descriptor system 

(15) 
-dx E- = (2 - ER-'BTvE) x + v 

resulting from closed-loop control of ( E ,  A, B ,  *) with state 
feedback given by U = - R - ' F 7 8 x .  When 7 is such 

d t  
--- 

that (15) is asymptotically stable then we refer 7 to as a 
stabilizing solution of (13). From (4), (5 ) ,  and (9), we have 
(13) reduced to 7 2  = 0 and 

El ViAi+Al ViEi  -ETVIBIR-~XVIEI = -El WiEi 

on noting that E1 and 3 2  are invertible while 7 3  is real 
symmetric. In other words, Riccati equation (13) is solvable 
if and only if 7 2  = 0 and Riccati equation (16) is solvable. 

Theorem 3 I f  descriptor system ( E ,  A, B ,  *) is stabiliz- 

-T- - +-- -T-- 

(16) 

--- 
able, then for w 2 0, with rank 

Riccati equation (13)  has stabilizing solution V 2 0 with 
. Moreover, there is a unique 

solution with rank(BTvi!?) =mnk(Eh+l)  =mnkp) . 

In the following, we relate the stabilizability and detectabil- 
ity of (E ,  A, B ,  C)  to the solution of (13). 

Theorem 4 Descriptor system ( E ,  A, B ,  C )  is stabilizable 

---- 

---- 

and detectable i f  and only i f  for w = 

Riccati equation (13)  has solution V 2 0 with 
so that deschptor system 

-T-- (z,x - ER-'B V E ,  *, *) is asymptotically stable. 

5 Conclusion 

In this paper, two new types of Lyapunov and Riccati equa- 
tions are developed for descriptor systems. They are related 
to the asymptotic stability and stabilizability of descriptor 
systems, which may have impulses. In this way, the results 
unify the use of Lyapunov methods to tackle a variety of 
control problems for descriptor systems. 
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