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Abstract 

This paper addresses the reliable H, control problems 
for affine nonlinear systems. Based on the Hamilton- 
Jacobi inequality approach developed in the H ,  con- 
trol problems for affine nonlinear systems, a method 
for the design of reliable nonlinear control systems is 
presented. The resulting nonlinear control systems are 
reliable in that they provide guaranteed local asymp- 
totic stability and H ,  performance not only when all 
control components are operational, but also in case of 
some component outages within a prespecified subset 
of control components. 

1 Introduction 

In recent years, considerable attention has been paid to 
the design problems of reliable linear control systems 
achieving various reliability goals, and some design 
methods have been given by several authors [3,9,12- 
141. In particular, Veillette, Medanic and Perkins [12] 
present a methodology for the design of reliable lin- 
ear control systems by means of the algebraic Riccati 
equation approach from linear H ,  control theory, such 
that the resulting designs guaranteed closed-loop sta- 
bility and H ,  performance not only when all control 
components are operating, but also in case of some ad- 
missible control component outages. 

In the area of nonlinear H ,  control, some important 
advances have been made by several authors [1,4-6,8- 
10,111. In particular, in [ll] it was shown that the solu- 
tion of the H ,  control problem via state feedback can 
be determined from the solution of a Hamilton-Jacobi 
equation (or inequality), which is the nonlinear version 
of the Riccati equation for the corresponding linear H ,  
control problem in [2]. The solution of the problem in 
the case of measurement feedback has also been given 
in terms of the solutions of a pair of Hamilton-Jacobi 
inequalities in [1,5,8]. For the computational method 
to find Taylor series approximations to the solutions of 
the Hamilton-Jacobi inequalities, the reader is referred 
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to [7] and [ll]. The purpose of this paper is to inves- 
tigate the reliable H ,  control problem for &ne non- 
linear systems by using the Hamilton- Jacobi inequality 
approach. 

2 Problem formulation 

Consider an affine nonlinear system C described by 
equations of the form 

m 

(3) 

where x is a state vector defined on a neighbourhood 
X of the origin in R", U = [u1 u2 ... umIT E R" 
denotes the control input, w, = [wr w1.. . wqIT E 
R' the disturbance input, z E R" the output to be 
regulated, y = [yl yz ... yqlT E Rq the measured 

hzi(z)(i = 1,. . . , q )  are known smooth mappings de- 
fined in a neighbourhood of the origin in R", and 
f(0) = 0, hI(0) = 0 and hzi(x) = 0 (i = l , . . . , q ) .  
Denote 

output, f(x),gl(x),hl(x),gZj(.)(j = 1 , .  . . ,m) and 

g2(x) = [ 921(x) 922(x) . . . g27n(z) 3 (4) 

h2(x) = [ h21 ~ x )  . . . h z q ( ~ ) 3  I' ( 5 )  

Let 0, c {1,2,. . . , m> and c {1 ,2 , .  . . , q }  corre- 
spond to a selected subset of actuators susceptible to 
outages and a selected subset of sensors susceptible to 
outages, respectively. Then, the problem considered in 
this paper is as follows: 

Given the system C described by equations (1)-(3) and 
a positive constant y, find a controller K with the fol- 



lowing form 

if = 4if) + W Y  
40 = 4 6 )  (6)  

where if E R“, such that for actuator outages corre- 
sponding to any wa c R,, and sensor outages corre- 
sponding to any w, c R,, the resulting closed-loop 
system is locally asymptotically stable, and has a local 
L2 gain which is less than or equal to y. 

For W a  c R, and w, c R,, introduce the decomposition 

9 2 b )  = g2w, (.I + 920, (.I 

h2(x) = h2w,(z) + h2a,(x) 
U =  uw,  + UP, 

Y = yw. +Y& 
T 

w = [ w1 ... wq ] = w w ,  + W P a  

b(z) = [ bl(Z) b2(z )  * * b q ( 4  ] 
= bw, ($1 + ba, (4 

where 

1, if i E w, 
0, if i # ws Sw. ( i )  = 

Applying the controller K of (6) to the system E, when 
actuator and sensor outages corresponding to w,, c R, 
and w, c R,, occur, the resulting closed-loop system 
Cwo,ws is given by 

The goal is to select the functions a(<), b(<) and 
c(if) such that for any w, c R, and ws C R,, 
the system CWatw8 is locally asymptoticallystable, and 
is locally dissipative with respect to the supply rate 
S ( W , D ~ , Z Q , )  = y2lIw,~,1l2 - llz~,l12, where 

(16) 
T 

wr0* = [ WO’ w[s. ] 
Next section will present a design procedure for the 
reliable controller design problem. 

The following two inequalities are obvious, and will be 
used in the sequel. 

Q ~ w ,  (z)g;w, ($1 5 92Q, (Z)g;n, for Wa c (17) 

h2w. (.)hzT,, (4 5 han, (4hL, ($1 for ws c Rs (18) 

3 Main results 

In order to describe the main result of the section, we 
first recall a notion of detectability. 

Definition 3.1 [4]: Suppose f ( 0 )  = 0 and h(0) = 0. 
The pair 1 f ,  h} is said to be locally detectable i f  there 
exists a neighbourhood U of the point x = 0 such that, if 
z(t)  is any integral curve of x = f (x) satisfying z(0) E 
U ,  then h(z(t)) is defined for all t 2 0 and h(z(t)) = 0 
for all t 2 0 implies limt+oo x(t) = 0. 

Define the Hamiltonians H,(x,p) and Ho(z ,p )  as fol- 
lows 

K?(w4 = PTfW + h%)hl(4 + r2Gn* (4h2n, (4 

Theorem 3.2 
equations (1)-(3) and suppose the following: 

Consider the system C described by 

(i) the pair { f ,  hi} is locally detectable. 

(ii) there exists some C2 function +(x) 1 0 with 
+(O) = 0 such that 

(a) there exists a C3 positive definite function 
V(x), locally defined in a neighbourhood of 
x = 0 and vanishing at 2 = 0,  which satisfies 
the Hamilton- Jacobi equation 

f (.) + g20, (z)ca, (0 + 91 (4wo  (13) 
a([> + ba, ( O Y P ,  

40 + b, (OhZ,. (2) + bas (0%. (14) 

(15) 
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(6) there exists a C3 positive definite function 
U ( x ) ,  locally defined in a neighbourhood of 
x = 0 and vanishing at x = 0,  which satisfies 
the Hamilton-Jacobi inequality 

Ho(a, U,') + ?NE) I 0 (22) 
and such that Ho(x ,  U:) + $ ( x )  has nonsin- 
gular Hessian matrix at x = 0. 

(c) U ( x )  - V ( x )  is positive definite, and 

(Ux - VX)L(x)  = 2y2hT(x)  (23) 
has a solution L ( x ) .  

where Vx and U, are the Jacobian matrices of V and 
U ,  respectivelg. 
Then, the controller K of (6) with 

1 40 = f(E) + 2 y a g 1 ( 0 g T ( t ) V , T ( E )  

40 = -pT(ov:(a 

1 
--92n, 2 (E)s&,(E)V3E) - J5(E)h2(E)  (24) 

b ( t )  = J5(U (25) 

(26) 
1 

is a solution of the reliable controller design problem 
for the system C of (1)-(3). 

The following preliminaries are required in the proof of 
Theorem 3.2. 

For the system C described by equations (1)-(3), con- 
sider an extended system Ce given by 

j : =  f ( x )  + b l ( X )  Ygzn,(X)lwo + 92(X)U (27) 
y = h2(x) + w  (28) 

2 = [7;:;tx)] (29) 

2 = [yh;mi;x)] (31) 

Applying the controller K of (6) to the system E,, then 
the resulting closed-loop system E,, is as follow 

j:e = f e ( x e )  + Be(xe)* (30) 
hl ( X I  

where xe = [xT [ * I T ,  w = [wr wTIT, 

The closed-loop system Cw0 
ten as 

of (13)-( 15) can be writ- 

(32) 

(33) 

where wTa, is given by (16), 

Let X ( x e )  be a Cf function defined in a neighbourhood 
of (O,O), and denote 

Jce(X,  ~ c e )  x z , j e ( x e )  + zTz 

Lemma 3.3 For any wa c R, and ws c Os, the fol- 
lowing inequality holds 

Jas(X,  Cw,,ws) I Jce(X,  Cce) (36) 

Proof: By equations (30),  (31) ,  (32) and (33) ,  we have 
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Combining equations (37)-(39), (31), and inequalities 
(17) and (18), it follows that 

~ a s ( x ,  z w a , w , )  5 X z . f e ( Z e )  + hT(x)hl(x) + cT(Qc( t )  

Q 

Lemma 3.5 Under the assumptions of Theorem 3.2, 
let Q(x)  = U ( Z )  - V(Z), X ( x e )  = V(Z) + Q(z - c),  
then there exists a neighbourhood of (z,E) = (0,O) in 
which the following inequality holds: 

J c e ( X ,  &e) 5 0 (43) 

Proofi In the extended system Ce described by equa- 

"(') = [ 7 h z n , ( z ) ]  hl(x) . Then, from equation (19), we 

have 

tions (27)-(29), let m ( 4  = [gl(z> ~ g 2 n , ( 4 ]  and 

1 1  
v , f ( 4 + K ( z ) h  (4+ ;iK ( p 1  (.>sr(+9zgzT(z))v: 

= H,(G v:) (44) 

Denote c1(z) = &gf(?)VT and f(x) = f(z) + 
g(z)c1(z). By equations (23), (41) and (42), it  follows 

QZf(x> + c?(.)ci (z) - ~ ~ h , T ( z ) h 2  (2) 

1 
+ - ~ ~ j i ~ ( z ) s T ( 4 ~ :  

4Y2 

= &(E, QZ> = Ho(z, U?) + $(z) (45) 
Then, from the assumptions of Theorem 3.2, equations 
(44) and (45), and the proof of Theorem 3.1 in [5], it 
follows that the inequality (43) holds in a neighbour- 
hood of (2, () = (0,O). Q 

Proof of Theorem 3.2: By Lemma 3.3, Lemma 3.5, and 
Theorem 2 in [ll], it follows that for any WO C R a  and 
w8 C R,, the system CWarW, of (13)-(15) or (32)-(33) 
is locally dissipative with respect to the supply rate 
s(wr3, , ZG,) = T211w!. [I2 - llz3* I?. 
In the following, we show that the system Cwa,w, is 
locally asymptotically stable. 

From Ja8(X, CWo,W.) 5 0 and turP, = 0, it follows 

= -Ilh1(dtNll2 - Il%a(0112 
This proves that the system Cwa+,. is stable at the equi- 
librium (5, E )  = (0, 0 ) ,  and any trajectory satisfying 

is necessarily a trajectory of 

X = f(.) + 92& (<) 

such that z(t) is bounded and hl(z(t)) = 0, %-( [ ( t ) )  = 
0, which further follows from assumption (i) that 
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limt,,z(t) = 0. Thus, the w-limit set of such a tra- 
jectory is a subset of 

M = {(x, J )  : z = 0,  cas ( [ ( t ) )  = 0 }  

By equation (24), and f i a  C a,, any initial condition 
on this w-limit set yields a trajectory in which z( t )  = 0 
for all t 2 0, while J( t )  is a trajectory of 

,+ 40 + bas c9h23, (2)  
1 

= f ( J )  + ,Sl(J)9T(J)V,T(J) 
2Y 

1 
--920,(E)g:fia 2 (J)V,T(J) - L(J)hZ(E) 

= f(O + p 1 ( O g T ( E ) V , T ( O  - L ( J ) h ( J )  

- -920, (E)c$, (e) 

1 

1 
2 

By Lemma 3.4, it follows that limt+, J(t)  = 0. Thus, 
by the invariance principle, the system CWnIWa is locally 
asymptotically stable. 4. 

In the case of a linear system 

X = A x + G w ~ + B u  (46) 
y = c x + w  (47) 

z = [';"I 
a solution of the corresponding reliable controller de- 
sign problem is given by the following corollary. 

Corollary 3.6 Consider the linear system described by 
equations (46)-(48) and suppose the following: 

(i) the pair (A,  H )  is detectable; 

(ii) the following algebraic Riccati equation and in- 
equality 

+ H ~ H  + ~2cc,'.~n. = o (49) 

1 ATY + Y A  + YBn, BzaY + -YGGTY 
Y2 

+ H ~ H  - r2c;aca, < o (50) 

have positive definite solutzons X and Y ,  re- 
spectively, and Y > X, where the matrices 
BQ, , Baa, Cas , and Cfia have meanings simi- 
lar to those of gzn, (z), gab, (z), han, (x)? and 
h20,(x) in (19) and (20). 

Denote 

G+ = [ G yBn, 1 ,  Kd+=-G ' T  X 
Y2 + 

K = -BTX 
L = y2(Y-X)-1CT 

Then the controller 

4 = ( A  + BK + G+Kd+ - LC)< + L y  (51) 
U = K J  (52) 

is a control law such that for  actuator outages corre- 
sponding t o  any wa c Oa,  and sensor outages cor- 
responding t o  any w, c Os, the resulting closed-loop 
system is asymptotically stable, and has an  Ha-norm 
bound 7. 

Remark 3.7 Comparing with Theorems 4.1 and 4.2 
in [12], Corollary 3.6 contains a condition under which 
the strictly Riccati inequality (50) has a positive def- 
inite solution, which is stronger than the condition in 
Theorem 4.2 in [12] under which the corresponding Ric- 
cati equation 

1 
Y 

ATY + Y A  3- YBn, Bz,Y + -ZYGGTY + H T H  

2 T  -y Cfi,CQa = 0 

has a positive definite solution, but the asymptotic sta- 
bility of the controller given by equations (51) and (52) 
is not required in Corollary 3.6. 

In the following, we present an example to illustrate 
the result of the paper. 

Example 3.8 Let the considered system be described 
by equations (1)-(3), with n = 1, m = 2,q=1, f(z) = 
0, g1(2) = 2,  921(2) = 1, 9 2 2 ( 5 )  = i, h l ( X )  = 2, 

h 2 ( Z )  z= 22, Oa = {2}, $2, = 0, 1 and $(z) = 0. 
Then the Hamilton-Jacobi inequalities (21) and (22) 
take the form 

V,"(2 - 1) + 4x2 5 0 (53) 
2 2  1 

16 
+ -) - 3x2 5 0 (54) 

I t iseasytoshowthatforIzI< $,V(z)  =1-(1-z2)$ 
and U ( Z )  = (2.99)4(x2 + +)$ - i(2.99)' 2 satisfies the 
inequalities (53) and (54), and such that the Hessian 
matrix of the left-hand side of (54) is less than zero at 
z = 0. Thus, from Theorem 3.2, the controller 

i = ( ~ 3  - 0 ( 1  - p - 3  
- 4E(J2 + i ) i ( l -  <2)+  

(2.99)4(1 - E ) $  - (E2 + 2)i 
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is such that for the second actuator outage or operat- 
ing, the resulting closed-loop system is locally asymp- 
totically stable, and has a local LZ gain which is less 
than or equal to 1. 

4 Conclusions 

This paper presents a solution of the reliable controller 
design problem for anaffine nonlinear system, and the 
solution of the problem is shown to be related to the ex- 
istence of solutions of a Hamilton-Jacobi equation and 
a Hamilton-Jacobi inequality. The resulting nonlinear 
control systems are reliable in that they achieve asymp- 
totic stability and H ,  performance, not only when the 
system is operating properly, but also in case of some 
component outages within a prespecified subset of con- 
trol components. 
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